-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_exp_cold.py
137 lines (130 loc) · 8.22 KB
/
main_exp_cold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import yoochose_catalog
import system_utils
from cold_start_exp import ColdStartExp
from cold_start_session_reader import ColdStartSessionReader
from encode_reader_ext import EncodeReaderExt
from item2vec import Item2vec
from session_reader import SessionReader
import config_model
from session_remover import SessionsRemover
if __name__ == "__main__":
system_utils.redirect_stdout("output.log")
with open("predictions.csv", "w") as fw2:
fw2.write("exp_name,model,type_exp,precent,epoch,index,x_test,y_test,y_pred,trash05,right\n")
print('starting...')
print('create catalog...')
c = yoochose_catalog.Catalog(
dir_path="catalog", use_german_token=config_model.use_german_tokenizer, mode=3)
items = c.get_items()
print("prepare session file")
model_name = 'general'
system_utils.create_dir('%s' % model_name)
system_utils.create_dir('%s/data_before_encode' % model_name)
s = SessionReader(input_path_session_actions='%s/eventsquance.txt' % config_model.dir_input,
input_path_session_info='%s/list session.csv' % config_model.dir_input, items_list=items,
test_dates=config_model.dates_for_test
, maxlen=config_model.max_len_session
, minlen=config_model.min_len_session
, wipe_items_not_in_train=config_model.wipe_items_not_in_train
, encode_dir='%s/data_before_encode' % model_name)
item2vec = Item2vec(catalog=c, embedding_size=config_model.item2vec_embedding_size, hidden_size=10,
max_len=config_model.max_len_item_emb,
epoches=config_model.item2vec_epoch)
for remove_items in [False, True]:
# for item2vec_embedding_size in [5, 20, 25, 50, 75, 100, 150, 300]:
# item2vec = Item2vec(catalog=c, embedding_size=item2vec_embedding_size, hidden_size=10,
# max_len=config_model.max_len_item_emb,
# epoches=config_model.item2vec_epoch)
# remove_items = False
config_name = 'remove_sessions'
if remove_items:
config_name = 'remove_items'
for percent_to_remove in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]:
# for percent_to_remove in [0.9, 0.95, 0.995]:
# for percent_to_remove in [0.1]:
for use_item_emb in [False, True]:
# for use_item_emb in [True]:
model_name = 'baseline'
if use_item_emb:
model_name = 'ourmodel'
print('running exps of our model:%s' % str(use_item_emb))
# exp_name = '%s_%s_%s_%s' % (
exp_name = '%s_%s_%s' % (
# model_name, config_name, str(int(10 * percent_to_remove)), str(item2vec_embedding_size))
model_name, config_name, str(percent_to_remove).replace(".", ""))
exp_name_path = "%s/output.log" % exp_name
# if system_utils.is_file_exist(exp_name_path):
# continue
system_utils.create_dir("%s" % exp_name)
system_utils.create_dir("%s/data_before_encode" % exp_name)
system_utils.create_dir("%s/data_after_encode" % exp_name)
system_utils.create_dir("%s/models" % exp_name)
system_utils.create_dir("%s/detailed_prediction" % exp_name)
system_utils.redirect_stdout(exp_name_path)
print("starting exp: %s" % exp_name)
if remove_items:
new_sessions_set = ColdStartSessionReader(catalog=c, train=s.get_train(),
test=s.get_test(),
min_item_in_category=config_model.min_item_to_remove,
precent_remove=percent_to_remove,
data_out_path="%s/data_before_encode" % exp_name)
else:
new_sessions_set = SessionsRemover(catalog=c, train=s.get_train(), test=s.get_test(),
percent_remove=percent_to_remove,
data_out_path="%s/data_before_encode" % exp_name)
if use_item_emb:
encode_session = EncodeReaderExt(train_df=new_sessions_set.get_new_train(),
test_df1=new_sessions_set.get_non_new_item_test_set(),
test_df2=new_sessions_set.get_new_item_test_set(),
encode_path="%s/data_after_encode" % exp_name,
catalog=c,
item2vec=item2vec.item2emb,
encode_mode=2)
else:
encode_session = EncodeReaderExt(train_df=new_sessions_set.get_new_train(),
test_df1=new_sessions_set.get_non_new_item_test_set(),
test_df2=new_sessions_set.get_new_item_test_set(), catalog=c,
encode_path="%s/data_after_encode" % exp_name,
item2vec=None,
encode_mode=1)
x_train = encode_session.get_x_train()
y_train = encode_session.get_y_train()
x_test1 = encode_session.get_x_test1()
y_test1 = encode_session.get_y_test1()
x_test2 = encode_session.get_x_test2()
y_test2 = encode_session.get_y_test2()
if config_model.run_deep_model:
if use_item_emb:
exp = ColdStartExp(use_class_weight=config_model.use_class_weight, lr=config_model.lr,
epochs_model=config_model.epochs_model,
batch_size=config_model.model_batch_size,
embedding_size=config_model.item2vec_embedding_size,
dense_layer_size=config_model.dense_layer_size,
predict_path='%s/model_predict.csv' % exp_name,
model_path='%s/models' % exp_name,
exp_name=exp_name
)
else:
exp = ColdStartExp(use_class_weight=config_model.use_class_weight, encode_mode=1,
max_features=len(items) + 1, lr=config_model.lr,
epochs_model=config_model.epochs_model,
batch_size=config_model.model_batch_size,
embedding_size=config_model.model_embedding_size,
dense_layer_size=config_model.dense_layer_size,
predict_path='%s/model_predict.csv' % exp_name,
model_path='%s/models' % exp_name,
exp_name=exp_name
)
auc = exp.run_exp(x_train=x_train, y_train=y_train, x_test=x_test1, y_test=y_test1,
x_test_cold=x_test2,
y_test_cold=y_test2, use_cnn=config_model.use_cnn, shuffle=config_model.shuffle,
validation_split=config_model.validation_split
)
print(auc)
if not config_model.debug:
system_utils.send_email(body='exp_name:%s the auc is %s' % (exp_name, str(auc)))
else:
if not config_model.debug:
system_utils.send_email()