diff --git a/python-package/lightgbm/basic.py b/python-package/lightgbm/basic.py index 4d637a0c6005..0ed744a0f585 100644 --- a/python-package/lightgbm/basic.py +++ b/python-package/lightgbm/basic.py @@ -780,7 +780,7 @@ def inner_predict(mat, start_iteration, num_iteration, predict_type, preds=None) ptr_data, type_ptr_data, _ = c_float_array(data) n_preds = self.__get_num_preds(start_iteration, num_iteration, mat.shape[0], predict_type) if preds is None: - preds = np.zeros(n_preds, dtype=np.float64) + preds = np.empty(n_preds, dtype=np.float64) elif len(preds.shape) != 1 or len(preds) != n_preds: raise ValueError("Wrong length of pre-allocated predict array") out_num_preds = ctypes.c_int64(0) @@ -807,7 +807,7 @@ def inner_predict(mat, start_iteration, num_iteration, predict_type, preds=None) # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff([0] + list(sections) + [nrow])] n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum() - preds = np.zeros(sum(n_preds), dtype=np.float64) + preds = np.empty(sum(n_preds), dtype=np.float64) for chunk, (start_idx_pred, end_idx_pred) in zip(np.array_split(mat, sections), zip(n_preds_sections, n_preds_sections[1:])): # avoid memory consumption by arrays concatenation operations @@ -868,7 +868,7 @@ def inner_predict(csr, start_iteration, num_iteration, predict_type, preds=None) nrow = len(csr.indptr) - 1 n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type) if preds is None: - preds = np.zeros(n_preds, dtype=np.float64) + preds = np.empty(n_preds, dtype=np.float64) elif len(preds.shape) != 1 or len(preds) != n_preds: raise ValueError("Wrong length of pre-allocated predict array") out_num_preds = ctypes.c_int64(0) @@ -913,7 +913,7 @@ def inner_predict_sparse(csr, start_iteration, num_iteration, predict_type): out_ptr_data = ctypes.POINTER(ctypes.c_float)() else: out_ptr_data = ctypes.POINTER(ctypes.c_double)() - out_shape = np.zeros(2, dtype=np.int64) + out_shape = np.empty(2, dtype=np.int64) _safe_call(_LIB.LGBM_BoosterPredictSparseOutput( self.handle, ptr_indptr, @@ -946,7 +946,7 @@ def inner_predict_sparse(csr, start_iteration, num_iteration, predict_type): # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff(sections)] n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum() - preds = np.zeros(sum(n_preds), dtype=np.float64) + preds = np.empty(sum(n_preds), dtype=np.float64) for (start_idx, end_idx), (start_idx_pred, end_idx_pred) in zip(zip(sections, sections[1:]), zip(n_preds_sections, n_preds_sections[1:])): # avoid memory consumption by arrays concatenation operations @@ -971,7 +971,7 @@ def inner_predict_sparse(csc, start_iteration, num_iteration, predict_type): out_ptr_data = ctypes.POINTER(ctypes.c_float)() else: out_ptr_data = ctypes.POINTER(ctypes.c_double)() - out_shape = np.zeros(2, dtype=np.int64) + out_shape = np.empty(2, dtype=np.int64) _safe_call(_LIB.LGBM_BoosterPredictSparseOutput( self.handle, ptr_indptr, @@ -1002,7 +1002,7 @@ def inner_predict_sparse(csc, start_iteration, num_iteration, predict_type): if predict_type == C_API_PREDICT_CONTRIB: return inner_predict_sparse(csc, start_iteration, num_iteration, predict_type) n_preds = self.__get_num_preds(start_iteration, num_iteration, nrow, predict_type) - preds = np.zeros(n_preds, dtype=np.float64) + preds = np.empty(n_preds, dtype=np.float64) out_num_preds = ctypes.c_int64(0) ptr_indptr, type_ptr_indptr, __ = c_int_array(csc.indptr) @@ -1176,7 +1176,7 @@ def _set_init_score_by_predictor(self, predictor, data, used_indices=None): if used_indices is not None: assert not self.need_slice if isinstance(data, str): - sub_init_score = np.zeros(num_data * predictor.num_class, dtype=np.float32) + sub_init_score = np.empty(num_data * predictor.num_class, dtype=np.float32) assert num_data == len(used_indices) for i in range(len(used_indices)): for j in range(predictor.num_class): @@ -1184,7 +1184,7 @@ def _set_init_score_by_predictor(self, predictor, data, used_indices=None): init_score = sub_init_score if predictor.num_class > 1: # need to regroup init_score - new_init_score = np.zeros(init_score.size, dtype=np.float32) + new_init_score = np.empty(init_score.size, dtype=np.float32) for i in range(num_data): for j in range(predictor.num_class): new_init_score[j * num_data + i] = init_score[i * predictor.num_class + j] @@ -1320,7 +1320,7 @@ def __init_from_np2d(self, mat, params_str, ref_dataset): def __init_from_list_np2d(self, mats, params_str, ref_dataset): """Initialize data from a list of 2-D numpy matrices.""" ncol = mats[0].shape[1] - nrow = np.zeros((len(mats),), np.int32) + nrow = np.empty((len(mats),), np.int32) if mats[0].dtype == np.float64: ptr_data = (ctypes.POINTER(ctypes.c_double) * len(mats))() else: @@ -3310,7 +3310,7 @@ def feature_importance(self, importance_type='split', iteration=None): if iteration is None: iteration = self.best_iteration importance_type_int = FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type] - result = np.zeros(self.num_feature(), dtype=np.float64) + result = np.empty(self.num_feature(), dtype=np.float64) _safe_call(_LIB.LGBM_BoosterFeatureImportance( self.handle, ctypes.c_int(iteration), @@ -3397,7 +3397,7 @@ def __inner_eval(self, data_name, data_idx, feval=None): self.__get_eval_info() ret = [] if self.__num_inner_eval > 0: - result = np.zeros(self.__num_inner_eval, dtype=np.float64) + result = np.empty(self.__num_inner_eval, dtype=np.float64) tmp_out_len = ctypes.c_int(0) _safe_call(_LIB.LGBM_BoosterGetEval( self.handle, @@ -3437,7 +3437,7 @@ def __inner_predict(self, data_idx): n_preds = self.train_set.num_data() * self.__num_class else: n_preds = self.valid_sets[data_idx - 1].num_data() * self.__num_class - self.__inner_predict_buffer[data_idx] = np.zeros(n_preds, dtype=np.float64) + self.__inner_predict_buffer[data_idx] = np.empty(n_preds, dtype=np.float64) # avoid to predict many time in one iteration if not self.__is_predicted_cur_iter[data_idx]: tmp_out_len = ctypes.c_int64(0) diff --git a/python-package/lightgbm/engine.py b/python-package/lightgbm/engine.py index 32e4e68a3706..fade2d925c2f 100644 --- a/python-package/lightgbm/engine.py +++ b/python-package/lightgbm/engine.py @@ -333,7 +333,7 @@ def _make_n_folds(full_data, folds, nfold, params, seed, fpreproc=None, stratifi flatted_group = np.repeat(range(len(group_info)), repeats=group_info) else: flatted_group = np.zeros(num_data, dtype=np.int32) - folds = folds.split(X=np.zeros(num_data), y=full_data.get_label(), groups=flatted_group) + folds = folds.split(X=np.empty(num_data), y=full_data.get_label(), groups=flatted_group) else: if any(params.get(obj_alias, "") in {"lambdarank", "rank_xendcg", "xendcg", "xe_ndcg", "xe_ndcg_mart", "xendcg_mart"} @@ -344,12 +344,12 @@ def _make_n_folds(full_data, folds, nfold, params, seed, fpreproc=None, stratifi group_info = np.array(full_data.get_group(), dtype=np.int32, copy=False) flatted_group = np.repeat(range(len(group_info)), repeats=group_info) group_kfold = _LGBMGroupKFold(n_splits=nfold) - folds = group_kfold.split(X=np.zeros(num_data), groups=flatted_group) + folds = group_kfold.split(X=np.empty(num_data), groups=flatted_group) elif stratified: if not SKLEARN_INSTALLED: raise LightGBMError('scikit-learn is required for stratified cv') skf = _LGBMStratifiedKFold(n_splits=nfold, shuffle=shuffle, random_state=seed) - folds = skf.split(X=np.zeros(num_data), y=full_data.get_label()) + folds = skf.split(X=np.empty(num_data), y=full_data.get_label()) else: if shuffle: randidx = np.random.RandomState(seed).permutation(num_data) diff --git a/tests/c_api_test/test_.py b/tests/c_api_test/test_.py index 0dc4cc9956e3..0d2a461f8f56 100644 --- a/tests/c_api_test/test_.py +++ b/tests/c_api_test/test_.py @@ -268,7 +268,7 @@ def test_booster(): for line in inp.readlines(): data.append([float(x) for x in line.split('\t')[1:]]) mat = np.array(data, dtype=np.float64) - preb = np.zeros(mat.shape[0], dtype=np.float64) + preb = np.empty(mat.shape[0], dtype=np.float64) num_preb = ctypes.c_int64(0) data = np.array(mat.reshape(mat.size), dtype=np.float64, copy=False) LIB.LGBM_BoosterPredictForMat( diff --git a/tests/python_package_test/test_engine.py b/tests/python_package_test/test_engine.py index 0a9a6c2c6064..4bc71837d934 100644 --- a/tests/python_package_test/test_engine.py +++ b/tests/python_package_test/test_engine.py @@ -1441,9 +1441,8 @@ def test_max_bin_by_feature(): def test_small_max_bin(): np.random.seed(0) y = np.random.choice([0, 1], 100) - x = np.zeros((100, 1)) + x = np.ones((100, 1)) x[:30, 0] = -1 - x[30:60, 0] = 1 x[60:, 0] = 2 params = {'objective': 'binary', 'seed': 0, @@ -2259,7 +2258,7 @@ def test_node_level_subcol(): def test_forced_bins(): - x = np.zeros((100, 2)) + x = np.empty((100, 2)) x[:, 0] = np.arange(0, 1, 0.01) x[:, 1] = -np.arange(0, 1, 0.01) y = np.arange(0, 1, 0.01) @@ -2275,7 +2274,6 @@ def test_forced_bins(): est = lgb.train(params, lgb_x, num_boost_round=20) new_x = np.zeros((3, x.shape[1])) new_x[:, 0] = [0.31, 0.37, 0.41] - new_x[:, 1] = [0, 0, 0] predicted = est.predict(new_x) assert len(np.unique(predicted)) == 3 new_x[:, 0] = [0, 0, 0] @@ -2300,7 +2298,7 @@ def test_forced_bins(): def test_binning_same_sign(): # test that binning works properly for features with only positive or only negative values - x = np.zeros((99, 2)) + x = np.empty((99, 2)) x[:, 0] = np.arange(0.01, 1, 0.01) x[:, 1] = -np.arange(0.01, 1, 0.01) y = np.arange(0.01, 1, 0.01)