This repository has been archived by the owner on Jan 12, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 919
/
SuperdenseCoding.qs
116 lines (90 loc) · 4.48 KB
/
SuperdenseCoding.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.UnitTesting {
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Diagnostics;
///////////////////////////////////////////////////////////////////////////////////////////////
// Superdense coding
///////////////////////////////////////////////////////////////////////////////////////////////
// Superdense coding transfers 2 classical bits by encoding them into 1 qubit,
// using 1 EPR pair ("2c=1q+1e").
///////////////////////////////////////////////////////////////////////////////////////////////
/// # Summary
/// Test run of the protocol. We first create an EPR pair between two
/// ancilla qubits. Depending on the value of two classical bits then one out of 4
/// possible Bell states is created by applying a local transformation to just one
/// half of the EPR pair. Finally, a Bell measurement is applied to
/// decode the two bits of classical information from the state.
///
/// # References
/// - [ *Michael A. Nielsen , Isaac L. Chuang*,
/// Quantum Computation and Quantum Information ](http://doi.org/10.1017/CBO9780511976667)
///
/// # See Also
/// - See Section 2.3 of Nielsen & Chuang for detailed discussion of the
/// superdense coding
///
/// # Remarks
/// We encode the bits we are going to transmit in the run of the protocol
/// in the array of Integers, so this function can be used
/// with IterateThroughCartesianPower.
operation RunSuperdenseCoding(bitsAsInt : Int[]) : Unit {
EqualityFactI(2, Length(bitsAsInt), "Array bitsAsInt must have length 2");
// Get the bits we are going to transmit.
let (bit1, bit2) = (bitsAsInt[0] == 0, bitsAsInt[1] == 0);
// Get a temporary register for the protocol run.
use qubit1 = Qubit();
use qubit2 = Qubit();
// Create an EPR pair shared between A and B.
CreateEPRPair(qubit1, qubit2);
// A encodes 2 bits in the first qubit.
SuperdenseEncode(bit1, bit2, qubit1);
// "Send" qubit to B and let B decode two bits.
let (decodedBit1, decodedBit2) = SuperdenseDecode(qubit1, qubit2);
// Now test if the bits were transferred correctly.
EqualityFactB(bit1, decodedBit1, "bit1 should be transferred correctly");
EqualityFactB(bit2, decodedBit2, "bit2 should be transferred correctly");
// Make sure that we return qubits back in 0 state.
ResetAll([qubit1, qubit2]);
}
/// # Summary
/// Creates an EPR ( also known as Bell ) pair from 2 qubits initialized
/// into zero state.
/// In Dirac notation EPR state is (|00⟩+|11⟩)/√2.
operation CreateEPRPair(qubit1 : Qubit, qubit2 : Qubit) : Unit {
// Check that the inputs are as expected.
AssertMeasurement([PauliZ], [qubit1], Zero, "First qubit is expected to be in a zero state");
AssertMeasurement([PauliZ], [qubit2], Zero, "Second qubit is expected to be in a zero state");
// Make an EPR pair.
H(qubit1);
CNOT(qubit1, qubit2);
// Check that we indeed prepared one.
AssertMeasurement([PauliZ, PauliZ], [qubit1, qubit2], Zero, "EPR state must be +1 eigenstate of ZZ");
AssertMeasurement([PauliX, PauliX], [qubit1, qubit2], Zero, "EPR state must be +1 eigenstate of XX");
}
/// # Summary
/// Encodes two bits of information in one qubit. The qubit is expected to
/// be a half of an EPR pair.
operation SuperdenseEncode(bit1 : Bool, bit2 : Bool, qubit : Qubit) : Unit {
if (bit1) {
Z(qubit);
}
if (bit2) {
X(qubit);
}
}
/// # Summary
/// Decodes two bits of information from a joint state of two qubits.
operation SuperdenseDecode(qubit1 : Qubit, qubit2 : Qubit) : (Bool, Bool) {
// If bit1 in the encoding procedure was true we applied Z to
// the first qubit which anti-commutes with XX, therefore bit1
// can be read out from XX measurement.
let bit1 = Measure([PauliX, PauliX], [qubit1, qubit2]) == One;
// If bit2 in the encoding procedure was true we applied X to
// the first qubit which anti-commutes with ZZ, therefore bit2
// can be read out from ZZ measurement.
let bit2 = Measure([PauliZ, PauliZ], [qubit1, qubit2]) == One;
return (bit1, bit2);
}
}