From 74a50b2f4eec1a219a5ae3f2d20ce5b83fc73257 Mon Sep 17 00:00:00 2001 From: mhamilton723 Date: Fri, 12 Jan 2024 05:40:23 +0000 Subject: [PATCH] Deploy website - based on 8ebf298434823100245f38598a6dc7a415fc1278 --- 404.html | 8 +++--- assets/js/0fb98d33.3038ee3c.js | 1 - assets/js/0fb98d33.f2c9e00f.js | 1 + assets/js/41f327fc.40aeb55b.js | 1 - assets/js/41f327fc.bc22d7a0.js | 1 + assets/js/58b8f176.0a1e3d6d.js | 1 - assets/js/935f2afb.419ef79a.js | 1 - assets/js/935f2afb.731706c1.js | 1 + assets/js/main.636cc31a.js | 2 -- assets/js/main.844faa32.js | 2 ++ ...CENSE.txt => main.844faa32.js.LICENSE.txt} | 0 assets/js/runtime~main.4b9eac6d.js | 1 - assets/js/runtime~main.7a4113bd.js | 1 + .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- blog/archive/index.html | 8 +++--- blog/index.html | 8 +++--- blog/overview/index.html | 8 +++--- docs/0.11.3/Deploy Models/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Geospatial Services/index.html | 8 +++--- .../Multivariate Anomaly Detection/index.html | 8 +++--- .../AI Services/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Analyze Text/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Create Audiobooks/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Flooding Risk/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Isolation Forests/index.html | 8 +++--- .../Causal Inference/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Train Classifier/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Distributed Training/index.html | 8 +++--- .../Deep Learning/Getting Started/index.html | 8 +++--- .../Deep Learning/ONNX/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Hyperparameter Tuning/HyperOpt/index.html | 8 +++--- .../Quickstart - Random Search/index.html | 8 +++--- .../LightGBM/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../OpenAI/Langchain/index.html | 8 +++--- .../Quickstart - OpenAI Embedding/index.html | 8 +++--- .../index.html | 8 +++--- .../Explore Algorithms/OpenAI/index.html | 8 +++--- .../OpenCV/Image Transformations/index.html | 8 +++--- .../Other Algorithms/Cyber ML/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Smart Adaptive Recommendations/index.html | 8 +++--- .../Quickstart - Data Cleaning/index.html | 8 +++--- .../Quickstart - Train Regressor/index.html | 8 +++--- .../index.html | 8 +++--- .../Data Balance Analysis/index.html | 8 +++--- .../Explanation Dashboard/index.html | 8 +++--- .../Image Explainers/index.html | 8 +++--- .../Interpreting Model Predictions/index.html | 8 +++--- .../PDP and ICE Explainers/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Tabular Explainers/index.html | 8 +++--- .../Responsible AI/Text Explainers/index.html | 8 +++--- .../Contextual Bandits/index.html | 8 +++--- .../Multi-class classification/index.html | 8 +++--- .../Vowpal Wabbit/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Create a Spark Cluster/index.html | 8 +++--- .../Get Started/Install SynapseML/index.html | 8 +++--- .../Quickstart - Your First Models/index.html | 8 +++--- .../Set up Cognitive Services/index.html | 8 +++--- docs/0.11.3/Overview/index.html | 8 +++--- .../estimators/estimators_causal/index.html | 8 +++--- .../estimators_cognitive/index.html | 8 +++--- .../estimators/estimators_core/index.html | 8 +++--- .../estimators/estimators_lightgbm/index.html | 8 +++--- .../estimators/estimators_vw/index.html | 8 +++--- .../transformers_cognitive/index.html | 8 +++--- .../transformers/transformers_core/index.html | 8 +++--- .../transformers_deep_learning/index.html | 8 +++--- .../transformers_opencv/index.html | 8 +++--- .../transformers/transformers_vw/index.html | 8 +++--- .../Reference/Contributor Guide/index.html | 8 +++--- .../Reference/Developer Setup/index.html | 8 +++--- docs/0.11.3/Reference/Docker Setup/index.html | 8 +++--- docs/0.11.3/Reference/Dotnet Setup/index.html | 8 +++--- .../index.html | 8 +++--- docs/0.11.3/Reference/R Setup/index.html | 8 +++--- .../Use with MLFlow/Autologging/index.html | 8 +++--- .../0.11.3/Use with MLFlow/Install/index.html | 8 +++--- .../Use with MLFlow/Overview/index.html | 8 +++--- docs/0.11.4/Deploy Models/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Geospatial Services/index.html | 8 +++--- .../Multivariate Anomaly Detection/index.html | 8 +++--- .../AI Services/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Analyze Text/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Create Audiobooks/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Flooding Risk/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Isolation Forests/index.html | 8 +++--- .../Causal Inference/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Train Classifier/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Distributed Training/index.html | 8 +++--- .../Deep Learning/Getting Started/index.html | 8 +++--- .../Deep Learning/ONNX/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Hyperparameter Tuning/HyperOpt/index.html | 8 +++--- .../Quickstart - Random Search/index.html | 8 +++--- .../LightGBM/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../OpenAI/Langchain/index.html | 8 +++--- .../Quickstart - OpenAI Embedding/index.html | 8 +++--- .../index.html | 8 +++--- .../Explore Algorithms/OpenAI/index.html | 8 +++--- .../OpenCV/Image Transformations/index.html | 8 +++--- .../Other Algorithms/Cyber ML/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Smart Adaptive Recommendations/index.html | 8 +++--- .../Quickstart - Data Cleaning/index.html | 8 +++--- .../Quickstart - Train Regressor/index.html | 8 +++--- .../index.html | 8 +++--- .../Data Balance Analysis/index.html | 8 +++--- .../Explanation Dashboard/index.html | 8 +++--- .../Image Explainers/index.html | 8 +++--- .../Interpreting Model Predictions/index.html | 8 +++--- .../PDP and ICE Explainers/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Tabular Explainers/index.html | 8 +++--- .../Responsible AI/Text Explainers/index.html | 8 +++--- .../Contextual Bandits/index.html | 8 +++--- .../Multi-class classification/index.html | 8 +++--- .../Vowpal Wabbit/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Create a Spark Cluster/index.html | 8 +++--- .../Get Started/Install SynapseML/index.html | 8 +++--- .../Quickstart - Your First Models/index.html | 8 +++--- .../Set up Cognitive Services/index.html | 8 +++--- docs/0.11.4/Overview/index.html | 8 +++--- .../estimators/estimators_causal/index.html | 8 +++--- .../estimators_cognitive/index.html | 8 +++--- .../estimators/estimators_core/index.html | 8 +++--- .../estimators/estimators_lightgbm/index.html | 8 +++--- .../estimators/estimators_vw/index.html | 8 +++--- .../transformers_cognitive/index.html | 8 +++--- .../transformers/transformers_core/index.html | 8 +++--- .../transformers_deep_learning/index.html | 8 +++--- .../transformers_opencv/index.html | 8 +++--- .../transformers/transformers_vw/index.html | 8 +++--- .../Reference/Contributor Guide/index.html | 8 +++--- .../Reference/Developer Setup/index.html | 8 +++--- docs/0.11.4/Reference/Docker Setup/index.html | 8 +++--- docs/0.11.4/Reference/Dotnet Setup/index.html | 8 +++--- .../index.html | 8 +++--- docs/0.11.4/Reference/R Setup/index.html | 8 +++--- .../Use with MLFlow/Autologging/index.html | 8 +++--- .../0.11.4/Use with MLFlow/Install/index.html | 8 +++--- .../Use with MLFlow/Overview/index.html | 8 +++--- docs/1.0.1/Deploy Models/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Geospatial Services/index.html | 8 +++--- .../Multivariate Anomaly Detection/index.html | 8 +++--- .../AI Services/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Analyze Text/index.html | 8 +++--- .../Quickstart - Create Audiobooks/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Flooding Risk/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Isolation Forests/index.html | 8 +++--- .../Causal Inference/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Train Classifier/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Distributed Training/index.html | 8 +++--- .../Deep Learning/Getting Started/index.html | 8 +++--- .../Deep Learning/ONNX/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Hyperparameter Tuning/HyperOpt/index.html | 8 +++--- .../Quickstart - Random Search/index.html | 8 +++--- .../LightGBM/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../OpenAI/Langchain/index.html | 8 +++--- .../Quickstart - OpenAI Embedding/index.html | 8 +++--- .../index.html | 8 +++--- .../Explore Algorithms/OpenAI/index.html | 8 +++--- .../OpenCV/Image Transformations/index.html | 8 +++--- .../Other Algorithms/Cyber ML/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Smart Adaptive Recommendations/index.html | 8 +++--- .../Quickstart - Data Cleaning/index.html | 8 +++--- .../Quickstart - Train Regressor/index.html | 8 +++--- .../index.html | 8 +++--- .../Data Balance Analysis/index.html | 8 +++--- .../Explanation Dashboard/index.html | 8 +++--- .../Image Explainers/index.html | 8 +++--- .../Interpreting Model Predictions/index.html | 8 +++--- .../PDP and ICE Explainers/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Tabular Explainers/index.html | 8 +++--- .../Responsible AI/Text Explainers/index.html | 8 +++--- .../Contextual Bandits/index.html | 8 +++--- .../Multi-class classification/index.html | 8 +++--- .../Vowpal Wabbit/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Create a Spark Cluster/index.html | 8 +++--- .../Get Started/Install SynapseML/index.html | 8 +++--- .../Quickstart - Your First Models/index.html | 8 +++--- .../Set up Cognitive Services/index.html | 8 +++--- docs/1.0.1/Overview/index.html | 8 +++--- .../estimators/estimators_causal/index.html | 8 +++--- .../estimators_cognitive/index.html | 8 +++--- .../estimators/estimators_core/index.html | 8 +++--- .../estimators/estimators_lightgbm/index.html | 8 +++--- .../estimators/estimators_vw/index.html | 8 +++--- .../transformers_cognitive/index.html | 8 +++--- .../transformers/transformers_core/index.html | 8 +++--- .../transformers_deep_learning/index.html | 8 +++--- .../transformers_opencv/index.html | 8 +++--- .../transformers/transformers_vw/index.html | 8 +++--- .../Reference/Contributor Guide/index.html | 8 +++--- .../Reference/Developer Setup/index.html | 8 +++--- docs/1.0.1/Reference/Docker Setup/index.html | 8 +++--- docs/1.0.1/Reference/Dotnet Setup/index.html | 8 +++--- .../index.html | 8 +++--- docs/1.0.1/Reference/R Setup/index.html | 8 +++--- .../Use with MLFlow/Autologging/index.html | 8 +++--- docs/1.0.1/Use with MLFlow/Install/index.html | 8 +++--- .../1.0.1/Use with MLFlow/Overview/index.html | 8 +++--- docs/Deploy Models/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Geospatial Services/index.html | 8 +++--- .../Multivariate Anomaly Detection/index.html | 8 +++--- .../AI Services/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Analyze Text/index.html | 8 +++--- .../Quickstart - Create Audiobooks/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Flooding Risk/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Isolation Forests/index.html | 8 +++--- .../Causal Inference/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Train Classifier/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Distributed Training/index.html | 8 +++--- .../Deep Learning/Getting Started/index.html | 8 +++--- .../Deep Learning/ONNX/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Hyperparameter Tuning/HyperOpt/index.html | 8 +++--- .../Quickstart - Random Search/index.html | 8 +++--- .../LightGBM/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../OpenAI/Langchain/index.html | 8 +++--- .../Quickstart - OpenAI Embedding/index.html | 8 +++--- .../index.html | 8 +++--- docs/Explore Algorithms/OpenAI/index.html | 8 +++--- .../OpenCV/Image Transformations/index.html | 8 +++--- .../Other Algorithms/Cyber ML/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Smart Adaptive Recommendations/index.html | 8 +++--- .../Quickstart - Data Cleaning/index.html | 8 +++--- .../Quickstart - Train Regressor/index.html | 8 +++--- .../index.html | 8 +++--- .../Data Balance Analysis/index.html | 8 +++--- .../Explanation Dashboard/index.html | 8 +++--- .../Image Explainers/index.html | 8 +++--- .../Interpreting Model Predictions/index.html | 8 +++--- .../PDP and ICE Explainers/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Tabular Explainers/index.html | 8 +++--- .../Responsible AI/Text Explainers/index.html | 8 +++--- .../Contextual Bandits/index.html | 8 +++--- .../Multi-class classification/index.html | 8 +++--- .../Vowpal Wabbit/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Create a Spark Cluster/index.html | 8 +++--- docs/Get Started/Install SynapseML/index.html | 8 +++--- .../Quickstart - Your First Models/index.html | 8 +++--- .../Set up Cognitive Services/index.html | 8 +++--- docs/Overview/index.html | 8 +++--- .../estimators/estimators_causal/index.html | 8 +++--- .../estimators_cognitive/index.html | 8 +++--- .../estimators/estimators_core/index.html | 8 +++--- .../estimators/estimators_lightgbm/index.html | 8 +++--- .../estimators/estimators_vw/index.html | 8 +++--- .../transformers_cognitive/index.html | 8 +++--- .../transformers/transformers_core/index.html | 8 +++--- .../transformers_deep_learning/index.html | 8 +++--- .../transformers_opencv/index.html | 8 +++--- .../transformers/transformers_vw/index.html | 8 +++--- docs/Reference/Contributor Guide/index.html | 8 +++--- docs/Reference/Developer Setup/index.html | 8 +++--- docs/Reference/Docker Setup/index.html | 8 +++--- docs/Reference/Dotnet Setup/index.html | 8 +++--- .../index.html | 8 +++--- docs/Reference/R Setup/index.html | 8 +++--- docs/Use with MLFlow/Autologging/index.html | 8 +++--- docs/Use with MLFlow/Install/index.html | 8 +++--- docs/Use with MLFlow/Overview/index.html | 8 +++--- docs/next/Deploy Models/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Geospatial Services/index.html | 8 +++--- .../Multivariate Anomaly Detection/index.html | 8 +++--- .../AI Services/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Analyze Text/index.html | 8 +++--- .../Quickstart - Create Audiobooks/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Flooding Risk/index.html | 8 +++--- .../index.html | 8 +++--- .../Quickstart - Isolation Forests/index.html | 8 +++--- .../Causal Inference/Overview/index.html | 10 +++---- .../index.html | 10 +++---- .../index.html | 10 +++---- .../index.html | 28 ------------------- .../index.html | 8 +++--- .../Quickstart - Train Classifier/index.html | 10 +++---- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Distributed Training/index.html | 8 +++--- .../Deep Learning/Getting Started/index.html | 8 +++--- .../Deep Learning/ONNX/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Hyperparameter Tuning/HyperOpt/index.html | 8 +++--- .../Quickstart - Random Search/index.html | 8 +++--- .../LightGBM/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../OpenAI/Langchain/index.html | 8 +++--- .../Quickstart - OpenAI Embedding/index.html | 8 +++--- .../index.html | 8 +++--- .../next/Explore Algorithms/OpenAI/index.html | 8 +++--- .../OpenCV/Image Transformations/index.html | 8 +++--- .../Other Algorithms/Cyber ML/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Smart Adaptive Recommendations/index.html | 8 +++--- .../Quickstart - Data Cleaning/index.html | 8 +++--- .../Quickstart - Train Regressor/index.html | 8 +++--- .../index.html | 8 +++--- .../Data Balance Analysis/index.html | 8 +++--- .../Explanation Dashboard/index.html | 8 +++--- .../Image Explainers/index.html | 8 +++--- .../Interpreting Model Predictions/index.html | 8 +++--- .../PDP and ICE Explainers/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Tabular Explainers/index.html | 8 +++--- .../Responsible AI/Text Explainers/index.html | 8 +++--- .../Contextual Bandits/index.html | 8 +++--- .../Multi-class classification/index.html | 8 +++--- .../Vowpal Wabbit/Overview/index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../index.html | 8 +++--- .../Create a Spark Cluster/index.html | 8 +++--- .../Get Started/Install SynapseML/index.html | 8 +++--- .../Quickstart - Your First Models/index.html | 8 +++--- .../Set up Cognitive Services/index.html | 8 +++--- docs/next/Overview/index.html | 8 +++--- .../estimators/estimators_causal/index.html | 8 +++--- .../estimators_cognitive/index.html | 8 +++--- .../estimators/estimators_core/index.html | 8 +++--- .../estimators/estimators_lightgbm/index.html | 8 +++--- .../estimators/estimators_vw/index.html | 8 +++--- .../transformers_cognitive/index.html | 8 +++--- .../transformers/transformers_core/index.html | 8 +++--- .../transformers_deep_learning/index.html | 8 +++--- .../transformers_opencv/index.html | 8 +++--- .../transformers/transformers_vw/index.html | 8 +++--- .../Reference/Contributor Guide/index.html | 8 +++--- .../next/Reference/Developer Setup/index.html | 8 +++--- docs/next/Reference/Docker Setup/index.html | 8 +++--- docs/next/Reference/Dotnet Setup/index.html | 8 +++--- .../index.html | 8 +++--- docs/next/Reference/R Setup/index.html | 8 +++--- .../Use with MLFlow/Autologging/index.html | 8 +++--- docs/next/Use with MLFlow/Install/index.html | 8 +++--- docs/next/Use with MLFlow/Overview/index.html | 8 +++--- index.html | 8 +++--- search/index.html | 8 +++--- sitemap.xml | 2 +- videos/index.html | 8 +++--- 441 files changed, 1719 insertions(+), 1748 deletions(-) delete mode 100644 assets/js/0fb98d33.3038ee3c.js create mode 100644 assets/js/0fb98d33.f2c9e00f.js delete mode 100644 assets/js/41f327fc.40aeb55b.js create mode 100644 assets/js/41f327fc.bc22d7a0.js delete mode 100644 assets/js/58b8f176.0a1e3d6d.js delete mode 100644 assets/js/935f2afb.419ef79a.js create mode 100644 assets/js/935f2afb.731706c1.js delete mode 100644 assets/js/main.636cc31a.js create mode 100644 assets/js/main.844faa32.js rename assets/js/{main.636cc31a.js.LICENSE.txt => main.844faa32.js.LICENSE.txt} (100%) delete mode 100644 assets/js/runtime~main.4b9eac6d.js create mode 100644 assets/js/runtime~main.7a4113bd.js delete mode 100644 docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences/index.html diff --git a/404.html b/404.html index c5d7120101..d9306e0910 100644 --- a/404.html +++ b/404.html @@ -16,13 +16,13 @@ - - + +
Skip to main content

Sorry! Page Not Found

We have been doing some work on our website, chances are that the page you're looking for is in the new docs section.

- - + + \ No newline at end of file diff --git a/assets/js/0fb98d33.3038ee3c.js b/assets/js/0fb98d33.3038ee3c.js deleted file mode 100644 index 58a52277f5..0000000000 --- a/assets/js/0fb98d33.3038ee3c.js +++ /dev/null @@ -1 +0,0 @@ -"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[6338],{3905:(e,t,n)=>{n.d(t,{Zo:()=>p,kt:()=>d});var a=n(67294);function r(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function o(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var a=Object.getOwnPropertySymbols(e);t&&(a=a.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,a)}return n}function l(e){for(var t=1;t=0||(r[n]=e[n]);return r}(e,t);if(Object.getOwnPropertySymbols){var o=Object.getOwnPropertySymbols(e);for(a=0;a=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(r[n]=e[n])}return r}var i=a.createContext({}),u=function(e){var t=a.useContext(i),n=t;return e&&(n="function"==typeof e?e(t):l(l({},t),e)),n},p=function(e){var t=u(e.components);return a.createElement(i.Provider,{value:t},e.children)},c={inlineCode:"code",wrapper:function(e){var t=e.children;return a.createElement(a.Fragment,{},t)}},m=a.forwardRef((function(e,t){var n=e.components,r=e.mdxType,o=e.originalType,i=e.parentName,p=s(e,["components","mdxType","originalType","parentName"]),m=u(n),d=r,f=m["".concat(i,".").concat(d)]||m[d]||c[d]||o;return n?a.createElement(f,l(l({ref:t},p),{},{components:n})):a.createElement(f,l({ref:t},p))}));function d(e,t){var n=arguments,r=t&&t.mdxType;if("string"==typeof e||r){var o=n.length,l=new Array(o);l[0]=m;var s={};for(var i in t)hasOwnProperty.call(t,i)&&(s[i]=t[i]);s.originalType=e,s.mdxType="string"==typeof e?e:r,l[1]=s;for(var u=2;u{n.r(t),n.d(t,{assets:()=>i,contentTitle:()=>l,default:()=>c,frontMatter:()=>o,metadata:()=>s,toc:()=>u});var a=n(83117),r=(n(67294),n(3905));const o={title:"Quickstart - Measure Heterogeneous Effects",hide_title:!0,status:"stable"},l="Startup Investment Attribution - Understand Outreach Effort's Effect\"",s={unversionedId:"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",id:"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",title:"Quickstart - Measure Heterogeneous Effects",description:"This sample notebook aims to show the application of using SynapseML's DoubleMLEstimator for inferring causality using observational data.",source:"@site/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",sourceDirName:"Explore Algorithms/Causal Inference",slug:"/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",draft:!1,tags:[],version:"current",frontMatter:{title:"Quickstart - Measure Heterogeneous Effects",hide_title:!0,status:"stable"},sidebar:"docs",previous:{title:"Quickstart - Measure Causal Effects",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects"},next:{title:"Quickstart - Synthetic difference in differences",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences"}},i={},u=[{value:"Background",id:"background",level:2},{value:"Data",id:"data",level:2}],p={toc:u};function c(e){let{components:t,...n}=e;return(0,r.kt)("wrapper",(0,a.Z)({},p,n,{components:t,mdxType:"MDXLayout"}),(0,r.kt)("h1",{id:"startup-investment-attribution---understand-outreach-efforts-effect"},"Startup Investment Attribution - Understand Outreach Effort's Effect\""),(0,r.kt)("p",null,(0,r.kt)("strong",{parentName:"p"},"This sample notebook aims to show the application of using SynapseML's DoubleMLEstimator for inferring causality using observational data.")),(0,r.kt)("p",null,"A startup that sells software would like to know whether its outreach efforts were successful in attracting new customers or boosting consumption among existing customers. In other words, they would like to learn the treatment effect of each investment on customers' software usage."),(0,r.kt)("p",null,"In an ideal world, the startup would run several randomized experiments where each customer would receive a random assortment of investments. However, this can be logistically prohibitive or strategically unsound: the startup might not have the resources to design such experiments or they might not want to risk losing out on big opportunities due to lack of incentives."),(0,r.kt)("p",null,"In this customer scenario walkthrough, we show how SynapseML causal package can use historical investment data to learn the investment effect."),(0,r.kt)("h2",{id:"background"},"Background"),(0,r.kt)("p",null,"In this scenario, a startup that sells software provides discounts incentives to its customer. A customer might be given or not."),(0,r.kt)("p",null,"The startup has historical data on these investments for 2,000 customers, as well as how much revenue these customers generated in the year after the investments were made. They would like to use this data to learn the optimal incentive policy for each existing or new customer in order to maximize the return on investment (ROI)."),(0,r.kt)("p",null,"The startup faces a challenge: the dataset is biased because historically the larger customers received the most incentives. Thus, they need a causal model that can remove the bias."),(0,r.kt)("h2",{id:"data"},"Data"),(0,r.kt)("p",null,"The data* contains ~2,000 customers and is comprised of:"),(0,r.kt)("ul",null,(0,r.kt)("li",{parentName:"ul"},"Customer features: details about the industry, size, revenue, and technology profile of each customer."),(0,r.kt)("li",{parentName:"ul"},"Interventions: information about which incentive was given to a customer."),(0,r.kt)("li",{parentName:"ul"},"Outcome: the amount of product the customer bought in the year after the incentives were given.")),(0,r.kt)("table",null,(0,r.kt)("thead",{parentName:"table"},(0,r.kt)("tr",{parentName:"thead"},(0,r.kt)("th",{parentName:"tr",align:null},"Feature Name"),(0,r.kt)("th",{parentName:"tr",align:null},"Type"),(0,r.kt)("th",{parentName:"tr",align:null},"Details"))),(0,r.kt)("tbody",{parentName:"table"},(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Global Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer has global offices")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Major Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer is a large consumer in their industry (as opposed to SMC - Small Medium Corporation - or SMB - Small Medium Business)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"SMC Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer is a Small Medium Corporation (SMC, as opposed to major and SMB)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Commercial Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer's business is commercial (as opposed to public secor)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"IT Spend"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"dollar spent on IT-related purchases")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Employee Count"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"number of employees")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"PC Count"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"number of PCs used by the customer")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Size"),(0,r.kt)("td",{parentName:"tr",align:null},"X"),(0,r.kt)("td",{parentName:"tr",align:null},"customer's size given by their yearly total revenue")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Discount"),(0,r.kt)("td",{parentName:"tr",align:null},"T"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer was given a discount (binary)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Revenue"),(0,r.kt)("td",{parentName:"tr",align:null},"Y"),(0,r.kt)("td",{parentName:"tr",align:null},"$ Revenue from customer given by the amount of software purchased")))),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'# Import the sample multi-attribution data\ndata = (\n spark.read.format("csv")\n .option("inferSchema", True)\n .option("header", True)\n .load(\n "wasbs://publicwasb@mmlspark.blob.core.windows.net/multi_attribution_sample.csv"\n )\n)\n')),(0,r.kt)("h1",{id:"get-heterogenous-causal-effects-with-synapseml-orthodml-estimator"},"Get Heterogenous Causal Effects with SynapseML OrthoDML Estimator"),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"data.columns\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"from synapse.ml.causal import *\nfrom pyspark.ml import Pipeline\nfrom synapse.ml.causal import *\nfrom pyspark.ml.feature import VectorAssembler\nfrom pyspark.sql.types import IntegerType, BooleanType, DateType, DoubleType\nimport matplotlib.pyplot as plt\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'treatmentColumn = "Discount"\noutcomeColumn = "Revenue"\nconfounderColumns = [\n "Global Flag",\n "Major Flag",\n "SMC Flag",\n "Commercial Flag",\n "Employee Count",\n "PC Count",\n]\nheteroColumns = ["Size", "IT Spend"]\nheterogeneityVecCol = "XVec"\nconfounderVecCol = "XWVec"\n\ndata = data.withColumn(treatmentColumn, data.Discount.cast(DoubleType()))\n\nheterogeneityVector = VectorAssembler(\n inputCols=heteroColumns, outputCol=heterogeneityVecCol\n)\n\nconfounderVector = VectorAssembler(\n inputCols=confounderColumns, outputCol=confounderVecCol\n)\n\npipeline = Pipeline(stages=[heterogeneityVector, confounderVector])\n\nppfit = pipeline.fit(data).transform(data)\n')),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Create the Ortho Forest DML Estimator Model\nmtTransform = (\n OrthoForestDMLEstimator()\n .setNumTrees(100)\n .setTreatmentCol(treatmentColumn)\n .setOutcomeCol(outcomeColumn)\n .setHeterogeneityVecCol(heterogeneityVecCol)\n .setConfounderVecCol(confounderVecCol)\n .setMaxDepth(10)\n .setMinSamplesLeaf(10)\n)\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Fit the model for the data\nfinalModel = mtTransform.fit(ppfit)\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Transform the input data to see the model in action\nfinalPred = finalModel.transform(ppfit)\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Get the data in Pandas\npd_final = finalPred.toPandas()\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'### Plot and see the non-linear effects\nplt.scatter("Size", mtTransform.getOutputCol(), data=pd_final)\n')))}c.isMDXComponent=!0}}]); \ No newline at end of file diff --git a/assets/js/0fb98d33.f2c9e00f.js b/assets/js/0fb98d33.f2c9e00f.js new file mode 100644 index 0000000000..d392dc77d9 --- /dev/null +++ b/assets/js/0fb98d33.f2c9e00f.js @@ -0,0 +1 @@ +"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[6338],{3905:(e,t,n)=>{n.d(t,{Zo:()=>p,kt:()=>d});var a=n(67294);function r(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function o(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var a=Object.getOwnPropertySymbols(e);t&&(a=a.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,a)}return n}function l(e){for(var t=1;t=0||(r[n]=e[n]);return r}(e,t);if(Object.getOwnPropertySymbols){var o=Object.getOwnPropertySymbols(e);for(a=0;a=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(r[n]=e[n])}return r}var i=a.createContext({}),u=function(e){var t=a.useContext(i),n=t;return e&&(n="function"==typeof e?e(t):l(l({},t),e)),n},p=function(e){var t=u(e.components);return a.createElement(i.Provider,{value:t},e.children)},c={inlineCode:"code",wrapper:function(e){var t=e.children;return a.createElement(a.Fragment,{},t)}},m=a.forwardRef((function(e,t){var n=e.components,r=e.mdxType,o=e.originalType,i=e.parentName,p=s(e,["components","mdxType","originalType","parentName"]),m=u(n),d=r,f=m["".concat(i,".").concat(d)]||m[d]||c[d]||o;return n?a.createElement(f,l(l({ref:t},p),{},{components:n})):a.createElement(f,l({ref:t},p))}));function d(e,t){var n=arguments,r=t&&t.mdxType;if("string"==typeof e||r){var o=n.length,l=new Array(o);l[0]=m;var s={};for(var i in t)hasOwnProperty.call(t,i)&&(s[i]=t[i]);s.originalType=e,s.mdxType="string"==typeof e?e:r,l[1]=s;for(var u=2;u{n.r(t),n.d(t,{assets:()=>i,contentTitle:()=>l,default:()=>c,frontMatter:()=>o,metadata:()=>s,toc:()=>u});var a=n(83117),r=(n(67294),n(3905));const o={title:"Quickstart - Measure Heterogeneous Effects",hide_title:!0,status:"stable"},l="Startup Investment Attribution - Understand Outreach Effort's Effect\"",s={unversionedId:"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",id:"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",title:"Quickstart - Measure Heterogeneous Effects",description:"This sample notebook aims to show the application of using SynapseML's DoubleMLEstimator for inferring causality using observational data.",source:"@site/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",sourceDirName:"Explore Algorithms/Causal Inference",slug:"/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects",draft:!1,tags:[],version:"current",frontMatter:{title:"Quickstart - Measure Heterogeneous Effects",hide_title:!0,status:"stable"},sidebar:"docs",previous:{title:"Quickstart - Measure Causal Effects",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects"},next:{title:"Quickstart - Train Classifier",permalink:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier"}},i={},u=[{value:"Background",id:"background",level:2},{value:"Data",id:"data",level:2}],p={toc:u};function c(e){let{components:t,...n}=e;return(0,r.kt)("wrapper",(0,a.Z)({},p,n,{components:t,mdxType:"MDXLayout"}),(0,r.kt)("h1",{id:"startup-investment-attribution---understand-outreach-efforts-effect"},"Startup Investment Attribution - Understand Outreach Effort's Effect\""),(0,r.kt)("p",null,(0,r.kt)("strong",{parentName:"p"},"This sample notebook aims to show the application of using SynapseML's DoubleMLEstimator for inferring causality using observational data.")),(0,r.kt)("p",null,"A startup that sells software would like to know whether its outreach efforts were successful in attracting new customers or boosting consumption among existing customers. In other words, they would like to learn the treatment effect of each investment on customers' software usage."),(0,r.kt)("p",null,"In an ideal world, the startup would run several randomized experiments where each customer would receive a random assortment of investments. However, this can be logistically prohibitive or strategically unsound: the startup might not have the resources to design such experiments or they might not want to risk losing out on big opportunities due to lack of incentives."),(0,r.kt)("p",null,"In this customer scenario walkthrough, we show how SynapseML causal package can use historical investment data to learn the investment effect."),(0,r.kt)("h2",{id:"background"},"Background"),(0,r.kt)("p",null,"In this scenario, a startup that sells software provides discounts incentives to its customer. A customer might be given or not."),(0,r.kt)("p",null,"The startup has historical data on these investments for 2,000 customers, as well as how much revenue these customers generated in the year after the investments were made. They would like to use this data to learn the optimal incentive policy for each existing or new customer in order to maximize the return on investment (ROI)."),(0,r.kt)("p",null,"The startup faces a challenge: the dataset is biased because historically the larger customers received the most incentives. Thus, they need a causal model that can remove the bias."),(0,r.kt)("h2",{id:"data"},"Data"),(0,r.kt)("p",null,"The data* contains ~2,000 customers and is comprised of:"),(0,r.kt)("ul",null,(0,r.kt)("li",{parentName:"ul"},"Customer features: details about the industry, size, revenue, and technology profile of each customer."),(0,r.kt)("li",{parentName:"ul"},"Interventions: information about which incentive was given to a customer."),(0,r.kt)("li",{parentName:"ul"},"Outcome: the amount of product the customer bought in the year after the incentives were given.")),(0,r.kt)("table",null,(0,r.kt)("thead",{parentName:"table"},(0,r.kt)("tr",{parentName:"thead"},(0,r.kt)("th",{parentName:"tr",align:null},"Feature Name"),(0,r.kt)("th",{parentName:"tr",align:null},"Type"),(0,r.kt)("th",{parentName:"tr",align:null},"Details"))),(0,r.kt)("tbody",{parentName:"table"},(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Global Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer has global offices")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Major Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer is a large consumer in their industry (as opposed to SMC - Small Medium Corporation - or SMB - Small Medium Business)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"SMC Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer is a Small Medium Corporation (SMC, as opposed to major and SMB)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Commercial Flag"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer's business is commercial (as opposed to public secor)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"IT Spend"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"dollar spent on IT-related purchases")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Employee Count"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"number of employees")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"PC Count"),(0,r.kt)("td",{parentName:"tr",align:null},"W"),(0,r.kt)("td",{parentName:"tr",align:null},"number of PCs used by the customer")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Size"),(0,r.kt)("td",{parentName:"tr",align:null},"X"),(0,r.kt)("td",{parentName:"tr",align:null},"customer's size given by their yearly total revenue")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Discount"),(0,r.kt)("td",{parentName:"tr",align:null},"T"),(0,r.kt)("td",{parentName:"tr",align:null},"whether the customer was given a discount (binary)")),(0,r.kt)("tr",{parentName:"tbody"},(0,r.kt)("td",{parentName:"tr",align:null},"Revenue"),(0,r.kt)("td",{parentName:"tr",align:null},"Y"),(0,r.kt)("td",{parentName:"tr",align:null},"$ Revenue from customer given by the amount of software purchased")))),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'# Import the sample multi-attribution data\ndata = (\n spark.read.format("csv")\n .option("inferSchema", True)\n .option("header", True)\n .load(\n "wasbs://publicwasb@mmlspark.blob.core.windows.net/multi_attribution_sample.csv"\n )\n)\n')),(0,r.kt)("h1",{id:"get-heterogenous-causal-effects-with-synapseml-orthodml-estimator"},"Get Heterogenous Causal Effects with SynapseML OrthoDML Estimator"),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"data.columns\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"from synapse.ml.causal import *\nfrom pyspark.ml import Pipeline\nfrom synapse.ml.causal import *\nfrom pyspark.ml.feature import VectorAssembler\nfrom pyspark.sql.types import IntegerType, BooleanType, DateType, DoubleType\nimport matplotlib.pyplot as plt\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'treatmentColumn = "Discount"\noutcomeColumn = "Revenue"\nconfounderColumns = [\n "Global Flag",\n "Major Flag",\n "SMC Flag",\n "Commercial Flag",\n "Employee Count",\n "PC Count",\n]\nheteroColumns = ["Size", "IT Spend"]\nheterogeneityVecCol = "XVec"\nconfounderVecCol = "XWVec"\n\ndata = data.withColumn(treatmentColumn, data.Discount.cast(DoubleType()))\n\nheterogeneityVector = VectorAssembler(\n inputCols=heteroColumns, outputCol=heterogeneityVecCol\n)\n\nconfounderVector = VectorAssembler(\n inputCols=confounderColumns, outputCol=confounderVecCol\n)\n\npipeline = Pipeline(stages=[heterogeneityVector, confounderVector])\n\nppfit = pipeline.fit(data).transform(data)\n')),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Create the Ortho Forest DML Estimator Model\nmtTransform = (\n OrthoForestDMLEstimator()\n .setNumTrees(100)\n .setTreatmentCol(treatmentColumn)\n .setOutcomeCol(outcomeColumn)\n .setHeterogeneityVecCol(heterogeneityVecCol)\n .setConfounderVecCol(confounderVecCol)\n .setMaxDepth(10)\n .setMinSamplesLeaf(10)\n)\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Fit the model for the data\nfinalModel = mtTransform.fit(ppfit)\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Transform the input data to see the model in action\nfinalPred = finalModel.transform(ppfit)\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},"### Get the data in Pandas\npd_final = finalPred.toPandas()\n")),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'### Plot and see the non-linear effects\nplt.scatter("Size", mtTransform.getOutputCol(), data=pd_final)\n')))}c.isMDXComponent=!0}}]); \ No newline at end of file diff --git a/assets/js/41f327fc.40aeb55b.js b/assets/js/41f327fc.40aeb55b.js deleted file mode 100644 index d571de884a..0000000000 --- a/assets/js/41f327fc.40aeb55b.js +++ /dev/null @@ -1 +0,0 @@ -"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[8966],{3905:(e,t,n)=>{n.d(t,{Zo:()=>p,kt:()=>f});var r=n(67294);function a(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function i(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function s(e){for(var t=1;t=0||(a[n]=e[n]);return a}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(a[n]=e[n])}return a}var l=r.createContext({}),c=function(e){var t=r.useContext(l),n=t;return e&&(n="function"==typeof e?e(t):s(s({},t),e)),n},p=function(e){var t=c(e.components);return r.createElement(l.Provider,{value:t},e.children)},u={inlineCode:"code",wrapper:function(e){var t=e.children;return r.createElement(r.Fragment,{},t)}},m=r.forwardRef((function(e,t){var n=e.components,a=e.mdxType,i=e.originalType,l=e.parentName,p=o(e,["components","mdxType","originalType","parentName"]),m=c(n),f=a,d=m["".concat(l,".").concat(f)]||m[f]||u[f]||i;return n?r.createElement(d,s(s({ref:t},p),{},{components:n})):r.createElement(d,s({ref:t},p))}));function f(e,t){var n=arguments,a=t&&t.mdxType;if("string"==typeof e||a){var i=n.length,s=new Array(i);s[0]=m;var o={};for(var l in t)hasOwnProperty.call(t,l)&&(o[l]=t[l]);o.originalType=e,o.mdxType="string"==typeof e?e:a,s[1]=o;for(var c=2;c{n.r(t),n.d(t,{assets:()=>l,contentTitle:()=>s,default:()=>u,frontMatter:()=>i,metadata:()=>o,toc:()=>c});var r=n(83117),a=(n(67294),n(3905));const i={title:"Quickstart - Train Classifier",hide_title:!0,status:"stable"},s=void 0,o={unversionedId:"Explore Algorithms/Classification/Quickstart - Train Classifier",id:"Explore Algorithms/Classification/Quickstart - Train Classifier",title:"Quickstart - Train Classifier",description:"Classification - Adult Census",source:"@site/docs/Explore Algorithms/Classification/Quickstart - Train Classifier.md",sourceDirName:"Explore Algorithms/Classification",slug:"/Explore Algorithms/Classification/Quickstart - Train Classifier",permalink:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier",draft:!1,tags:[],version:"current",frontMatter:{title:"Quickstart - Train Classifier",hide_title:!0,status:"stable"},sidebar:"docs",previous:{title:"Quickstart - Synthetic difference in differences",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences"},next:{title:"Quickstart - SparkML vs SynapseML",permalink:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML"}},l={},c=[{value:"Classification - Adult Census",id:"classification---adult-census",level:2}],p={toc:c};function u(e){let{components:t,...n}=e;return(0,a.kt)("wrapper",(0,r.Z)({},p,n,{components:t,mdxType:"MDXLayout"}),(0,a.kt)("h2",{id:"classification---adult-census"},"Classification - Adult Census"),(0,a.kt)("p",null,"In this example, we try to predict incomes from the ",(0,a.kt)("em",{parentName:"p"},"Adult Census")," dataset."),(0,a.kt)("p",null,"First, we import the packages (use ",(0,a.kt)("inlineCode",{parentName:"p"},"help(synapse)")," to view contents),"),(0,a.kt)("p",null,"Now let's read the data and split it to train and test sets:"),(0,a.kt)("pre",null,(0,a.kt)("code",{parentName:"pre",className:"language-python"},'data = spark.read.parquet(\n "wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"\n)\ndata = data.select(["education", "marital-status", "hours-per-week", "income"])\ntrain, test = data.randomSplit([0.75, 0.25], seed=123)\ntrain.limit(10).toPandas()\n')),(0,a.kt)("p",null,(0,a.kt)("inlineCode",{parentName:"p"},"TrainClassifier")," can be used to initialize and fit a model, it wraps SparkML classifiers.\nYou can use ",(0,a.kt)("inlineCode",{parentName:"p"},"help(synapse.ml.train.TrainClassifier)")," to view the different parameters."),(0,a.kt)("p",null,"Note that it implicitly converts the data into the format expected by the algorithm: tokenize\nand hash strings, one-hot encodes categorical variables, assembles the features into a vector\nand so on. The parameter ",(0,a.kt)("inlineCode",{parentName:"p"},"numFeatures")," controls the number of hashed features."),(0,a.kt)("pre",null,(0,a.kt)("code",{parentName:"pre",className:"language-python"},'from synapse.ml.train import TrainClassifier\nfrom pyspark.ml.classification import LogisticRegression\n\nmodel = TrainClassifier(\n model=LogisticRegression(), labelCol="income", numFeatures=256\n).fit(train)\n')),(0,a.kt)("p",null,"Finally, we save the model so it can be used in a scoring program."),(0,a.kt)("pre",null,(0,a.kt)("code",{parentName:"pre",className:"language-python"},'from synapse.ml.core.platform import *\n\nif running_on_synapse():\n model.write().overwrite().save(\n "abfss://synapse@mmlsparkeuap.dfs.core.windows.net/models/AdultCensus.mml"\n )\nelif running_on_synapse_internal():\n model.write().overwrite().save("Files/models/AdultCensus.mml")\nelif running_on_databricks():\n model.write().overwrite().save("dbfs:/AdultCensus.mml")\nelif running_on_binder():\n model.write().overwrite().save("/tmp/AdultCensus.mml")\nelse:\n print(f"{current_platform()} platform not supported")\n')))}u.isMDXComponent=!0}}]); \ No newline at end of file diff --git a/assets/js/41f327fc.bc22d7a0.js b/assets/js/41f327fc.bc22d7a0.js new file mode 100644 index 0000000000..d5c7720429 --- /dev/null +++ b/assets/js/41f327fc.bc22d7a0.js @@ -0,0 +1 @@ +"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[8966],{3905:(e,t,n)=>{n.d(t,{Zo:()=>c,kt:()=>f});var r=n(67294);function a(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function s(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var r=Object.getOwnPropertySymbols(e);t&&(r=r.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,r)}return n}function i(e){for(var t=1;t=0||(a[n]=e[n]);return a}(e,t);if(Object.getOwnPropertySymbols){var s=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(a[n]=e[n])}return a}var l=r.createContext({}),p=function(e){var t=r.useContext(l),n=t;return e&&(n="function"==typeof e?e(t):i(i({},t),e)),n},c=function(e){var t=p(e.components);return r.createElement(l.Provider,{value:t},e.children)},u={inlineCode:"code",wrapper:function(e){var t=e.children;return r.createElement(r.Fragment,{},t)}},m=r.forwardRef((function(e,t){var n=e.components,a=e.mdxType,s=e.originalType,l=e.parentName,c=o(e,["components","mdxType","originalType","parentName"]),m=p(n),f=a,d=m["".concat(l,".").concat(f)]||m[f]||u[f]||s;return n?r.createElement(d,i(i({ref:t},c),{},{components:n})):r.createElement(d,i({ref:t},c))}));function f(e,t){var n=arguments,a=t&&t.mdxType;if("string"==typeof e||a){var s=n.length,i=new Array(s);i[0]=m;var o={};for(var l in t)hasOwnProperty.call(t,l)&&(o[l]=t[l]);o.originalType=e,o.mdxType="string"==typeof e?e:a,i[1]=o;for(var p=2;p{n.r(t),n.d(t,{assets:()=>l,contentTitle:()=>i,default:()=>u,frontMatter:()=>s,metadata:()=>o,toc:()=>p});var r=n(83117),a=(n(67294),n(3905));const s={title:"Quickstart - Train Classifier",hide_title:!0,status:"stable"},i=void 0,o={unversionedId:"Explore Algorithms/Classification/Quickstart - Train Classifier",id:"Explore Algorithms/Classification/Quickstart - Train Classifier",title:"Quickstart - Train Classifier",description:"Classification - Adult Census",source:"@site/docs/Explore Algorithms/Classification/Quickstart - Train Classifier.md",sourceDirName:"Explore Algorithms/Classification",slug:"/Explore Algorithms/Classification/Quickstart - Train Classifier",permalink:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier",draft:!1,tags:[],version:"current",frontMatter:{title:"Quickstart - Train Classifier",hide_title:!0,status:"stable"},sidebar:"docs",previous:{title:"Quickstart - Measure Heterogeneous Effects",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects"},next:{title:"Quickstart - SparkML vs SynapseML",permalink:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML"}},l={},p=[{value:"Classification - Adult Census",id:"classification---adult-census",level:2}],c={toc:p};function u(e){let{components:t,...n}=e;return(0,a.kt)("wrapper",(0,r.Z)({},c,n,{components:t,mdxType:"MDXLayout"}),(0,a.kt)("h2",{id:"classification---adult-census"},"Classification - Adult Census"),(0,a.kt)("p",null,"In this example, we try to predict incomes from the ",(0,a.kt)("em",{parentName:"p"},"Adult Census")," dataset."),(0,a.kt)("p",null,"First, we import the packages (use ",(0,a.kt)("inlineCode",{parentName:"p"},"help(synapse)")," to view contents),"),(0,a.kt)("p",null,"Now let's read the data and split it to train and test sets:"),(0,a.kt)("pre",null,(0,a.kt)("code",{parentName:"pre",className:"language-python"},'data = spark.read.parquet(\n "wasbs://publicwasb@mmlspark.blob.core.windows.net/AdultCensusIncome.parquet"\n)\ndata = data.select(["education", "marital-status", "hours-per-week", "income"])\ntrain, test = data.randomSplit([0.75, 0.25], seed=123)\ntrain.limit(10).toPandas()\n')),(0,a.kt)("p",null,(0,a.kt)("inlineCode",{parentName:"p"},"TrainClassifier")," can be used to initialize and fit a model, it wraps SparkML classifiers.\nYou can use ",(0,a.kt)("inlineCode",{parentName:"p"},"help(synapse.ml.train.TrainClassifier)")," to view the different parameters."),(0,a.kt)("p",null,"Note that it implicitly converts the data into the format expected by the algorithm: tokenize\nand hash strings, one-hot encodes categorical variables, assembles the features into a vector\nand so on. The parameter ",(0,a.kt)("inlineCode",{parentName:"p"},"numFeatures")," controls the number of hashed features."),(0,a.kt)("pre",null,(0,a.kt)("code",{parentName:"pre",className:"language-python"},'from synapse.ml.train import TrainClassifier\nfrom pyspark.ml.classification import LogisticRegression\n\nmodel = TrainClassifier(\n model=LogisticRegression(), labelCol="income", numFeatures=256\n).fit(train)\n')),(0,a.kt)("p",null,"Finally, we save the model so it can be used in a scoring program."),(0,a.kt)("pre",null,(0,a.kt)("code",{parentName:"pre",className:"language-python"},'from synapse.ml.core.platform import *\n\nif running_on_synapse():\n model.write().overwrite().save(\n "abfss://synapse@mmlsparkeuap.dfs.core.windows.net/models/AdultCensus.mml"\n )\nelif running_on_synapse_internal():\n model.write().overwrite().save("Files/models/AdultCensus.mml")\nelif running_on_databricks():\n model.write().overwrite().save("dbfs:/AdultCensus.mml")\nelif running_on_binder():\n model.write().overwrite().save("/tmp/AdultCensus.mml")\nelse:\n print(f"{current_platform()} platform not supported")\n')))}u.isMDXComponent=!0}}]); \ No newline at end of file diff --git a/assets/js/58b8f176.0a1e3d6d.js b/assets/js/58b8f176.0a1e3d6d.js deleted file mode 100644 index 65a4bf695b..0000000000 --- a/assets/js/58b8f176.0a1e3d6d.js +++ /dev/null @@ -1 +0,0 @@ -"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[9374],{3905:(e,t,n)=>{n.d(t,{Zo:()=>f,kt:()=>d});var a=n(67294);function r(e,t,n){return t in e?Object.defineProperty(e,t,{value:n,enumerable:!0,configurable:!0,writable:!0}):e[t]=n,e}function i(e,t){var n=Object.keys(e);if(Object.getOwnPropertySymbols){var a=Object.getOwnPropertySymbols(e);t&&(a=a.filter((function(t){return Object.getOwnPropertyDescriptor(e,t).enumerable}))),n.push.apply(n,a)}return n}function o(e){for(var t=1;t=0||(r[n]=e[n]);return r}(e,t);if(Object.getOwnPropertySymbols){var i=Object.getOwnPropertySymbols(e);for(a=0;a=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(r[n]=e[n])}return r}var l=a.createContext({}),c=function(e){var t=a.useContext(l),n=t;return e&&(n="function"==typeof e?e(t):o(o({},t),e)),n},f=function(e){var t=c(e.components);return a.createElement(l.Provider,{value:t},e.children)},p={inlineCode:"code",wrapper:function(e){var t=e.children;return a.createElement(a.Fragment,{},t)}},m=a.forwardRef((function(e,t){var n=e.components,r=e.mdxType,i=e.originalType,l=e.parentName,f=s(e,["components","mdxType","originalType","parentName"]),m=c(n),d=r,u=m["".concat(l,".").concat(d)]||m[d]||p[d]||i;return n?a.createElement(u,o(o({ref:t},f),{},{components:n})):a.createElement(u,o({ref:t},f))}));function d(e,t){var n=arguments,r=t&&t.mdxType;if("string"==typeof e||r){var i=n.length,o=new Array(i);o[0]=m;var s={};for(var l in t)hasOwnProperty.call(t,l)&&(s[l]=t[l]);s.originalType=e,s.mdxType="string"==typeof e?e:r,o[1]=s;for(var c=2;c{n.r(t),n.d(t,{assets:()=>l,contentTitle:()=>o,default:()=>p,frontMatter:()=>i,metadata:()=>s,toc:()=>c});var a=n(83117),r=(n(67294),n(3905));const i={title:"Quickstart - Synthetic difference in differences",hide_title:!0,status:"stable"},o="Scalable Synthetic Difference in Differences",s={unversionedId:"Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences",id:"Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences",title:"Quickstart - Synthetic difference in differences",description:"This sample notebook aims to show readers how to use SynapseML's DiffInDiffEstimator, SyntheticControlEstimator and SyntheticDiffInDiffEstimator to estimate the causal effect of a treatment on a particular outcome.",source:"@site/docs/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences.md",sourceDirName:"Explore Algorithms/Causal Inference",slug:"/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences",draft:!1,tags:[],version:"current",frontMatter:{title:"Quickstart - Synthetic difference in differences",hide_title:!0,status:"stable"},sidebar:"docs",previous:{title:"Quickstart - Measure Heterogeneous Effects",permalink:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects"},next:{title:"Quickstart - Train Classifier",permalink:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier"}},l={},c=[],f={toc:c};function p(e){let{components:t,...n}=e;return(0,r.kt)("wrapper",(0,a.Z)({},f,n,{components:t,mdxType:"MDXLayout"}),(0,r.kt)("h1",{id:"scalable-synthetic-difference-in-differences"},"Scalable Synthetic Difference in Differences"),(0,r.kt)("p",null,"This sample notebook aims to show readers how to use SynapseML's ",(0,r.kt)("inlineCode",{parentName:"p"},"DiffInDiffEstimator"),", ",(0,r.kt)("inlineCode",{parentName:"p"},"SyntheticControlEstimator")," and ",(0,r.kt)("inlineCode",{parentName:"p"},"SyntheticDiffInDiffEstimator")," to estimate the causal effect of a treatment on a particular outcome."),(0,r.kt)("p",null,"In this sample notebook, we will use the California smoking cessation program example to demonstrate usage of the SyntheticDiffInDiff Estimator. The goal of the analysis is to estimate the effect of increased cigarette taxes on smoking in California."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'from pyspark.sql.types import *\nfrom synapse.ml.causal import (\n DiffInDiffEstimator,\n SyntheticControlEstimator,\n SyntheticDiffInDiffEstimator,\n)\nfrom matplotlib import pyplot as plt\nfrom matplotlib import style\nimport pandas as pd\nimport numpy as np\n\nspark.sparkContext.setLogLevel("INFO")\nstyle.use("ggplot")\n')),(0,r.kt)("p",null,"We will select 5 columns from the dataset: state, year, cigsale, california, after_treatment."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'df = (\n spark.read.option("header", True)\n .option("inferSchema", True)\n .csv("wasbs://publicwasb@mmlspark.blob.core.windows.net/smoking.csv")\n .select("state", "year", "cigsale", "california", "after_treatment")\n)\ndisplay(df)\n')),(0,r.kt)("p",null,"First, we use the ",(0,r.kt)("inlineCode",{parentName:"p"},"DiffInDiffEstimator"),' to estimate the causal effect with regular difference in differences method. We set the treatment indicator column to "california", set post-treatment indicator column to "after_treatment", and set the outcome column to "cigsale".'),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'estimator1 = DiffInDiffEstimator(\n treatmentCol="california", postTreatmentCol="after_treatment", outcomeCol="cigsale"\n)\n\nmodel1 = estimator1.fit(df)\n\nprint("[Diff in Diff] treatment effect: {}".format(model1.treatmentEffect))\nprint("[Diff in Diff] standard error: {}".format(model1.standardError))\n')),(0,r.kt)("p",null,"The treatment effect estimated by difference in differences should be -27.349."),(0,r.kt)("p",null,"Next, we use ",(0,r.kt)("inlineCode",{parentName:"p"},"SyntheticControlEstimator")," to synthesize a control unit and use the synthetic control to estimate the causal effect. To create the synthetic control unit, we need to set the column which indicates the time when each outcome is measured, and the column which indicates the unit for which the outcome is measured."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'estimator2 = SyntheticControlEstimator(\n timeCol="year",\n unitCol="state",\n treatmentCol="california",\n postTreatmentCol="after_treatment",\n outcomeCol="cigsale",\n maxIter=5000,\n numIterNoChange=50,\n tol=1e-4,\n stepSize=1.0,\n)\n\nmodel2 = estimator2.fit(df)\n\nprint("[Synthetic Control] treatment effect: {}".format(model2.treatmentEffect))\nprint("[Synthetic Control] standard error: {}".format(model2.standardError))\n')),(0,r.kt)("p",null,"The treatment effect estimated by synthetic control should be about -19.354."),(0,r.kt)("p",null,"Internally, a constrained least square regression is used to solve the unit weights for the synthetic control, and we can plot the loss history."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'lossHistory = pd.Series(np.array(model2.lossHistoryUnitWeights))\n\nplt.plot(lossHistory[2000:])\nplt.title("loss history - unit weights")\nplt.xlabel("Iteration")\nplt.ylabel("Loss")\nplt.show()\n\nprint("Mimimal loss: {}".format(lossHistory.min()))\n')),(0,r.kt)("p",null,"We can also visualize the synthetic control and compare it with the treated unit."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'sc_weights = model2.unitWeights.toPandas().set_index("state")\npdf = df.toPandas()\nsc = (\n pdf.query("~california")\n .pivot(index="year", columns="state", values="cigsale")\n .dot(sc_weights)\n)\nplt.plot(sc, label="Synthetic Control")\nplt.plot(sc.index, pdf.query("california")["cigsale"], label="California", color="C1")\n\nplt.title("Synthetic Control Estimation")\nplt.ylabel("Cigarette Sales")\nplt.vlines(\n x=1988,\n ymin=40,\n ymax=140,\n line,\n lw=2,\n label="Proposition 99",\n color="black",\n)\nplt.legend()\n')),(0,r.kt)("p",null,"Lastly, we use ",(0,r.kt)("inlineCode",{parentName:"p"},"SyntheticDiffInDiffEstimator")," to estimate the causal effect."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'estimator3 = SyntheticDiffInDiffEstimator(\n timeCol="year",\n unitCol="state",\n treatmentCol="california",\n postTreatmentCol="after_treatment",\n outcomeCol="cigsale",\n maxIter=5000,\n numIterNoChange=50,\n tol=1e-4,\n stepSize=1.0,\n)\n\nmodel3 = estimator3.fit(df)\n\nprint("[Synthetic Diff in Diff] treatment effect: {}".format(model3.treatmentEffect))\nprint("[Synthetic Diff in Diff] standard error: {}".format(model3.standardError))\n')),(0,r.kt)("p",null,"The treatment effect estimated by synthetic control should be about -15.554."),(0,r.kt)("p",null,"Again, we can plot the loss history from the optimizer used to solve the unit weights and the time weights."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'lossHistory = pd.Series(np.array(model3.lossHistoryUnitWeights))\n\nplt.plot(lossHistory[1000:])\nplt.title("loss history - unit weights")\nplt.xlabel("Iteration")\nplt.ylabel("Loss")\nplt.show()\n\nprint("Mimimal loss: {}".format(lossHistory.min()))\n')),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'lossHistory = pd.Series(np.array(model3.lossHistoryTimeWeights))\n\nplt.plot(lossHistory[1000:])\nplt.title("loss history - time weights")\nplt.xlabel("Iteration")\nplt.ylabel("Loss")\nplt.show()\n\nprint("Mimimal loss: {}".format(lossHistory.min()))\n')),(0,r.kt)("p",null,"Here we plot the synthetic diff in diff estimate together with the time weights."),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'unit_weights = model3.unitWeights.toPandas().set_index("state")\nunit_intercept = model3.unitIntercept\n\ntime_weights = model3.timeWeights.toPandas().set_index("year")\ntime_intercept = model3.timeIntercept\n\npdf = df.toPandas()\npivot_df_control = pdf.query("~california").pivot(\n index="year", columns="state", values="cigsale"\n)\npivot_df_treat = pdf.query("california").pivot(\n index="year", columns="state", values="cigsale"\n)\nsc_did = pivot_df_control.values @ unit_weights.values\ntreated_mean = pivot_df_treat.mean(axis=1)\n')),(0,r.kt)("pre",null,(0,r.kt)("code",{parentName:"pre",className:"language-python"},'fig, (ax1, ax2) = plt.subplots(\n 2, 1, figsize=(15, 8), sharex=True, gridspec_kw={"height_ratios": [3, 1]}\n)\nfig.suptitle("Synthetic Diff in Diff Estimation")\n\nax1.plot(\n pivot_df_control.mean(axis=1), lw=3, color="C1", ls="dashed", label="Control Avg."\n)\nax1.plot(treated_mean, lw=3, color="C0", label="California")\nax1.plot(\n pivot_df_control.index,\n sc_did,\n label="Synthetic Control (SDID)",\n color="C1",\n alpha=0.8,\n)\nax1.set_ylabel("Cigarette Sales")\nax1.vlines(\n 1989,\n treated_mean.min(),\n treated_mean.max(),\n color="black",\n ls="dotted",\n label="Prop. 99",\n)\nax1.legend()\n\nax2.bar(time_weights.index, time_weights["value"], color="skyblue")\nax2.set_ylabel("Time Weights")\nax2.set_xlabel("Time")\nax2.vlines(1989, 0, 1, color="black", ls="dotted")\n')))}p.isMDXComponent=!0}}]); \ No newline at end of file diff --git a/assets/js/935f2afb.419ef79a.js b/assets/js/935f2afb.419ef79a.js deleted file mode 100644 index 8887bd87cc..0000000000 --- a/assets/js/935f2afb.419ef79a.js +++ /dev/null @@ -1 +0,0 @@ -"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[53],{1109:e=>{e.exports=JSON.parse('{"pluginId":"default","version":"current","label":"Next","banner":"unreleased","badge":true,"noIndex":false,"className":"docs-version-current","isLast":false,"docsSidebars":{"docs":[{"type":"link","label":"What is SynapseML?","href":"/SynapseML/docs/next/Overview","docId":"Overview"},{"type":"category","label":"Get Started","items":[{"type":"link","label":"Create a Spark Cluster","href":"/SynapseML/docs/next/Get Started/Create a Spark Cluster","docId":"Get Started/Create a Spark Cluster"},{"type":"link","label":"Install SynapseML","href":"/SynapseML/docs/next/Get Started/Install SynapseML","docId":"Get Started/Install SynapseML"},{"type":"link","label":"Set up Cognitive Services","href":"/SynapseML/docs/next/Get Started/Set up Cognitive Services","docId":"Get Started/Set up Cognitive Services"},{"type":"link","label":"Quickstart - Your First Models","href":"/SynapseML/docs/next/Get Started/Quickstart - Your First Models","docId":"Get Started/Quickstart - Your First Models"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Explore Algorithms","items":[{"type":"category","label":"LightGBM","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Explore Algorithms/LightGBM/Overview","docId":"Explore Algorithms/LightGBM/Overview"},{"type":"link","label":"Quickstart - Classification, Ranking, and Regression","href":"/SynapseML/docs/next/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","docId":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression"}],"collapsed":true,"collapsible":true},{"type":"category","label":"AI Services","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Overview","docId":"Explore Algorithms/AI Services/Overview"},{"type":"link","label":"Geospatial Services","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Geospatial Services","docId":"Explore Algorithms/AI Services/Geospatial Services"},{"type":"link","label":"Multivariate Anomaly Detection","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Multivariate Anomaly Detection","docId":"Explore Algorithms/AI Services/Multivariate Anomaly Detection"},{"type":"link","label":"Advanced Usage - Async, Batching, and Multi-Key","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","docId":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key"},{"type":"link","label":"Quickstart - Analyze Celebrity Quotes","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","docId":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes"},{"type":"link","label":"Quickstart - Analyze Text","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Text","docId":"Explore Algorithms/AI Services/Quickstart - Analyze Text"},{"type":"link","label":"Quickstart - Create a Visual Search Engine","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","docId":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine"},{"type":"link","label":"Quickstart - Create Audiobooks","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","docId":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks"},{"type":"link","label":"Quickstart - Document Question and Answering with PDFs","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","docId":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs"},{"type":"link","label":"Quickstart - Flooding Risk","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Flooding Risk","docId":"Explore Algorithms/AI Services/Quickstart - Flooding Risk"},{"type":"link","label":"Quickstart - Predictive Maintenance","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","docId":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance"}],"collapsed":true,"collapsible":true},{"type":"category","label":"OpenAI","items":[{"type":"link","label":"Langchain","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Langchain","docId":"Explore Algorithms/OpenAI/Langchain"},{"type":"link","label":"OpenAI","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/","docId":"Explore Algorithms/OpenAI/OpenAI"},{"type":"link","label":"Quickstart - OpenAI Embedding","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","docId":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding"},{"type":"link","label":"Quickstart - Understand and Search Forms","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","docId":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Deep Learning","items":[{"type":"link","label":"Getting Started","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Getting Started","docId":"Explore Algorithms/Deep Learning/Getting Started"},{"type":"link","label":"ONNX","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/ONNX","docId":"Explore Algorithms/Deep Learning/ONNX"},{"type":"link","label":"Distributed Training","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Distributed Training","docId":"Explore Algorithms/Deep Learning/Distributed Training"},{"type":"link","label":"Quickstart - Fine-tune a Text Classifier","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","docId":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier"},{"type":"link","label":"Quickstart - Fine-tune a Vision Classifier","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","docId":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier"},{"type":"link","label":"Quickstart - ONNX Model Inference","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","docId":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference"},{"type":"link","label":"Quickstart - Transfer Learn for Image Classification","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","docId":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Responsible AI","items":[{"type":"link","label":"Interpreting Model Predictions","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Interpreting Model Predictions","docId":"Explore Algorithms/Responsible AI/Interpreting Model Predictions"},{"type":"link","label":"Tabular Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Tabular Explainers","docId":"Explore Algorithms/Responsible AI/Tabular Explainers"},{"type":"link","label":"Text Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Text Explainers","docId":"Explore Algorithms/Responsible AI/Text Explainers"},{"type":"link","label":"Image Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Image Explainers","docId":"Explore Algorithms/Responsible AI/Image Explainers"},{"type":"link","label":"PDP and ICE Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/PDP and ICE Explainers","docId":"Explore Algorithms/Responsible AI/PDP and ICE Explainers"},{"type":"link","label":"Data Balance Analysis","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Data Balance Analysis","docId":"Explore Algorithms/Responsible AI/Data Balance Analysis"},{"type":"link","label":"Explanation Dashboard","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Explanation Dashboard","docId":"Explore Algorithms/Responsible AI/Explanation Dashboard"},{"type":"link","label":"Quickstart - Data Balance Analysis","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","docId":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis"},{"type":"link","label":"Quickstart - Snow Leopard Detection","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","docId":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Causal Inference","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Overview","docId":"Explore Algorithms/Causal Inference/Overview"},{"type":"link","label":"Quickstart - Measure Causal Effects","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","docId":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects"},{"type":"link","label":"Quickstart - Measure Heterogeneous Effects","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","docId":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects"},{"type":"link","label":"Quickstart - Synthetic difference in differences","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences","docId":"Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Classification","items":[{"type":"link","label":"Quickstart - Train Classifier","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier","docId":"Explore Algorithms/Classification/Quickstart - Train Classifier"},{"type":"link","label":"Quickstart - SparkML vs SynapseML","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","docId":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML"},{"type":"link","label":"Quickstart - Vowpal Wabbit on Tabular Data","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","docId":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data"},{"type":"link","label":"Quickstart - Vowpal Wabbit on Text Data","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","docId":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Regression","items":[{"type":"link","label":"Quickstart - Data Cleaning","href":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Data Cleaning","docId":"Explore Algorithms/Regression/Quickstart - Data Cleaning"},{"type":"link","label":"Quickstart - Train Regressor","href":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Train Regressor","docId":"Explore Algorithms/Regression/Quickstart - Train Regressor"},{"type":"link","label":"Quickstart - Vowpal Wabbit and LightGBM","href":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","docId":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Anomaly Detection","items":[{"type":"link","label":"Quickstart - Isolation Forests","href":"/SynapseML/docs/next/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","docId":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Hyperparameter Tuning","items":[{"type":"link","label":"HyperOpt","href":"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/HyperOpt","docId":"Explore Algorithms/Hyperparameter Tuning/HyperOpt"},{"type":"link","label":"Quickstart - Random Search","href":"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","docId":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search"}],"collapsed":true,"collapsible":true},{"type":"category","label":"OpenCV","items":[{"type":"link","label":"Image Transformations","href":"/SynapseML/docs/next/Explore Algorithms/OpenCV/Image Transformations","docId":"Explore Algorithms/OpenCV/Image Transformations"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Vowpal Wabbit","items":[{"type":"link","label":"About","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Overview","docId":"Explore Algorithms/Vowpal Wabbit/Overview"},{"type":"link","label":"Multi-class classification","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Multi-class classification","docId":"Explore Algorithms/Vowpal Wabbit/Multi-class classification"},{"type":"link","label":"Contextual Bandits","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","docId":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits"},{"type":"link","label":"Quickstart - Classification, Quantile Regression, and Regression","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","docId":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression"},{"type":"link","label":"Quickstart - Classification using SparkML Vectors","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","docId":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors"},{"type":"link","label":"Quickstart - Classification using VW-native Format","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","docId":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Other Algorithms","items":[{"type":"link","label":"SAR Algorithm","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","docId":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations"},{"type":"link","label":"CyberML","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Cyber ML","docId":"Explore Algorithms/Other Algorithms/Cyber ML"},{"type":"link","label":"Quickstart - Anomalous Access Detection","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","docId":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection"},{"type":"link","label":"Quickstart - Exploring Art Across Cultures","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","docId":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures"}],"collapsed":true,"collapsible":true}],"collapsed":true,"collapsible":true},{"type":"category","label":"Use with MLFlow","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Use with MLFlow/Overview","docId":"Use with MLFlow/Overview"},{"type":"link","label":"Install","href":"/SynapseML/docs/next/Use with MLFlow/Install","docId":"Use with MLFlow/Install"},{"type":"link","label":"Autologging","href":"/SynapseML/docs/next/Use with MLFlow/Autologging","docId":"Use with MLFlow/Autologging"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Deploy Models","items":[{"type":"link","label":"About","href":"/SynapseML/docs/next/Deploy Models/Overview","docId":"Deploy Models/Overview"},{"type":"link","label":"Quickstart - Deploying a Classifier","href":"/SynapseML/docs/next/Deploy Models/Quickstart - Deploying a Classifier","docId":"Deploy Models/Quickstart - Deploying a Classifier"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Reference","items":[{"type":"link","label":"Contributor Guide","href":"/SynapseML/docs/next/Reference/Contributor Guide","docId":"Reference/Contributor Guide"},{"type":"link","label":"Developer Setup","href":"/SynapseML/docs/next/Reference/Developer Setup","docId":"Reference/Developer Setup"},{"type":"link","label":"Docker Setup","href":"/SynapseML/docs/next/Reference/Docker Setup","docId":"Reference/Docker Setup"},{"type":"link","label":"R setup","href":"/SynapseML/docs/next/Reference/R Setup","docId":"Reference/R Setup"},{"type":"link","label":".NET setup","href":"/SynapseML/docs/next/Reference/Dotnet Setup","docId":"Reference/Dotnet Setup"},{"type":"link","label":"Quickstart - LightGBM in Dotnet","href":"/SynapseML/docs/next/Reference/Quickstart - LightGBM in Dotnet","docId":"Reference/Quickstart - LightGBM in Dotnet"}],"collapsed":true,"collapsible":true}]},"docs":{"Deploy Models/Overview":{"id":"Deploy Models/Overview","title":"Spark Serving","description":"An Engine for Deploying Spark Jobs as Distributed Web Services","sidebar":"docs"},"Deploy Models/Quickstart - Deploying a Classifier":{"id":"Deploy Models/Quickstart - Deploying a Classifier","title":"Quickstart - Deploying a Classifier","description":"Model Deployment with Spark Serving","sidebar":"docs"},"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key":{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","title":"Advanced Usage - Async, Batching, and Multi-Key","description":"Step 1: Imports and Keys","sidebar":"docs"},"Explore Algorithms/AI Services/Geospatial Services":{"id":"Explore Algorithms/AI Services/Geospatial Services","title":"Geospatial Services","description":"Microsoft Azure Maps provides developers from all industries with powerful geospatial capabilities. Those geospatial capabilities are packed with the freshest mapping data. Azure Maps is available for web, mobile (iOS and Android), Microsoft Power BI, Microsoft Power Apps and Microsoft Synapse. Azure Maps is an Open API compliant set of REST APIs. The following are only a high-level overview of the services which Azure Maps offers - Maps, Search, Routing, Traffic, Weather, Time Zones, Geolocation, Geofencing, Map Data, Creator, and Spatial Operations.","sidebar":"docs"},"Explore Algorithms/AI Services/Multivariate Anomaly Detection":{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","title":"Multivariate Anomaly Detection","description":"This recipe shows how you can use SynapseML and Azure AI services on Apache Spark to detect anomalies in multivariate time-series data. Multivariate anomaly detection takes correlations and dependencies between the different variables into account when discovering anomalies. In this scenario, we use SynapseML to train a model for multivariate anomaly detection using the Azure AI Services, and we then use to the model to detect anomalies in a dataset of synthetic measurements from three IoT sensors.","sidebar":"docs"},"Explore Algorithms/AI Services/Overview":{"id":"Explore Algorithms/AI Services/Overview","title":"Overview","description":"Important","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes":{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","title":"Quickstart - Analyze Celebrity Quotes","description":"Extracting celebrity quote images using Bing Image Search on Spark","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Analyze Text":{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","title":"Quickstart - Analyze Text","description":"Azure AI Language is a cloud-based service that provides Natural Language Processing (NLP) features for understanding and analyzing text. Use this service to help build intelligent applications using the web-based Language Studio, REST APIs, and client libraries.","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine":{"id":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","title":"Quickstart - Create a Visual Search Engine","description":"Creating a searchable Art Database with The MET\'s open-access collection","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Create Audiobooks":{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","title":"Quickstart - Create Audiobooks","description":"Step 1: Load libraries and add service information","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs":{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","title":"Quickstart - Document Question and Answering with PDFs","description":"Introduction","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Flooding Risk":{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","title":"Quickstart - Flooding Risk","description":"King County (WA) publishes flood plain data as well as tax parcel data. We can use the addresses in the tax parcel data and use the geocoder to calculate coordinates. Using this coordinates and the flood plain data we can enrich out dataset with a flag indicating whether the house is in a flood zone or not.","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance":{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","title":"Quickstart - Predictive Maintenance","description":"This recipe shows how you can use Azure Synapse Analytics and Azure AI services on Apache Spark for predictive maintenance of IoT devices. We\'ll follow along with the CosmosDB and Synapse Link sample. To keep things simple, in this recipe we\'ll read the data straight from a CSV file rather than getting streamed data through CosmosDB and Synapse Link. We strongly encourage you to look over the Synapse Link sample.","sidebar":"docs"},"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests":{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","title":"Quickstart - Isolation Forests","description":"This recipe shows how you can use SynapseML on Apache Spark for multivariate anomaly detection. Multivariate anomaly detection allows for the detection of anomalies among many variables or time series, taking into account all the inter-correlations and dependencies between the different variables. In this scenario, we use SynapseML to train an Isolation Forest model for multivariate anomaly detection, and we then use to the trained model to infer multivariate anomalies within a dataset containing synthetic measurements from three IoT sensors.","sidebar":"docs"},"Explore Algorithms/Causal Inference/Overview":{"id":"Explore Algorithms/Causal Inference/Overview","title":"Overview","description":"Causal Inference on Apache Spark","sidebar":"docs"},"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects":{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","title":"Quickstart - Measure Causal Effects","description":"This sample notebook aims to show the application of using SynapseML\'s DoubleMLEstimator for inferring causality using observational data.","sidebar":"docs"},"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects":{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","title":"Quickstart - Measure Heterogeneous Effects","description":"This sample notebook aims to show the application of using SynapseML\'s DoubleMLEstimator for inferring causality using observational data.","sidebar":"docs"},"Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences":{"id":"Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences","title":"Quickstart - Synthetic difference in differences","description":"This sample notebook aims to show readers how to use SynapseML\'s DiffInDiffEstimator, SyntheticControlEstimator and SyntheticDiffInDiffEstimator to estimate the causal effect of a treatment on a particular outcome.","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML":{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","title":"Quickstart - SparkML vs SynapseML","description":"In this article, you perform the same classification task in two","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - Train Classifier":{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","title":"Quickstart - Train Classifier","description":"Classification - Adult Census","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data":{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","title":"Quickstart - Vowpal Wabbit on Tabular Data","description":"In this example, we predict incomes from the Adult Census dataset using Vowpal Wabbit (VW) classifier in SynapseML.","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data":{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","title":"Quickstart - Vowpal Wabbit on Text Data","description":"In this example, we show how to build a sentiment classification model using Vowpal Wabbit (VW) in SynapseML. The data set we use to train and evaluate the model is Sentiment140 twitter data. First, we import a few packages that we need.","sidebar":"docs"},"Explore Algorithms/Deep Learning/Distributed Training":{"id":"Explore Algorithms/Deep Learning/Distributed Training","title":"Distributed Training","description":"Why Simple Deep Learning","sidebar":"docs"},"Explore Algorithms/Deep Learning/Getting Started":{"id":"Explore Algorithms/Deep Learning/Getting Started","title":"Getting Started","description":"This is a sample with databricks 10.4.x-gpu-ml-scala2.12 runtime","sidebar":"docs"},"Explore Algorithms/Deep Learning/ONNX":{"id":"Explore Algorithms/Deep Learning/ONNX","title":"ONNX","description":"Learn how to use the ONNX model transformer to run inference for an ONNX model on Spark.","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier":{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","title":"Quickstart - Fine-tune a Text Classifier","description":"Deep Learning - Deep Text Classifier","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier":{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","title":"Quickstart - Fine-tune a Vision Classifier","description":"Deep Learning - Deep Vision Classifier","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference":{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","title":"Quickstart - ONNX Model Inference","description":"In this example, you train a LightGBM model and convert the model to ONNX format. Once converted, you use the model to infer some testing data on Spark.","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification":{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","title":"Quickstart - Transfer Learn for Image Classification","description":"Deep Learning - Flower Image Classification","sidebar":"docs"},"Explore Algorithms/Hyperparameter Tuning/HyperOpt":{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","title":"HyperOpt","description":"SynapseML is an open-source library that simplifies the creation of massively scalable machine learning (ML) pipelines. SynapseML provides simple, composable, and distributed APIs for a wide variety of different machine learning tasks such as text analytics, vision, anomaly detection, and many others.","sidebar":"docs"},"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search":{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","title":"Quickstart - Random Search","description":"This tutorial shows how SynapseML can be used to identify the best combination of hyperparameters for your chosen classifiers, ultimately resulting in more accurate and reliable models. In order to demonstrate this, we\'ll show how to perform distributed randomized grid search hyperparameter tuning to build a model to identify breast cancer.","sidebar":"docs"},"Explore Algorithms/LightGBM/Overview":{"id":"Explore Algorithms/LightGBM/Overview","title":"Overview","description":"LightGBM","sidebar":"docs"},"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression":{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","title":"Quickstart - Classification, Ranking, and Regression","description":"LightGBM is an open-source,","sidebar":"docs"},"Explore Algorithms/OpenAI/Langchain":{"id":"Explore Algorithms/OpenAI/Langchain","title":"Langchain","description":"LangChain is a software development framework designed to simplify the creation of applications using large language models (LLMs). Chains in LangChain go beyond just a single LLM call and are sequences of calls (can be a call to an LLM or a different utility), automating the execution of a series of calls and actions.","sidebar":"docs"},"Explore Algorithms/OpenAI/OpenAI":{"id":"Explore Algorithms/OpenAI/OpenAI","title":"OpenAI","description":"The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples, we have integrated the Azure OpenAI service with the distributed machine learning library SynapseML. This integration makes it easy to use the Apache Spark distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models at a distributed scale using Azure Open AI and Azure Synapse Analytics.","sidebar":"docs"},"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding":{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","title":"Quickstart - OpenAI Embedding","description":"The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples we have integrated the Azure OpenAI service with the distributed machine learning library SynapseML. This integration makes it easy to use the Apache Spark distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models to generate embeddings for large datasets of text.","sidebar":"docs"},"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms":{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","title":"Quickstart - Understand and Search Forms","description":"In this tutorial, learn how to index and query large data loaded from a Spark cluster. You will set up a Jupyter Notebook that performs the following actions:","sidebar":"docs"},"Explore Algorithms/OpenCV/Image Transformations":{"id":"Explore Algorithms/OpenCV/Image Transformations","title":"Image Transformations","description":"OpenCV - Pipeline Image Transformations","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Cyber ML":{"id":"Explore Algorithms/Other Algorithms/Cyber ML","title":"CyberML","description":"access anomalies: complementaccess.py","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection":{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","title":"Quickstart - Anomalous Access Detection","description":"Here we demonstrate a novel CyberML model which can learn user access patterns and then automatically detect anomalous user access based on learned behavior.","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures":{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","title":"Quickstart - Exploring Art Across Cultures","description":"This article serves as a guideline for match-finding via k-nearest-neighbors. You set up code that allows queries involving cultures and mediums of art amassed from the Metropolitan Museum of Art in NYC and the Rijksmuseum in Amsterdam.","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations":{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","title":"Smart Adaptive Recommendations (SAR) Algorithm","description":"The following document is a subset of the implemented logic. The original can be found here","sidebar":"docs"},"Explore Algorithms/Regression/Quickstart - Data Cleaning":{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","title":"Quickstart - Data Cleaning","description":"Regression - Flight Delays with DataCleaning","sidebar":"docs"},"Explore Algorithms/Regression/Quickstart - Train Regressor":{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","title":"Quickstart - Train Regressor","description":"Regression - Auto Imports","sidebar":"docs"},"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM":{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","title":"Quickstart - Vowpal Wabbit and LightGBM","description":"This notebook shows how to build simple regression models by using","sidebar":"docs"},"Explore Algorithms/Responsible AI/Data Balance Analysis":{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","title":"Data Balance Analysis on Spark","description":"Learn how to do Data Balance Analysis on Spark to determine how well features and feature values are represented in your dataset.","sidebar":"docs"},"Explore Algorithms/Responsible AI/Explanation Dashboard":{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","title":"Explanation Dashboard","description":"Interpretability - Explanation Dashboard","sidebar":"docs"},"Explore Algorithms/Responsible AI/Image Explainers":{"id":"Explore Algorithms/Responsible AI/Image Explainers","title":"Image Explainers","description":"Interpretability - Image Explainers","sidebar":"docs"},"Explore Algorithms/Responsible AI/Interpreting Model Predictions":{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","title":"Interpreting Model Predictions","description":"Interpretable Machine Learning","sidebar":"docs"},"Explore Algorithms/Responsible AI/PDP and ICE Explainers":{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","title":"PDP and ICE Explainers","description":"Partial Dependence (PDP) and Individual Conditional Expectation (ICE) plots","sidebar":"docs"},"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis":{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","title":"Quickstart - Data Balance Analysis","description":"Data Balance Analysis using the Adult Census Income dataset","sidebar":"docs"},"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection":{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","title":"Quickstart - Snow Leopard Detection","description":"Automated Snow Leopard Detection with Synapse Machine Learning","sidebar":"docs"},"Explore Algorithms/Responsible AI/Tabular Explainers":{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","title":"Tabular Explainers","description":"In this example, we use Kernel SHAP to explain a tabular classification model built from the Adults Census dataset.","sidebar":"docs"},"Explore Algorithms/Responsible AI/Text Explainers":{"id":"Explore Algorithms/Responsible AI/Text Explainers","title":"Text Explainers","description":"Interpretability - Text Explainers","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Contextual Bandits":{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","title":"Contextual Bandits","description":"In the contextual bandit problem, a learner repeatedly observes a context, chooses an action, and observes a loss/cost/reward for the chosen action only. Contextual bandit algorithms use additional side information (or context) to aid real world decision-making. They work well for choosing actions in dynamic environments where options change rapidly, and the set of available actions is limited.","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Multi-class classification":{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","title":"Multi-class classification","description":"Read dataset","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Overview":{"id":"Explore Algorithms/Vowpal Wabbit/Overview","title":"VW","description":"Overview","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors":{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","title":"Quickstart - Classification using SparkML Vectors","description":"SparkML Vector input","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format":{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","title":"Quickstart - Classification using VW-native Format","description":"SparkML Vector input","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression":{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","title":"Quickstart - Classification, Quantile Regression, and Regression","description":"VowpalWabbit (VW) is a machine learning system which","sidebar":"docs"},"Get Started/Create a Spark Cluster":{"id":"Get Started/Create a Spark Cluster","title":"Create a Spark Cluster","description":"SynapseML is preinstalled on Microsoft Fabric and Synapse Analytics. Follow the instructions to get started with these platforms.","sidebar":"docs"},"Get Started/Install SynapseML":{"id":"Get Started/Install SynapseML","title":"Install SynapseML","description":"Install SynapseML","sidebar":"docs"},"Get Started/Quickstart - Your First Models":{"id":"Get Started/Quickstart - Your First Models","title":"Quickstart - Your First Models","description":"This tutorial provides a brief introduction to SynapseML. In particular, we use SynapseML to create two different pipelines for sentiment analysis. The first pipeline combines a text featurization stage with LightGBM regression to predict ratings based on review text from a dataset containing book reviews from Amazon. The second pipeline shows how to use prebuilt models through the Azure AI Services to solve this problem without training data.","sidebar":"docs"},"Get Started/Set up Cognitive Services":{"id":"Get Started/Set up Cognitive Services","title":"Set up Cognitive Services","description":"In order to use SynapseML\'s OpenAI or Azure AI Services features, specific Azure resources are required. This documentation walks you through the process of setting up these resources and acquiring the necessary credentials.","sidebar":"docs"},"Overview":{"id":"Overview","title":"What is SynapseML?","description":"SynapseML (previously known as MMLSpark), is an open-source library that simplifies the creation of massively scalable machine learning (ML) pipelines. SynapseML provides simple, composable, and distributed APIs for a wide variety of different machine learning tasks such as text analytics, vision, anomaly detection, and many others. SynapseML is built on the Apache Spark distributed computing framework and shares the same API as the SparkML/MLLib library, allowing you to seamlessly embed SynapseML models into existing Apache Spark workflows.","sidebar":"docs"},"Quick Examples/estimators/estimators_causal":{"id":"Quick Examples/estimators/estimators_causal","title":"Estimators - Causal","description":""},"Quick Examples/estimators/estimators_cognitive":{"id":"Quick Examples/estimators/estimators_cognitive","title":"Estimators - Cognitive","description":""},"Quick Examples/estimators/estimators_core":{"id":"Quick Examples/estimators/estimators_core","title":"Estimators - Core","description":""},"Quick Examples/estimators/estimators_lightgbm":{"id":"Quick Examples/estimators/estimators_lightgbm","title":"Estimators - LightGBM","description":""},"Quick Examples/estimators/estimators_vw":{"id":"Quick Examples/estimators/estimators_vw","title":"Estimators - Vowpal Wabbit","description":""},"Quick Examples/transformers/transformers_cognitive":{"id":"Quick Examples/transformers/transformers_cognitive","title":"Transformers - Cognitive","description":""},"Quick Examples/transformers/transformers_core":{"id":"Quick Examples/transformers/transformers_core","title":"Transformers - Core","description":""},"Quick Examples/transformers/transformers_deep_learning":{"id":"Quick Examples/transformers/transformers_deep_learning","title":"Deep Learning","description":""},"Quick Examples/transformers/transformers_opencv":{"id":"Quick Examples/transformers/transformers_opencv","title":"Transformers - OpenCV","description":""},"Quick Examples/transformers/transformers_vw":{"id":"Quick Examples/transformers/transformers_vw","title":"Transformers - Vowpal Wabbit","description":""},"Reference/Contributor Guide":{"id":"Reference/Contributor Guide","title":"Contributor Guide","description":"Contributor Guide","sidebar":"docs"},"Reference/Developer Setup":{"id":"Reference/Developer Setup","title":"Developer Setup","description":"Developer Setup","sidebar":"docs"},"Reference/Docker Setup":{"id":"Reference/Docker Setup","title":"Docker Setup","description":"Docker Setup","sidebar":"docs"},"Reference/Dotnet Setup":{"id":"Reference/Dotnet Setup","title":".NET setup","description":".NET setup","sidebar":"docs"},"Reference/Quickstart - LightGBM in Dotnet":{"id":"Reference/Quickstart - LightGBM in Dotnet","title":"Quickstart - LightGBM in Dotnet","description":"A simple example about classification with LightGBMClassifier using .NET","sidebar":"docs"},"Reference/R Setup":{"id":"Reference/R Setup","title":"R setup","description":"R setup and example for SynapseML","sidebar":"docs"},"Use with MLFlow/Autologging":{"id":"Use with MLFlow/Autologging","title":"Autologging","description":"SynapseML autologging","sidebar":"docs"},"Use with MLFlow/Install":{"id":"Use with MLFlow/Install","title":"Install","description":"install Mlflow on different environments","sidebar":"docs"},"Use with MLFlow/Overview":{"id":"Use with MLFlow/Overview","title":"Overview","description":"MLflow support of SynapseML","sidebar":"docs"}}}')}}]); \ No newline at end of file diff --git a/assets/js/935f2afb.731706c1.js b/assets/js/935f2afb.731706c1.js new file mode 100644 index 0000000000..1a75f02aa1 --- /dev/null +++ b/assets/js/935f2afb.731706c1.js @@ -0,0 +1 @@ +"use strict";(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[53],{1109:e=>{e.exports=JSON.parse('{"pluginId":"default","version":"current","label":"Next","banner":"unreleased","badge":true,"noIndex":false,"className":"docs-version-current","isLast":false,"docsSidebars":{"docs":[{"type":"link","label":"What is SynapseML?","href":"/SynapseML/docs/next/Overview","docId":"Overview"},{"type":"category","label":"Get Started","items":[{"type":"link","label":"Create a Spark Cluster","href":"/SynapseML/docs/next/Get Started/Create a Spark Cluster","docId":"Get Started/Create a Spark Cluster"},{"type":"link","label":"Install SynapseML","href":"/SynapseML/docs/next/Get Started/Install SynapseML","docId":"Get Started/Install SynapseML"},{"type":"link","label":"Set up Cognitive Services","href":"/SynapseML/docs/next/Get Started/Set up Cognitive Services","docId":"Get Started/Set up Cognitive Services"},{"type":"link","label":"Quickstart - Your First Models","href":"/SynapseML/docs/next/Get Started/Quickstart - Your First Models","docId":"Get Started/Quickstart - Your First Models"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Explore Algorithms","items":[{"type":"category","label":"LightGBM","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Explore Algorithms/LightGBM/Overview","docId":"Explore Algorithms/LightGBM/Overview"},{"type":"link","label":"Quickstart - Classification, Ranking, and Regression","href":"/SynapseML/docs/next/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","docId":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression"}],"collapsed":true,"collapsible":true},{"type":"category","label":"AI Services","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Overview","docId":"Explore Algorithms/AI Services/Overview"},{"type":"link","label":"Geospatial Services","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Geospatial Services","docId":"Explore Algorithms/AI Services/Geospatial Services"},{"type":"link","label":"Multivariate Anomaly Detection","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Multivariate Anomaly Detection","docId":"Explore Algorithms/AI Services/Multivariate Anomaly Detection"},{"type":"link","label":"Advanced Usage - Async, Batching, and Multi-Key","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","docId":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key"},{"type":"link","label":"Quickstart - Analyze Celebrity Quotes","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","docId":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes"},{"type":"link","label":"Quickstart - Analyze Text","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Text","docId":"Explore Algorithms/AI Services/Quickstart - Analyze Text"},{"type":"link","label":"Quickstart - Create a Visual Search Engine","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","docId":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine"},{"type":"link","label":"Quickstart - Create Audiobooks","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","docId":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks"},{"type":"link","label":"Quickstart - Document Question and Answering with PDFs","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","docId":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs"},{"type":"link","label":"Quickstart - Flooding Risk","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Flooding Risk","docId":"Explore Algorithms/AI Services/Quickstart - Flooding Risk"},{"type":"link","label":"Quickstart - Predictive Maintenance","href":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","docId":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance"}],"collapsed":true,"collapsible":true},{"type":"category","label":"OpenAI","items":[{"type":"link","label":"Langchain","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Langchain","docId":"Explore Algorithms/OpenAI/Langchain"},{"type":"link","label":"OpenAI","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/","docId":"Explore Algorithms/OpenAI/OpenAI"},{"type":"link","label":"Quickstart - OpenAI Embedding","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","docId":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding"},{"type":"link","label":"Quickstart - Understand and Search Forms","href":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","docId":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Deep Learning","items":[{"type":"link","label":"Getting Started","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Getting Started","docId":"Explore Algorithms/Deep Learning/Getting Started"},{"type":"link","label":"ONNX","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/ONNX","docId":"Explore Algorithms/Deep Learning/ONNX"},{"type":"link","label":"Distributed Training","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Distributed Training","docId":"Explore Algorithms/Deep Learning/Distributed Training"},{"type":"link","label":"Quickstart - Fine-tune a Text Classifier","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","docId":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier"},{"type":"link","label":"Quickstart - Fine-tune a Vision Classifier","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","docId":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier"},{"type":"link","label":"Quickstart - ONNX Model Inference","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","docId":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference"},{"type":"link","label":"Quickstart - Transfer Learn for Image Classification","href":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","docId":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Responsible AI","items":[{"type":"link","label":"Interpreting Model Predictions","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Interpreting Model Predictions","docId":"Explore Algorithms/Responsible AI/Interpreting Model Predictions"},{"type":"link","label":"Tabular Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Tabular Explainers","docId":"Explore Algorithms/Responsible AI/Tabular Explainers"},{"type":"link","label":"Text Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Text Explainers","docId":"Explore Algorithms/Responsible AI/Text Explainers"},{"type":"link","label":"Image Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Image Explainers","docId":"Explore Algorithms/Responsible AI/Image Explainers"},{"type":"link","label":"PDP and ICE Explainers","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/PDP and ICE Explainers","docId":"Explore Algorithms/Responsible AI/PDP and ICE Explainers"},{"type":"link","label":"Data Balance Analysis","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Data Balance Analysis","docId":"Explore Algorithms/Responsible AI/Data Balance Analysis"},{"type":"link","label":"Explanation Dashboard","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Explanation Dashboard","docId":"Explore Algorithms/Responsible AI/Explanation Dashboard"},{"type":"link","label":"Quickstart - Data Balance Analysis","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","docId":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis"},{"type":"link","label":"Quickstart - Snow Leopard Detection","href":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","docId":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Causal Inference","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Overview","docId":"Explore Algorithms/Causal Inference/Overview"},{"type":"link","label":"Quickstart - Measure Causal Effects","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","docId":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects"},{"type":"link","label":"Quickstart - Measure Heterogeneous Effects","href":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","docId":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Classification","items":[{"type":"link","label":"Quickstart - Train Classifier","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier","docId":"Explore Algorithms/Classification/Quickstart - Train Classifier"},{"type":"link","label":"Quickstart - SparkML vs SynapseML","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","docId":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML"},{"type":"link","label":"Quickstart - Vowpal Wabbit on Tabular Data","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","docId":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data"},{"type":"link","label":"Quickstart - Vowpal Wabbit on Text Data","href":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","docId":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Regression","items":[{"type":"link","label":"Quickstart - Data Cleaning","href":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Data Cleaning","docId":"Explore Algorithms/Regression/Quickstart - Data Cleaning"},{"type":"link","label":"Quickstart - Train Regressor","href":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Train Regressor","docId":"Explore Algorithms/Regression/Quickstart - Train Regressor"},{"type":"link","label":"Quickstart - Vowpal Wabbit and LightGBM","href":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","docId":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Anomaly Detection","items":[{"type":"link","label":"Quickstart - Isolation Forests","href":"/SynapseML/docs/next/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","docId":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Hyperparameter Tuning","items":[{"type":"link","label":"HyperOpt","href":"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/HyperOpt","docId":"Explore Algorithms/Hyperparameter Tuning/HyperOpt"},{"type":"link","label":"Quickstart - Random Search","href":"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","docId":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search"}],"collapsed":true,"collapsible":true},{"type":"category","label":"OpenCV","items":[{"type":"link","label":"Image Transformations","href":"/SynapseML/docs/next/Explore Algorithms/OpenCV/Image Transformations","docId":"Explore Algorithms/OpenCV/Image Transformations"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Vowpal Wabbit","items":[{"type":"link","label":"About","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Overview","docId":"Explore Algorithms/Vowpal Wabbit/Overview"},{"type":"link","label":"Multi-class classification","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Multi-class classification","docId":"Explore Algorithms/Vowpal Wabbit/Multi-class classification"},{"type":"link","label":"Contextual Bandits","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","docId":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits"},{"type":"link","label":"Quickstart - Classification, Quantile Regression, and Regression","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","docId":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression"},{"type":"link","label":"Quickstart - Classification using SparkML Vectors","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","docId":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors"},{"type":"link","label":"Quickstart - Classification using VW-native Format","href":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","docId":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Other Algorithms","items":[{"type":"link","label":"SAR Algorithm","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","docId":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations"},{"type":"link","label":"CyberML","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Cyber ML","docId":"Explore Algorithms/Other Algorithms/Cyber ML"},{"type":"link","label":"Quickstart - Anomalous Access Detection","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","docId":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection"},{"type":"link","label":"Quickstart - Exploring Art Across Cultures","href":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","docId":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures"}],"collapsed":true,"collapsible":true}],"collapsed":true,"collapsible":true},{"type":"category","label":"Use with MLFlow","items":[{"type":"link","label":"Overview","href":"/SynapseML/docs/next/Use with MLFlow/Overview","docId":"Use with MLFlow/Overview"},{"type":"link","label":"Install","href":"/SynapseML/docs/next/Use with MLFlow/Install","docId":"Use with MLFlow/Install"},{"type":"link","label":"Autologging","href":"/SynapseML/docs/next/Use with MLFlow/Autologging","docId":"Use with MLFlow/Autologging"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Deploy Models","items":[{"type":"link","label":"About","href":"/SynapseML/docs/next/Deploy Models/Overview","docId":"Deploy Models/Overview"},{"type":"link","label":"Quickstart - Deploying a Classifier","href":"/SynapseML/docs/next/Deploy Models/Quickstart - Deploying a Classifier","docId":"Deploy Models/Quickstart - Deploying a Classifier"}],"collapsed":true,"collapsible":true},{"type":"category","label":"Reference","items":[{"type":"link","label":"Contributor Guide","href":"/SynapseML/docs/next/Reference/Contributor Guide","docId":"Reference/Contributor Guide"},{"type":"link","label":"Developer Setup","href":"/SynapseML/docs/next/Reference/Developer Setup","docId":"Reference/Developer Setup"},{"type":"link","label":"Docker Setup","href":"/SynapseML/docs/next/Reference/Docker Setup","docId":"Reference/Docker Setup"},{"type":"link","label":"R setup","href":"/SynapseML/docs/next/Reference/R Setup","docId":"Reference/R Setup"},{"type":"link","label":".NET setup","href":"/SynapseML/docs/next/Reference/Dotnet Setup","docId":"Reference/Dotnet Setup"},{"type":"link","label":"Quickstart - LightGBM in Dotnet","href":"/SynapseML/docs/next/Reference/Quickstart - LightGBM in Dotnet","docId":"Reference/Quickstart - LightGBM in Dotnet"}],"collapsed":true,"collapsible":true}]},"docs":{"Deploy Models/Overview":{"id":"Deploy Models/Overview","title":"Spark Serving","description":"An Engine for Deploying Spark Jobs as Distributed Web Services","sidebar":"docs"},"Deploy Models/Quickstart - Deploying a Classifier":{"id":"Deploy Models/Quickstart - Deploying a Classifier","title":"Quickstart - Deploying a Classifier","description":"Model Deployment with Spark Serving","sidebar":"docs"},"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key":{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","title":"Advanced Usage - Async, Batching, and Multi-Key","description":"Step 1: Imports and Keys","sidebar":"docs"},"Explore Algorithms/AI Services/Geospatial Services":{"id":"Explore Algorithms/AI Services/Geospatial Services","title":"Geospatial Services","description":"Microsoft Azure Maps provides developers from all industries with powerful geospatial capabilities. Those geospatial capabilities are packed with the freshest mapping data. Azure Maps is available for web, mobile (iOS and Android), Microsoft Power BI, Microsoft Power Apps and Microsoft Synapse. Azure Maps is an Open API compliant set of REST APIs. The following are only a high-level overview of the services which Azure Maps offers - Maps, Search, Routing, Traffic, Weather, Time Zones, Geolocation, Geofencing, Map Data, Creator, and Spatial Operations.","sidebar":"docs"},"Explore Algorithms/AI Services/Multivariate Anomaly Detection":{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","title":"Multivariate Anomaly Detection","description":"This recipe shows how you can use SynapseML and Azure AI services on Apache Spark to detect anomalies in multivariate time-series data. Multivariate anomaly detection takes correlations and dependencies between the different variables into account when discovering anomalies. In this scenario, we use SynapseML to train a model for multivariate anomaly detection using the Azure AI Services, and we then use to the model to detect anomalies in a dataset of synthetic measurements from three IoT sensors.","sidebar":"docs"},"Explore Algorithms/AI Services/Overview":{"id":"Explore Algorithms/AI Services/Overview","title":"Overview","description":"Important","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes":{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","title":"Quickstart - Analyze Celebrity Quotes","description":"Extracting celebrity quote images using Bing Image Search on Spark","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Analyze Text":{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","title":"Quickstart - Analyze Text","description":"Azure AI Language is a cloud-based service that provides Natural Language Processing (NLP) features for understanding and analyzing text. Use this service to help build intelligent applications using the web-based Language Studio, REST APIs, and client libraries.","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine":{"id":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","title":"Quickstart - Create a Visual Search Engine","description":"Creating a searchable Art Database with The MET\'s open-access collection","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Create Audiobooks":{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","title":"Quickstart - Create Audiobooks","description":"Step 1: Load libraries and add service information","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs":{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","title":"Quickstart - Document Question and Answering with PDFs","description":"Introduction","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Flooding Risk":{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","title":"Quickstart - Flooding Risk","description":"King County (WA) publishes flood plain data as well as tax parcel data. We can use the addresses in the tax parcel data and use the geocoder to calculate coordinates. Using this coordinates and the flood plain data we can enrich out dataset with a flag indicating whether the house is in a flood zone or not.","sidebar":"docs"},"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance":{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","title":"Quickstart - Predictive Maintenance","description":"This recipe shows how you can use Azure Synapse Analytics and Azure AI services on Apache Spark for predictive maintenance of IoT devices. We\'ll follow along with the CosmosDB and Synapse Link sample. To keep things simple, in this recipe we\'ll read the data straight from a CSV file rather than getting streamed data through CosmosDB and Synapse Link. We strongly encourage you to look over the Synapse Link sample.","sidebar":"docs"},"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests":{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","title":"Quickstart - Isolation Forests","description":"This recipe shows how you can use SynapseML on Apache Spark for multivariate anomaly detection. Multivariate anomaly detection allows for the detection of anomalies among many variables or time series, taking into account all the inter-correlations and dependencies between the different variables. In this scenario, we use SynapseML to train an Isolation Forest model for multivariate anomaly detection, and we then use to the trained model to infer multivariate anomalies within a dataset containing synthetic measurements from three IoT sensors.","sidebar":"docs"},"Explore Algorithms/Causal Inference/Overview":{"id":"Explore Algorithms/Causal Inference/Overview","title":"Overview","description":"Causal Inference on Apache Spark","sidebar":"docs"},"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects":{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","title":"Quickstart - Measure Causal Effects","description":"This sample notebook aims to show the application of using SynapseML\'s DoubleMLEstimator for inferring causality using observational data.","sidebar":"docs"},"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects":{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","title":"Quickstart - Measure Heterogeneous Effects","description":"This sample notebook aims to show the application of using SynapseML\'s DoubleMLEstimator for inferring causality using observational data.","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML":{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","title":"Quickstart - SparkML vs SynapseML","description":"In this article, you perform the same classification task in two","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - Train Classifier":{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","title":"Quickstart - Train Classifier","description":"Classification - Adult Census","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data":{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","title":"Quickstart - Vowpal Wabbit on Tabular Data","description":"In this example, we predict incomes from the Adult Census dataset using Vowpal Wabbit (VW) classifier in SynapseML.","sidebar":"docs"},"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data":{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","title":"Quickstart - Vowpal Wabbit on Text Data","description":"In this example, we show how to build a sentiment classification model using Vowpal Wabbit (VW) in SynapseML. The data set we use to train and evaluate the model is Sentiment140 twitter data. First, we import a few packages that we need.","sidebar":"docs"},"Explore Algorithms/Deep Learning/Distributed Training":{"id":"Explore Algorithms/Deep Learning/Distributed Training","title":"Distributed Training","description":"Why Simple Deep Learning","sidebar":"docs"},"Explore Algorithms/Deep Learning/Getting Started":{"id":"Explore Algorithms/Deep Learning/Getting Started","title":"Getting Started","description":"This is a sample with databricks 10.4.x-gpu-ml-scala2.12 runtime","sidebar":"docs"},"Explore Algorithms/Deep Learning/ONNX":{"id":"Explore Algorithms/Deep Learning/ONNX","title":"ONNX","description":"Learn how to use the ONNX model transformer to run inference for an ONNX model on Spark.","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier":{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","title":"Quickstart - Fine-tune a Text Classifier","description":"Deep Learning - Deep Text Classifier","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier":{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","title":"Quickstart - Fine-tune a Vision Classifier","description":"Deep Learning - Deep Vision Classifier","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference":{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","title":"Quickstart - ONNX Model Inference","description":"In this example, you train a LightGBM model and convert the model to ONNX format. Once converted, you use the model to infer some testing data on Spark.","sidebar":"docs"},"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification":{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","title":"Quickstart - Transfer Learn for Image Classification","description":"Deep Learning - Flower Image Classification","sidebar":"docs"},"Explore Algorithms/Hyperparameter Tuning/HyperOpt":{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","title":"HyperOpt","description":"SynapseML is an open-source library that simplifies the creation of massively scalable machine learning (ML) pipelines. SynapseML provides simple, composable, and distributed APIs for a wide variety of different machine learning tasks such as text analytics, vision, anomaly detection, and many others.","sidebar":"docs"},"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search":{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","title":"Quickstart - Random Search","description":"This tutorial shows how SynapseML can be used to identify the best combination of hyperparameters for your chosen classifiers, ultimately resulting in more accurate and reliable models. In order to demonstrate this, we\'ll show how to perform distributed randomized grid search hyperparameter tuning to build a model to identify breast cancer.","sidebar":"docs"},"Explore Algorithms/LightGBM/Overview":{"id":"Explore Algorithms/LightGBM/Overview","title":"Overview","description":"LightGBM","sidebar":"docs"},"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression":{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","title":"Quickstart - Classification, Ranking, and Regression","description":"LightGBM is an open-source,","sidebar":"docs"},"Explore Algorithms/OpenAI/Langchain":{"id":"Explore Algorithms/OpenAI/Langchain","title":"Langchain","description":"LangChain is a software development framework designed to simplify the creation of applications using large language models (LLMs). Chains in LangChain go beyond just a single LLM call and are sequences of calls (can be a call to an LLM or a different utility), automating the execution of a series of calls and actions.","sidebar":"docs"},"Explore Algorithms/OpenAI/OpenAI":{"id":"Explore Algorithms/OpenAI/OpenAI","title":"OpenAI","description":"The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples, we have integrated the Azure OpenAI service with the distributed machine learning library SynapseML. This integration makes it easy to use the Apache Spark distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models at a distributed scale using Azure Open AI and Azure Synapse Analytics.","sidebar":"docs"},"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding":{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","title":"Quickstart - OpenAI Embedding","description":"The Azure OpenAI service can be used to solve a large number of natural language tasks through prompting the completion API. To make it easier to scale your prompting workflows from a few examples to large datasets of examples we have integrated the Azure OpenAI service with the distributed machine learning library SynapseML. This integration makes it easy to use the Apache Spark distributed computing framework to process millions of prompts with the OpenAI service. This tutorial shows how to apply large language models to generate embeddings for large datasets of text.","sidebar":"docs"},"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms":{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","title":"Quickstart - Understand and Search Forms","description":"In this tutorial, learn how to index and query large data loaded from a Spark cluster. You will set up a Jupyter Notebook that performs the following actions:","sidebar":"docs"},"Explore Algorithms/OpenCV/Image Transformations":{"id":"Explore Algorithms/OpenCV/Image Transformations","title":"Image Transformations","description":"OpenCV - Pipeline Image Transformations","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Cyber ML":{"id":"Explore Algorithms/Other Algorithms/Cyber ML","title":"CyberML","description":"access anomalies: complementaccess.py","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection":{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","title":"Quickstart - Anomalous Access Detection","description":"Here we demonstrate a novel CyberML model which can learn user access patterns and then automatically detect anomalous user access based on learned behavior.","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures":{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","title":"Quickstart - Exploring Art Across Cultures","description":"This article serves as a guideline for match-finding via k-nearest-neighbors. You set up code that allows queries involving cultures and mediums of art amassed from the Metropolitan Museum of Art in NYC and the Rijksmuseum in Amsterdam.","sidebar":"docs"},"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations":{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","title":"Smart Adaptive Recommendations (SAR) Algorithm","description":"The following document is a subset of the implemented logic. The original can be found here","sidebar":"docs"},"Explore Algorithms/Regression/Quickstart - Data Cleaning":{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","title":"Quickstart - Data Cleaning","description":"Regression - Flight Delays with DataCleaning","sidebar":"docs"},"Explore Algorithms/Regression/Quickstart - Train Regressor":{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","title":"Quickstart - Train Regressor","description":"Regression - Auto Imports","sidebar":"docs"},"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM":{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","title":"Quickstart - Vowpal Wabbit and LightGBM","description":"This notebook shows how to build simple regression models by using","sidebar":"docs"},"Explore Algorithms/Responsible AI/Data Balance Analysis":{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","title":"Data Balance Analysis on Spark","description":"Learn how to do Data Balance Analysis on Spark to determine how well features and feature values are represented in your dataset.","sidebar":"docs"},"Explore Algorithms/Responsible AI/Explanation Dashboard":{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","title":"Explanation Dashboard","description":"Interpretability - Explanation Dashboard","sidebar":"docs"},"Explore Algorithms/Responsible AI/Image Explainers":{"id":"Explore Algorithms/Responsible AI/Image Explainers","title":"Image Explainers","description":"Interpretability - Image Explainers","sidebar":"docs"},"Explore Algorithms/Responsible AI/Interpreting Model Predictions":{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","title":"Interpreting Model Predictions","description":"Interpretable Machine Learning","sidebar":"docs"},"Explore Algorithms/Responsible AI/PDP and ICE Explainers":{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","title":"PDP and ICE Explainers","description":"Partial Dependence (PDP) and Individual Conditional Expectation (ICE) plots","sidebar":"docs"},"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis":{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","title":"Quickstart - Data Balance Analysis","description":"Data Balance Analysis using the Adult Census Income dataset","sidebar":"docs"},"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection":{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","title":"Quickstart - Snow Leopard Detection","description":"Automated Snow Leopard Detection with Synapse Machine Learning","sidebar":"docs"},"Explore Algorithms/Responsible AI/Tabular Explainers":{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","title":"Tabular Explainers","description":"In this example, we use Kernel SHAP to explain a tabular classification model built from the Adults Census dataset.","sidebar":"docs"},"Explore Algorithms/Responsible AI/Text Explainers":{"id":"Explore Algorithms/Responsible AI/Text Explainers","title":"Text Explainers","description":"Interpretability - Text Explainers","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Contextual Bandits":{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","title":"Contextual Bandits","description":"In the contextual bandit problem, a learner repeatedly observes a context, chooses an action, and observes a loss/cost/reward for the chosen action only. Contextual bandit algorithms use additional side information (or context) to aid real world decision-making. They work well for choosing actions in dynamic environments where options change rapidly, and the set of available actions is limited.","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Multi-class classification":{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","title":"Multi-class classification","description":"Read dataset","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Overview":{"id":"Explore Algorithms/Vowpal Wabbit/Overview","title":"VW","description":"Overview","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors":{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","title":"Quickstart - Classification using SparkML Vectors","description":"SparkML Vector input","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format":{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","title":"Quickstart - Classification using VW-native Format","description":"SparkML Vector input","sidebar":"docs"},"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression":{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","title":"Quickstart - Classification, Quantile Regression, and Regression","description":"VowpalWabbit (VW) is a machine learning system which","sidebar":"docs"},"Get Started/Create a Spark Cluster":{"id":"Get Started/Create a Spark Cluster","title":"Create a Spark Cluster","description":"SynapseML is preinstalled on Microsoft Fabric and Synapse Analytics. Follow the instructions to get started with these platforms.","sidebar":"docs"},"Get Started/Install SynapseML":{"id":"Get Started/Install SynapseML","title":"Install SynapseML","description":"Install SynapseML","sidebar":"docs"},"Get Started/Quickstart - Your First Models":{"id":"Get Started/Quickstart - Your First Models","title":"Quickstart - Your First Models","description":"This tutorial provides a brief introduction to SynapseML. In particular, we use SynapseML to create two different pipelines for sentiment analysis. The first pipeline combines a text featurization stage with LightGBM regression to predict ratings based on review text from a dataset containing book reviews from Amazon. The second pipeline shows how to use prebuilt models through the Azure AI Services to solve this problem without training data.","sidebar":"docs"},"Get Started/Set up Cognitive Services":{"id":"Get Started/Set up Cognitive Services","title":"Set up Cognitive Services","description":"In order to use SynapseML\'s OpenAI or Azure AI Services features, specific Azure resources are required. This documentation walks you through the process of setting up these resources and acquiring the necessary credentials.","sidebar":"docs"},"Overview":{"id":"Overview","title":"What is SynapseML?","description":"SynapseML (previously known as MMLSpark), is an open-source library that simplifies the creation of massively scalable machine learning (ML) pipelines. SynapseML provides simple, composable, and distributed APIs for a wide variety of different machine learning tasks such as text analytics, vision, anomaly detection, and many others. SynapseML is built on the Apache Spark distributed computing framework and shares the same API as the SparkML/MLLib library, allowing you to seamlessly embed SynapseML models into existing Apache Spark workflows.","sidebar":"docs"},"Quick Examples/estimators/estimators_causal":{"id":"Quick Examples/estimators/estimators_causal","title":"Estimators - Causal","description":""},"Quick Examples/estimators/estimators_cognitive":{"id":"Quick Examples/estimators/estimators_cognitive","title":"Estimators - Cognitive","description":""},"Quick Examples/estimators/estimators_core":{"id":"Quick Examples/estimators/estimators_core","title":"Estimators - Core","description":""},"Quick Examples/estimators/estimators_lightgbm":{"id":"Quick Examples/estimators/estimators_lightgbm","title":"Estimators - LightGBM","description":""},"Quick Examples/estimators/estimators_vw":{"id":"Quick Examples/estimators/estimators_vw","title":"Estimators - Vowpal Wabbit","description":""},"Quick Examples/transformers/transformers_cognitive":{"id":"Quick Examples/transformers/transformers_cognitive","title":"Transformers - Cognitive","description":""},"Quick Examples/transformers/transformers_core":{"id":"Quick Examples/transformers/transformers_core","title":"Transformers - Core","description":""},"Quick Examples/transformers/transformers_deep_learning":{"id":"Quick Examples/transformers/transformers_deep_learning","title":"Deep Learning","description":""},"Quick Examples/transformers/transformers_opencv":{"id":"Quick Examples/transformers/transformers_opencv","title":"Transformers - OpenCV","description":""},"Quick Examples/transformers/transformers_vw":{"id":"Quick Examples/transformers/transformers_vw","title":"Transformers - Vowpal Wabbit","description":""},"Reference/Contributor Guide":{"id":"Reference/Contributor Guide","title":"Contributor Guide","description":"Contributor Guide","sidebar":"docs"},"Reference/Developer Setup":{"id":"Reference/Developer Setup","title":"Developer Setup","description":"Developer Setup","sidebar":"docs"},"Reference/Docker Setup":{"id":"Reference/Docker Setup","title":"Docker Setup","description":"Docker Setup","sidebar":"docs"},"Reference/Dotnet Setup":{"id":"Reference/Dotnet Setup","title":".NET setup","description":".NET setup","sidebar":"docs"},"Reference/Quickstart - LightGBM in Dotnet":{"id":"Reference/Quickstart - LightGBM in Dotnet","title":"Quickstart - LightGBM in Dotnet","description":"A simple example about classification with LightGBMClassifier using .NET","sidebar":"docs"},"Reference/R Setup":{"id":"Reference/R Setup","title":"R setup","description":"R setup and example for SynapseML","sidebar":"docs"},"Use with MLFlow/Autologging":{"id":"Use with MLFlow/Autologging","title":"Autologging","description":"SynapseML autologging","sidebar":"docs"},"Use with MLFlow/Install":{"id":"Use with MLFlow/Install","title":"Install","description":"install Mlflow on different environments","sidebar":"docs"},"Use with MLFlow/Overview":{"id":"Use with MLFlow/Overview","title":"Overview","description":"MLflow support of SynapseML","sidebar":"docs"}}}')}}]); \ No newline at end of file diff --git a/assets/js/main.636cc31a.js b/assets/js/main.636cc31a.js deleted file mode 100644 index a1b50aabd0..0000000000 --- a/assets/js/main.636cc31a.js +++ /dev/null @@ -1,2 +0,0 @@ -/*! For license information please see main.636cc31a.js.LICENSE.txt */ -(self.webpackChunksynapseml=self.webpackChunksynapseml||[]).push([[179],{20830:(e,t,n)=>{"use strict";n.d(t,{W:()=>o});var r=n(67294);function o(){return r.createElement("svg",{width:"20",height:"20",className:"DocSearch-Search-Icon",viewBox:"0 0 20 20"},r.createElement("path",{d:"M14.386 14.386l4.0877 4.0877-4.0877-4.0877c-2.9418 2.9419-7.7115 2.9419-10.6533 0-2.9419-2.9418-2.9419-7.7115 0-10.6533 2.9418-2.9419 7.7115-2.9419 10.6533 0 2.9419 2.9418 2.9419 7.7115 0 10.6533z",stroke:"currentColor",fill:"none",fillRule:"evenodd",strokeLinecap:"round",strokeLinejoin:"round"}))}},723:(e,t,n)=>{"use strict";n.d(t,{Z:()=>m});var r=n(67294),o=n(83117),s=n(68356),a=n.n(s),i=n(16887);const l={"00056db7":[()=>n.e(1663).then(n.bind(n,83477)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Explanation Dashboard.md",83477],"001aea4c":[()=>Promise.all([n.e(532),n.e(390)]).then(n.bind(n,5642)),"@site/versioned_docs/version-1.0.1/Quick Examples/transformers/transformers_cognitive.md",5642],"00353f68":[()=>n.e(9043).then(n.bind(n,82885)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",82885],"00ab2cda":[()=>n.e(4334).then(n.bind(n,19118)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML.md",19118],"012c1c0f":[()=>Promise.all([n.e(532),n.e(8261)]).then(n.bind(n,45919)),"@site/versioned_docs/version-1.0.2/Reference/Dotnet Setup.md",45919],"01a15f20":[()=>n.e(1970).then(n.bind(n,53471)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Text.md",53471],"0349e4f0":[()=>n.e(8524).then(n.bind(n,14930)),"@site/docs/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key.md",14930],"034e6169":[()=>n.e(3730).then(n.bind(n,28641)),"@site/versioned_docs/version-0.11.4/Get Started/Install SynapseML.md",28641],"03d0d544":[()=>n.e(6676).then(n.bind(n,46814)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format.md",46814],"0453ae68":[()=>n.e(5939).then(n.bind(n,18496)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding.md",18496],"04ee4ab4":[()=>n.e(2217).then(n.bind(n,41680)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/Distributed Training.md",41680],"04fc65cc":[()=>n.e(1755).then(n.bind(n,92078)),"@site/versioned_docs/version-0.11.3/Reference/R Setup.md",92078],"052105dd":[()=>n.e(3036).then(n.bind(n,47333)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Explanation Dashboard.md",47333],"0606f1a5":[()=>n.e(2789).then(n.bind(n,80)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression.md",80],"061b38c5":[()=>n.e(5124).then(n.bind(n,60062)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier.md",60062],"0637d1e7":[()=>n.e(5750).then(n.bind(n,95457)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Create Audiobooks.md",95457],"069e3c4c":[()=>n.e(745).then(n.bind(n,64206)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection.md",64206],"077ca2ec":[()=>n.e(7610).then(n.bind(n,9661)),"@site/versioned_docs/version-1.0.1/Reference/Quickstart - LightGBM in Dotnet.md",9661],"07f6b90a":[()=>Promise.all([n.e(532),n.e(5839)]).then(n.bind(n,55678)),"@site/versioned_docs/version-1.0.2/Quick Examples/transformers/transformers_vw.md",55678],"093b81f4":[()=>n.e(9970).then(n.bind(n,86786)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects.md",86786],"09bc1516":[()=>n.e(2408).then(n.bind(n,22601)),"@site/versioned_docs/version-0.11.3/Overview.md",22601],"0a65b9de":[()=>n.e(939).then(n.bind(n,76455)),"@site/versioned_docs/version-0.11.3/Get Started/Set up Cognitive Services.md",76455],"0a954229":[()=>n.e(9088).then(n.bind(n,4489)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance.md",4489],"0b416bde":[()=>n.e(8579).then(n.bind(n,76262)),"@site/versioned_docs/version-0.11.4/Reference/Quickstart - LightGBM in Dotnet.md",76262],"0d432c84":[()=>n.e(4797).then(n.bind(n,72089)),"@site/versioned_docs/version-1.0.1/Get Started/Set up Cognitive Services.md",72089],"0d6d64cd":[()=>Promise.all([n.e(532),n.e(9307)]).then(n.bind(n,87804)),"@site/versioned_docs/version-0.11.3/Quick Examples/transformers/transformers_cognitive.md",87804],"0daa5b3f":[()=>n.e(5024).then(n.bind(n,73426)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference.md",73426],"0e0ee9b2":[()=>n.e(2045).then(n.bind(n,29119)),"@site/versioned_docs/version-0.11.4/Get Started/Quickstart - Your First Models.md",29119],"0e16e9ea":[()=>n.e(7721).then(n.bind(n,37562)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures.md",37562],"0e2bf69e":[()=>n.e(4395).then(n.bind(n,87433)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Vowpal Wabbit/Multi-class classification.md",87433],"0e3f998d":[()=>n.e(4482).then(n.bind(n,67479)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes.md",67479],"0f113696":[()=>n.e(6030).then(n.bind(n,78281)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/ONNX.md",78281],"0fa36e32":[()=>n.e(6555).then(n.bind(n,33171)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors.md",33171],"0fb98d33":[()=>n.e(6338).then(n.bind(n,63159)),"@site/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",63159],"1014102e":[()=>n.e(4744).then(n.bind(n,1110)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Other Algorithms/Cyber ML.md",1110],"104bf0a6":[()=>n.e(8314).then(n.bind(n,15734)),"@site/docs/Reference/Contributor Guide.md",15734],"109f6864":[()=>n.e(4994).then(n.bind(n,95820)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM.md",95820],"10e13725":[()=>Promise.all([n.e(532),n.e(5116)]).then(n.bind(n,34855)),"@site/versioned_docs/version-1.0.2/Quick Examples/transformers/transformers_cognitive.md",34855],"1155dc6f":[()=>n.e(5789).then(n.bind(n,74766)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine.md",74766],"11c317cb":[()=>n.e(8933).then(n.bind(n,24433)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Text Explainers.md",24433],"120352d6":[()=>n.e(9262).then(n.bind(n,17608)),"@site/docs/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms.md",17608],"12b89d4a":[()=>n.e(2804).then(n.bind(n,44536)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Vowpal Wabbit/Overview.md",44536],"12d85ab5":[()=>n.e(2412).then(n.bind(n,11105)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Overview.md",11105],"13246fd5":[()=>n.e(8807).then(n.bind(n,13869)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Vowpal Wabbit/Overview.md",13869],"13f17286":[()=>n.e(2912).then(n.bind(n,38060)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs.md",38060],"1587ba1d":[()=>n.e(3156).then(n.bind(n,86447)),"@site/versioned_docs/version-0.11.3/Use with MLFlow/Overview.md",86447],"15a59c33":[()=>n.e(7924).then(n.bind(n,6296)),"@site/versioned_docs/version-0.11.3/Deploy Models/Overview.md",6296],"15ea8379":[()=>n.e(9483).then(n.bind(n,71915)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM.md",71915],"166d99f5":[()=>n.e(9696).then(n.bind(n,82914)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests.md",82914],"16d05917":[()=>n.e(8759).then(n.bind(n,2727)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding.md",2727],17896441:[()=>Promise.all([n.e(532),n.e(4572),n.e(7918)]).then(n.bind(n,78945)),"@theme/DocItem",78945],"1789daeb":[()=>n.e(2377).then(n.bind(n,86544)),"@site/versioned_docs/version-1.0.2/Reference/Docker Setup.md",86544],"179d57fa":[()=>n.e(1580).then(n.bind(n,59171)),"@site/versioned_docs/version-1.0.1/Deploy Models/Quickstart - Deploying a Classifier.md",59171],"1842239f":[()=>Promise.all([n.e(532),n.e(4535)]).then(n.bind(n,3314)),"@site/versioned_docs/version-0.11.4/Quick Examples/estimators/estimators_vw.md",3314],"18c7d2a3":[()=>n.e(5800).then(n.bind(n,62323)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification.md",62323],"18c9c2ba":[()=>n.e(8585).then(n.bind(n,89326)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Explanation Dashboard.md",89326],"1a215693":[()=>n.e(1535).then(n.bind(n,85042)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Regression/Quickstart - Data Cleaning.md",85042],"1a3608a9":[()=>n.e(4484).then(n.bind(n,75661)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Vowpal Wabbit/Multi-class classification.md",75661],"1a4e3797":[()=>Promise.all([n.e(532),n.e(7920)]).then(n.bind(n,39172)),"@theme/SearchPage",39172],"1abf1e18":[()=>n.e(5343).then(n.bind(n,57819)),"@site/blog/2019-08-24-Welcome to Azure Cognitive Services.md",57819],"1ad91055":[()=>n.e(4193).then(n.bind(n,81719)),"@site/versioned_docs/version-1.0.1/Overview.md",81719],"1b3ab3b8":[()=>Promise.all([n.e(532),n.e(3431)]).then(n.bind(n,53630)),"@site/docs/Quick Examples/transformers/transformers_cognitive.md",53630],"1b7af47d":[()=>n.e(4273).then(n.bind(n,51611)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Create Audiobooks.md",51611],"1be78505":[()=>Promise.all([n.e(532),n.e(9514)]).then(n.bind(n,19963)),"@theme/DocPage",19963],"1d820955":[()=>n.e(1913).then(n.bind(n,58442)),"@site/docs/Explore Algorithms/LightGBM/Overview.md",58442],"1db1f785":[()=>n.e(950).then(n.bind(n,96420)),"@site/docs/Reference/Developer Setup.md",96420],"1dc2f362":[()=>n.e(9864).then(n.bind(n,69454)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Regression/Quickstart - Data Cleaning.md",69454],"1e0d2d3b":[()=>n.e(4503).then(n.bind(n,34824)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier.md",34824],"1e14124f":[()=>n.e(6350).then(n.bind(n,35821)),"@site/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data.md",35821],"1e57c92a":[()=>n.e(6958).then(n.bind(n,87204)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key.md",87204],"1f31a275":[()=>n.e(4353).then(n.bind(n,53512)),"@site/versioned_docs/version-1.0.2/Use with MLFlow/Install.md",53512],20641120:[()=>n.e(787).then(n.bind(n,65432)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML.md",65432],"20e0fe38":[()=>n.e(1102).then(n.bind(n,76411)),"@site/versioned_docs/version-0.11.4/Use with MLFlow/Autologging.md",76411],"2137a7cd":[()=>n.e(1391).then(n.bind(n,13295)),"@site/docs/Explore Algorithms/Responsible AI/Interpreting Model Predictions.md",13295],"22444eb9":[()=>n.e(335).then(n.bind(n,16807)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Vowpal Wabbit/Contextual Bandits.md",16807],"22f921cc":[()=>n.e(5517).then(n.bind(n,18751)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects.md",18751],"232d09b0":[()=>n.e(9314).then(n.bind(n,73850)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/Getting Started.md",73850],"2406587d":[()=>n.e(9119).then(n.bind(n,44519)),"@site/docs/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis.md",44519],"255635fc":[()=>n.e(1172).then(n.bind(n,90421)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection.md",90421],"25fb872c":[()=>n.e(8602).then(n.bind(n,502)),"@site/versioned_docs/version-1.0.2/Use with MLFlow/Autologging.md",502],"268b7b40":[()=>n.e(7234).then(n.bind(n,84922)),"@site/versioned_docs/version-1.0.2/Get Started/Quickstart - Your First Models.md",84922],"283b8f99":[()=>n.e(5521).then(n.bind(n,51404)),"@site/docs/Get Started/Quickstart - Your First Models.md",51404],"295a8e78":[()=>n.e(6021).then(n.bind(n,67319)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format.md",67319],"296054a7":[()=>n.e(6945).then(n.bind(n,87853)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Flooding Risk.md",87853],"2b30bc14":[()=>n.e(9603).then(n.bind(n,12876)),"@site/blog/2019-08-24-Welcome to Azure Cognitive Services.md?truncated=true",12876],"2bcda99e":[()=>n.e(3941).then(n.bind(n,41368)),"@site/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data.md",41368],"2c98ca3e":[()=>n.e(2106).then(n.bind(n,6036)),"@site/docs/Deploy Models/Quickstart - Deploying a Classifier.md",6036],"2d527871":[()=>n.e(8749).then(n.bind(n,90527)),"@site/docs/Explore Algorithms/Vowpal Wabbit/Multi-class classification.md",90527],"2d5b0e6a":[()=>n.e(8957).then(n.bind(n,33468)),"@site/blog/2018-04-01-Flexible and Scalable Deep Learning with MMLSpark.md?truncated=true",33468],"2e5f4263":[()=>n.e(2447).then(n.bind(n,18126)),"@site/docs/Explore Algorithms/Regression/Quickstart - Data Cleaning.md",18126],"2ece0fbe":[()=>n.e(1561).then(n.bind(n,48438)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Classification/Quickstart - Train Classifier.md",48438],"318ccb43":[()=>n.e(3377).then(n.bind(n,52979)),"@site/docs/Explore Algorithms/AI Services/Geospatial Services.md",52979],"31bb7274":[()=>n.e(7394).then(n.bind(n,42024)),"@site/docs/Explore Algorithms/Regression/Quickstart - Train Regressor.md",42024],"31ee0fa3":[()=>n.e(2428).then(n.bind(n,28431)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Interpreting Model Predictions.md",28431],"3201258e":[()=>n.e(8526).then(n.bind(n,36362)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations.md",36362],"325e22bd":[()=>Promise.all([n.e(532),n.e(2321)]).then(n.bind(n,23819)),"@site/versioned_docs/version-0.11.3/Quick Examples/estimators/estimators_cognitive.md",23819],"327be84b":[()=>n.e(8399).then(n.bind(n,17630)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data.md",17630],"32fe2e34":[()=>n.e(226).then(n.bind(n,28506)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/OpenAI/OpenAI.md",28506],"336404dc":[()=>n.e(3488).then(n.bind(n,49923)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Causal Inference/Overview.md",49923],"33b3776b":[()=>n.e(5254).then(n.bind(n,35734)),"@site/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors.md",35734],"345903d4":[()=>n.e(2433).then(n.bind(n,31889)),"@site/versioned_docs/version-1.0.1/Reference/Docker Setup.md",31889],"34f00221":[()=>Promise.all([n.e(532),n.e(7853),n.e(6454)]).then(n.bind(n,63785)),"@site/src/pages/videos.js",63785],"34ff21b6":[()=>Promise.all([n.e(532),n.e(9362)]).then(n.bind(n,93488)),"@site/docs/Quick Examples/estimators/estimators_cognitive.md",93488],"35826f14":[()=>n.e(3894).then(n.bind(n,88680)),"@site/versioned_docs/version-1.0.1/Use with MLFlow/Install.md",88680],"35bdc661":[()=>n.e(7813).then(n.bind(n,58782)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Hyperparameter Tuning/HyperOpt.md",58782],"3647ac9b":[()=>n.e(2982).then(n.bind(n,66377)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/PDP and ICE Explainers.md",66377],"37ab9beb":[()=>n.e(4992).then(n.bind(n,1050)),"@site/versioned_docs/version-0.11.3/Deploy Models/Quickstart - Deploying a Classifier.md",1050],"38d6824e":[()=>n.e(5990).then(n.bind(n,85202)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis.md",85202],"39122aab":[()=>n.e(7689).then(n.bind(n,37155)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier.md",37155],"391cb159":[()=>n.e(1867).then(n.bind(n,55482)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/LightGBM/Overview.md",55482],"39582d99":[()=>Promise.all([n.e(532),n.e(7697)]).then(n.bind(n,72711)),"@site/versioned_docs/version-1.0.2/Quick Examples/transformers/transformers_opencv.md",72711],"3a1147b5":[()=>n.e(2668).then(n.bind(n,92857)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Tabular Explainers.md",92857],"3a4f9d93":[()=>n.e(5487).then(n.bind(n,90849)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/Getting Started.md",90849],"3ac37a06":[()=>Promise.all([n.e(532),n.e(1103)]).then(n.bind(n,98105)),"@site/versioned_docs/version-0.11.4/Quick Examples/transformers/transformers_deep_learning.md",98105],"3b5de274":[()=>n.e(1977).then(n.bind(n,69625)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/ONNX.md",69625],"3bed3e2f":[()=>n.e(8846).then(n.bind(n,38189)),"@site/docs/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML.md",38189],"3c1f4383":[()=>n.e(6551).then(n.bind(n,52839)),"@site/versioned_docs/version-0.11.4/Use with MLFlow/Install.md",52839],"3cbfbf75":[()=>n.e(1773).then(n.bind(n,97312)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Regression/Quickstart - Train Regressor.md",97312],"3e1e84da":[()=>n.e(4397).then(n.bind(n,69813)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/OpenAI/OpenAI.md",69813],"3e9a7422":[()=>Promise.all([n.e(532),n.e(3393)]).then(n.bind(n,73297)),"@site/versioned_docs/version-1.0.2/Quick Examples/estimators/estimators_vw.md",73297],"3fb29942":[()=>n.e(9559).then(n.t.bind(n,24469,19)),"/home/vsts/work/1/s/website/.docusaurus/docusaurus-plugin-content-blog/default/plugin-route-context-module-100.json",24469],"403e642d":[()=>n.e(55).then(n.bind(n,5312)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Vowpal Wabbit/Multi-class classification.md",5312],"40b49758":[()=>n.e(7069).then(n.bind(n,33548)),"@site/docs/Explore Algorithms/Hyperparameter Tuning/HyperOpt.md",33548],"4130db01":[()=>n.e(6184).then(n.bind(n,40606)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection.md",40606],"41ee0cff":[()=>n.e(5702).then(n.bind(n,5380)),"@site/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format.md",5380],"41f327fc":[()=>n.e(8966).then(n.bind(n,81631)),"@site/docs/Explore Algorithms/Classification/Quickstart - Train Classifier.md",81631],"423540f2":[()=>n.e(2852).then(n.bind(n,80918)),"@site/versioned_docs/version-1.0.1/Get Started/Create a Spark Cluster.md",80918],"42736d5f":[()=>n.e(2947).then(n.bind(n,25348)),"@site/docs/Explore Algorithms/Deep Learning/Getting Started.md",25348],"445012ce":[()=>n.e(3871).then(n.bind(n,56324)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Vowpal Wabbit/Overview.md",56324],"445a1b28":[()=>Promise.all([n.e(532),n.e(8373)]).then(n.bind(n,73225)),"@site/versioned_docs/version-1.0.1/Quick Examples/estimators/estimators_lightgbm.md",73225],"44ff0d07":[()=>n.e(5437).then(n.bind(n,62634)),"@site/docs/Reference/R Setup.md",62634],"47bbce76":[()=>n.e(464).then(n.bind(n,14008)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes.md",14008],"48329b94":[()=>Promise.all([n.e(532),n.e(3979)]).then(n.bind(n,59100)),"@site/versioned_docs/version-0.11.3/Quick Examples/transformers/transformers_deep_learning.md",59100],"48cf7354":[()=>n.e(2994).then(n.bind(n,82516)),"@site/docs/Explore Algorithms/Responsible AI/Tabular Explainers.md",82516],"494501bd":[()=>Promise.all([n.e(532),n.e(3426)]).then(n.bind(n,41878)),"@site/versioned_docs/version-1.0.1/Quick Examples/estimators/estimators_core.md",41878],"4997ef4f":[()=>n.e(4772).then(n.bind(n,77565)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Interpreting Model Predictions.md",77565],"49e6864b":[()=>n.e(2707).then(n.bind(n,52565)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Image Explainers.md",52565],"4bbbdfcf":[()=>n.e(6413).then(n.bind(n,87267)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Multivariate Anomaly Detection.md",87267],"4bea8531":[()=>n.e(2840).then(n.bind(n,49218)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Create Audiobooks.md",49218],"4cee39d7":[()=>n.e(4756).then(n.bind(n,74001)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search.md",74001],"4d31bfb3":[()=>n.e(8092).then(n.bind(n,66388)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Regression/Quickstart - Data Cleaning.md",66388],"4db82253":[()=>n.e(7381).then(n.bind(n,45355)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Hyperparameter Tuning/HyperOpt.md",45355],"4de42975":[()=>n.e(1570).then(n.bind(n,68762)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures.md",68762],"4e044b4e":[()=>Promise.all([n.e(532),n.e(5847)]).then(n.bind(n,40114)),"@site/versioned_docs/version-0.11.3/Quick Examples/estimators/estimators_lightgbm.md",40114],"4e105cba":[()=>n.e(9596).then(n.bind(n,49164)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Multivariate Anomaly Detection.md",49164],"4e3910af":[()=>n.e(3544).then(n.bind(n,3030)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Other Algorithms/Cyber ML.md",3030],"4e432063":[()=>n.e(7988).then(n.t.bind(n,43260,19)),"~docs/default/version-0-11-4-metadata-prop-456.json",43260],"4ef2f7cf":[()=>n.e(2675).then(n.bind(n,82055)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis.md",82055],"4f1ca6a9":[()=>n.e(9540).then(n.bind(n,69671)),"@site/versioned_docs/version-1.0.1/Use with MLFlow/Overview.md",69671],"5066efb2":[()=>n.e(8003).then(n.bind(n,96933)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/PDP and ICE Explainers.md",96933],"50af03e4":[()=>n.e(6204).then(n.bind(n,79410)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Text Explainers.md",79410],"513002de":[()=>n.e(1802).then(n.bind(n,76933)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data.md",76933],"514f485e":[()=>n.e(8828).then(n.bind(n,53701)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Create Audiobooks.md",53701],"51dbb02f":[()=>n.e(6975).then(n.bind(n,11091)),"@site/docs/Explore Algorithms/Responsible AI/Explanation Dashboard.md",11091],"521f9727":[()=>Promise.all([n.e(532),n.e(1333)]).then(n.bind(n,66202)),"@site/docs/Quick Examples/estimators/estimators_causal.md",66202],"5225b7e0":[()=>n.e(3249).then(n.bind(n,25101)),"@site/docs/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression.md",25101],"52880d18":[()=>n.e(2750).then(n.bind(n,98124)),"@site/docs/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding.md",98124],"53a5cb1e":[()=>n.e(4548).then(n.bind(n,51847)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Regression/Quickstart - Train Regressor.md",51847],"54287b47":[()=>n.e(5328).then(n.bind(n,81589)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/PDP and ICE Explainers.md",81589],"548964ce":[()=>Promise.all([n.e(532),n.e(9465)]).then(n.bind(n,25947)),"@site/versioned_docs/version-0.11.3/Quick Examples/transformers/transformers_vw.md",25947],55203621:[()=>n.e(3554).then(n.bind(n,40218)),"@site/versioned_docs/version-1.0.2/Use with MLFlow/Overview.md",40218],"561bd03d":[()=>n.e(2185).then(n.bind(n,97308)),"@site/blog/2020-12-01-Large-Scale Intelligent Microservices.md",97308],"567cd2fd":[()=>n.e(7201).then(n.bind(n,4423)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Image Explainers.md",4423],"56d039a1":[()=>Promise.all([n.e(532),n.e(5729)]).then(n.bind(n,48482)),"@site/versioned_docs/version-1.0.2/Quick Examples/estimators/estimators_cognitive.md",48482],"57e687e8":[()=>n.e(9159).then(n.bind(n,95823)),"@site/versioned_docs/version-0.11.3/Reference/Docker Setup.md",95823],"57ef17c5":[()=>n.e(5602).then(n.bind(n,82569)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Analyze Text.md",82569],"5887dc62":[()=>Promise.all([n.e(532),n.e(7969)]).then(n.bind(n,89912)),"@site/versioned_docs/version-1.0.1/Reference/Dotnet Setup.md",89912],"589adaf2":[()=>Promise.all([n.e(532),n.e(6572)]).then(n.bind(n,41965)),"@site/versioned_docs/version-0.11.4/Quick Examples/estimators/estimators_causal.md",41965],"58b8f176":[()=>n.e(9374).then(n.bind(n,58838)),"@site/docs/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences.md",58838],"5962ef6e":[()=>Promise.all([n.e(532),n.e(2630)]).then(n.bind(n,27505)),"@site/versioned_docs/version-0.11.3/Quick Examples/estimators/estimators_core.md",27505],"59ef8022":[()=>n.e(8491).then(n.bind(n,23796)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Data Balance Analysis.md",23796],"5b779334":[()=>n.e(6833).then(n.bind(n,88864)),"@site/docs/Reference/Quickstart - LightGBM in Dotnet.md",88864],"5c18deb5":[()=>n.e(3358).then(n.bind(n,24964)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Geospatial Services.md",24964],"5cfa133c":[()=>n.e(2079).then(n.bind(n,80697)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference.md",80697],"5e7c3303":[()=>n.e(8781).then(n.bind(n,72613)),"@site/docs/Explore Algorithms/Deep Learning/Distributed Training.md",72613],"5e9f5e1a":[()=>Promise.resolve().then(n.bind(n,36809)),"@generated/docusaurus.config",36809],"5eddefdd":[()=>n.e(13).then(n.bind(n,61820)),"@site/docs/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference.md",61820],"5ef28062":[()=>n.e(6746).then(n.bind(n,30356)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Multivariate Anomaly Detection.md",30356],"5f17911b":[()=>n.e(2599).then(n.bind(n,93084)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding.md",93084],"603706f6":[()=>Promise.all([n.e(532),n.e(5149)]).then(n.bind(n,43006)),"@site/versioned_docs/version-0.11.3/Reference/Dotnet Setup.md",43006],"60a2189a":[()=>n.e(3953).then(n.bind(n,82469)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Data Balance Analysis.md",82469],"610d430a":[()=>n.e(659).then(n.bind(n,33728)),"@site/docs/Explore Algorithms/Vowpal Wabbit/Overview.md",33728],"627aefca":[()=>n.e(301).then(n.t.bind(n,15745,19)),"/home/vsts/work/1/s/website/.docusaurus/docusaurus-plugin-content-pages/default/plugin-route-context-module-100.json",15745],"62983deb":[()=>n.e(6843).then(n.bind(n,19518)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/OpenAI/Langchain.md",19518],"645abc7d":[()=>n.e(1836).then(n.bind(n,32321)),"@site/docs/Reference/Docker Setup.md",32321],"66fcb786":[()=>n.e(7597).then(n.bind(n,69554)),"@site/docs/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM.md",69554],"67e06a8b":[()=>n.e(6704).then(n.bind(n,11969)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier.md",11969],"69bb4b11":[()=>Promise.all([n.e(532),n.e(288)]).then(n.bind(n,14233)),"@site/docs/Quick Examples/transformers/transformers_opencv.md",14233],"69dc6d0a":[()=>n.e(9161).then(n.bind(n,94325)),"@site/docs/Explore Algorithms/Responsible AI/Data Balance Analysis.md",94325],"6a07b55e":[()=>n.e(406).then(n.bind(n,44243)),"@site/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier.md",44243],"6a26e359":[()=>n.e(3195).then(n.bind(n,35071)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding.md",35071],"6a95f87e":[()=>n.e(3796).then(n.t.bind(n,56800,19)),"~blog/default/synapse-ml-blog-963.json",56800],"6a9ad78d":[()=>Promise.all([n.e(532),n.e(1317)]).then(n.bind(n,5599)),"@site/versioned_docs/version-1.0.1/Quick Examples/estimators/estimators_causal.md",5599],"6b40ec54":[()=>n.e(2712).then(n.bind(n,36338)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search.md",36338],"6b9bdd6f":[()=>n.e(1105).then(n.bind(n,60038)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Geospatial Services.md",60038],"6bdbf6b8":[()=>n.e(8583).then(n.bind(n,351)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/LightGBM/Overview.md",351],"6c4c8509":[()=>n.e(2522).then(n.bind(n,25434)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis.md",25434],"6c61f93b":[()=>Promise.all([n.e(532),n.e(3202)]).then(n.bind(n,78968)),"@site/versioned_docs/version-1.0.2/Quick Examples/estimators/estimators_causal.md",78968],"6c7ccb6d":[()=>n.e(2398).then(n.bind(n,18527)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search.md",18527],"6c7d288d":[()=>n.e(6224).then(n.bind(n,70515)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs.md",70515],"6e159789":[()=>n.e(3611).then(n.bind(n,6930)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Multivariate Anomaly Detection.md",6930],"6e71bda3":[()=>n.e(8955).then(n.bind(n,63355)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/ONNX.md",63355],"6eddee4c":[()=>n.e(7295).then(n.bind(n,82586)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Interpreting Model Predictions.md",82586],"6f479459":[()=>n.e(4963).then(n.bind(n,33261)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Image Explainers.md",33261],"6f8cd013":[()=>n.e(8078).then(n.bind(n,73529)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms.md",73529],"6ff7775f":[()=>n.e(9461).then(n.bind(n,48404)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference.md",48404],"707d2a35":[()=>n.e(6633).then(n.bind(n,38429)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine.md",38429],"70b306ba":[()=>n.e(8377).then(n.bind(n,61519)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/ONNX.md",61519],"70fe7dd7":[()=>n.e(4178).then(n.bind(n,77849)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Overview.md",77849],71042800:[()=>n.e(9484).then(n.bind(n,30382)),"@site/versioned_docs/version-0.11.3/Reference/Quickstart - LightGBM in Dotnet.md",30382],"73c2022c":[()=>n.e(847).then(n.bind(n,32422)),"@site/docs/Get Started/Install SynapseML.md",32422],"73cf52e8":[()=>n.e(4026).then(n.bind(n,88585)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression.md",88585],"74091a62":[()=>n.e(3196).then(n.bind(n,89086)),"@site/versioned_docs/version-1.0.2/Reference/R Setup.md",89086],"74659d33":[()=>n.e(6167).then(n.bind(n,82605)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine.md",82605],75406112:[()=>n.e(3060).then(n.bind(n,73375)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM.md",73375],"7649ec47":[()=>n.e(5370).then(n.bind(n,34329)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms.md",34329],"767a7177":[()=>n.e(5040).then(n.bind(n,49352)),"@site/versioned_docs/version-0.11.4/Get Started/Set up Cognitive Services.md",49352],"76b137bf":[()=>n.e(5276).then(n.bind(n,70993)),"@site/versioned_docs/version-1.0.1/Reference/Contributor Guide.md",70993],"76d23901":[()=>n.e(6269).then(n.bind(n,46954)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier.md",46954],"77c259dd":[()=>n.e(224).then(n.bind(n,60878)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Overview.md",60878],"78aebd5d":[()=>n.e(1895).then(n.bind(n,38547)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format.md",38547],"79114dfe":[()=>n.e(1944).then(n.bind(n,92175)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Tabular Explainers.md",92175],"792eae7e":[()=>Promise.all([n.e(532),n.e(4275)]).then(n.bind(n,48117)),"@site/docs/Quick Examples/estimators/estimators_lightgbm.md",48117],"7a1d9beb":[()=>n.e(5088).then(n.bind(n,17021)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Explanation Dashboard.md",17021],"7aa7b8e0":[()=>Promise.all([n.e(532),n.e(344)]).then(n.bind(n,31036)),"@site/versioned_docs/version-0.11.4/Reference/Dotnet Setup.md",31036],"7b60d8e3":[()=>n.e(403).then(n.bind(n,47989)),"@site/versioned_docs/version-1.0.2/Reference/Contributor Guide.md",47989],"7bf16cc6":[()=>n.e(6248).then(n.bind(n,75144)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Text.md",75144],"7c007ec6":[()=>n.e(9283).then(n.bind(n,65302)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs.md",65302],"7c2e1100":[()=>n.e(8861).then(n.bind(n,32961)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/OpenAI/Langchain.md",32961],"80472ecc":[()=>n.e(1078).then(n.bind(n,43253)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Data Balance Analysis.md",43253],"814f3328":[()=>n.e(2535).then(n.t.bind(n,45641,19)),"~blog/default/blog-post-list-prop-default.json",45641],"8181e18a":[()=>n.e(9226).then(n.bind(n,15489)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/Getting Started.md",15489],"82878c84":[()=>n.e(4916).then(n.bind(n,81962)),"@site/versioned_docs/version-0.11.3/Get Started/Create a Spark Cluster.md",81962],"8328d740":[()=>n.e(1921).then(n.bind(n,18567)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/Tabular Explainers.md",18567],"83586bff":[()=>n.e(7001).then(n.bind(n,22760)),"@site/docs/Explore Algorithms/OpenCV/Image Transformations.md",22760],"8462374b":[()=>Promise.all([n.e(532),n.e(6808)]).then(n.bind(n,14707)),"@site/versioned_docs/version-1.0.2/Quick Examples/estimators/estimators_core.md",14707],"8590feaa":[()=>Promise.all([n.e(532),n.e(1871)]).then(n.bind(n,53505)),"@site/docs/Quick Examples/transformers/transformers_vw.md",53505],"85aed2f9":[()=>n.e(1747).then(n.bind(n,31029)),"@site/versioned_docs/version-0.11.4/Reference/R Setup.md",31029],"866b91a1":[()=>n.e(3781).then(n.bind(n,23442)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Text Explainers.md",23442],"86ed1ff2":[()=>n.e(3090).then(n.bind(n,9814)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data.md",9814],"88b63415":[()=>n.e(360).then(n.bind(n,57933)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection.md",57933],"88e44e99":[()=>Promise.all([n.e(532),n.e(8817)]).then(n.bind(n,14859)),"@site/docs/Quick Examples/estimators/estimators_vw.md",14859],"8af72580":[()=>n.e(2577).then(n.bind(n,84586)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Vowpal Wabbit/Overview.md",84586],"8cb11643":[()=>n.e(5974).then(n.bind(n,8169)),"@site/blog/2019-10-02-MMLSpark empowering AI for Good with Mark Hamilton.md?truncated=true",8169],"8e32e44d":[()=>n.e(3419).then(n.bind(n,21554)),"@site/versioned_docs/version-0.11.3/Reference/Developer Setup.md",21554],"8eb438b4":[()=>n.e(5043).then(n.bind(n,34540)),"@site/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression.md",34540],"8fd0c721":[()=>n.e(112).then(n.bind(n,99640)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Causal Inference/Overview.md",99640],"900b935c":[()=>n.e(5942).then(n.bind(n,69180)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance.md",69180],"905ce8b5":[()=>n.e(9535).then(n.bind(n,34527)),"@site/docs/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search.md",34527],90742975:[()=>n.e(6005).then(n.bind(n,41454)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Data Balance Analysis.md",41454],"90e4432b":[()=>n.e(5095).then(n.bind(n,40814)),"@site/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier.md",40814],"90f00051":[()=>n.e(3631).then(n.bind(n,2040)),"@site/versioned_docs/version-1.0.1/Get Started/Quickstart - Your First Models.md",2040],"91e9cb67":[()=>n.e(3443).then(n.bind(n,71766)),"@site/docs/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations.md",71766],"92ce4fd5":[()=>n.e(3838).then(n.bind(n,61997)),"@site/versioned_docs/version-1.0.2/Get Started/Set up Cognitive Services.md",61997],"935f2afb":[()=>n.e(53).then(n.t.bind(n,1109,19)),"~docs/default/version-current-metadata-prop-751.json",1109],"93ba15e0":[()=>n.e(7452).then(n.bind(n,29850)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",29850],"94d743d6":[()=>n.e(4579).then(n.bind(n,12815)),"@site/docs/Deploy Models/Overview.md",12815],"9530a2cf":[()=>n.e(7509).then(n.bind(n,70325)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine.md",70325],"95d9e891":[()=>n.e(3099).then(n.bind(n,6022)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML.md",6022],"965ed185":[()=>Promise.all([n.e(532),n.e(852)]).then(n.bind(n,29009)),"@site/versioned_docs/version-0.11.4/Quick Examples/estimators/estimators_cognitive.md",29009],"96cf5ff0":[()=>n.e(6135).then(n.bind(n,35761)),"@site/docs/Explore Algorithms/OpenAI/OpenAI.md",35761],"97592aac":[()=>n.e(653).then(n.bind(n,36490)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Flooding Risk.md",36490],"9783ff24":[()=>Promise.all([n.e(532),n.e(9006)]).then(n.bind(n,89448)),"@site/docs/Quick Examples/estimators/estimators_core.md",89448],"98258c5e":[()=>n.e(6559).then(n.bind(n,39475)),"@site/versioned_docs/version-1.0.2/Get Started/Install SynapseML.md",39475],"990f07de":[()=>n.e(8755).then(n.bind(n,27471)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes.md",27471],"993c5022":[()=>n.e(2815).then(n.bind(n,16087)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/LightGBM/Overview.md",16087],"995576e9":[()=>n.e(3344).then(n.bind(n,61433)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations.md",61433],"99e5ffa1":[()=>n.e(4504).then(n.bind(n,22327)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/Getting Started.md",22327],"99f8fee5":[()=>n.e(7287).then(n.bind(n,1288)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Regression/Quickstart - Data Cleaning.md",1288],"9b020c4a":[()=>n.e(2752).then(n.bind(n,69975)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Vowpal Wabbit/Contextual Bandits.md",69975],"9c279ae7":[()=>n.e(196).then(n.bind(n,91257)),"@site/docs/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection.md",91257],"9c5088a2":[()=>n.e(7925).then(n.bind(n,22299)),"@site/versioned_docs/version-0.11.3/Use with MLFlow/Autologging.md",22299],"9cb6fa7c":[()=>n.e(6515).then(n.bind(n,1458)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Causal Inference/Overview.md",1458],"9d095dba":[()=>Promise.all([n.e(532),n.e(7231)]).then(n.bind(n,53620)),"@site/versioned_docs/version-0.11.3/Quick Examples/transformers/transformers_core.md",53620],"9da9112f":[()=>n.e(8006).then(n.bind(n,61363)),"@site/docs/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures.md",61363],"9e4087bc":[()=>n.e(3608).then(n.bind(n,63169)),"@theme/BlogArchivePage",63169],"9e5b788f":[()=>n.e(412).then(n.bind(n,71393)),"@site/versioned_docs/version-1.0.2/Reference/Developer Setup.md",71393],"9fa7e8eb":[()=>n.e(1896).then(n.bind(n,34021)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Other Algorithms/Cyber ML.md",34021],a0434473:[()=>n.e(9328).then(n.bind(n,401)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/OpenAI/Langchain.md",401],a07d09c1:[()=>n.e(7572).then(n.bind(n,82679)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification.md",82679],a0d8a1a2:[()=>n.e(1778).then(n.bind(n,83269)),"@site/versioned_docs/version-1.0.2/Get Started/Create a Spark Cluster.md",83269],a19ce767:[()=>n.e(9463).then(n.bind(n,32152)),"@site/docs/Get Started/Create a Spark Cluster.md",32152],a2b5e5df:[()=>n.e(9220).then(n.bind(n,96797)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/OpenCV/Image Transformations.md",96797],a34b09d4:[()=>n.e(5768).then(n.bind(n,25401)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine.md",25401],a34c49d0:[()=>n.e(2007).then(n.bind(n,96633)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification.md",96633],a3fd5a6d:[()=>Promise.all([n.e(532),n.e(2730)]).then(n.bind(n,73778)),"@site/versioned_docs/version-1.0.1/Quick Examples/transformers/transformers_opencv.md",73778],a406e231:[()=>n.e(7486).then(n.bind(n,30640)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Flooding Risk.md",30640],a608660b:[()=>n.e(5913).then(n.bind(n,90970)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression.md",90970],a6191053:[()=>n.e(927).then(n.bind(n,94736)),"@site/docs/Use with MLFlow/Overview.md",94736],a6aa9e1f:[()=>Promise.all([n.e(532),n.e(4572),n.e(6048),n.e(3089)]).then(n.bind(n,93269)),"@theme/BlogListPage",93269],a81cf8b0:[()=>n.e(40).then(n.bind(n,18943)),"@site/docs/Explore Algorithms/Vowpal Wabbit/Contextual Bandits.md",18943],a8456d9f:[()=>n.e(3572).then(n.bind(n,61158)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression.md",61158],a877f9e5:[()=>Promise.all([n.e(532),n.e(2141)]).then(n.bind(n,69956)),"@site/versioned_docs/version-0.11.3/Quick Examples/estimators/estimators_vw.md",69956],a9330763:[()=>n.e(5511).then(n.bind(n,36077)),"@site/versioned_docs/version-0.11.4/Deploy Models/Overview.md",36077],aa5548ab:[()=>n.e(2341).then(n.bind(n,73108)),"@site/versioned_docs/version-1.0.1/Deploy Models/Overview.md",73108],ab9a8589:[()=>n.e(707).then(n.bind(n,61167)),"@site/blog/2019-06-01-MMLSpark Unifying Machine Learning Ecosystems at Massive Scales.md?truncated=true",61167],aba932dd:[()=>n.e(6698).then(n.bind(n,17798)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data.md",17798],ac581902:[()=>n.e(978).then(n.bind(n,25386)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data.md",25386],ad10988d:[()=>Promise.all([n.e(532),n.e(1854)]).then(n.bind(n,36305)),"@site/versioned_docs/version-0.11.3/Quick Examples/transformers/transformers_opencv.md",36305],ad139e3c:[()=>n.e(7538).then(n.bind(n,25612)),"@site/versioned_docs/version-0.11.4/Deploy Models/Quickstart - Deploying a Classifier.md",25612],ae89cd3b:[()=>n.e(9139).then(n.bind(n,46405)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests.md",46405],af1e70b6:[()=>n.e(3602).then(n.bind(n,49816)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Regression/Quickstart - Train Regressor.md",49816],b066233f:[()=>n.e(8696).then(n.bind(n,37753)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Flooding Risk.md",37753],b0e28723:[()=>n.e(6285).then(n.bind(n,10431)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM.md",10431],b1706689:[()=>n.e(7655).then(n.bind(n,5358)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key.md",5358],b2be3901:[()=>n.e(9775).then(n.bind(n,83907)),"@site/docs/Get Started/Set up Cognitive Services.md",83907],b328a361:[()=>n.e(7782).then(n.bind(n,92522)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection.md",92522],b33598ac:[()=>n.e(2059).then(n.bind(n,13052)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Responsible AI/Image Explainers.md",13052],b38eec89:[()=>Promise.all([n.e(532),n.e(7684)]).then(n.bind(n,97256)),"@site/versioned_docs/version-1.0.1/Quick Examples/transformers/transformers_deep_learning.md",97256],b41f295c:[()=>n.e(3814).then(n.bind(n,17551)),"@site/versioned_docs/version-0.11.3/Reference/Contributor Guide.md",17551],b4898d44:[()=>n.e(6613).then(n.bind(n,30178)),"@site/versioned_docs/version-1.0.2/Overview.md",30178],b4a95996:[()=>n.e(1478).then(n.bind(n,1973)),"@site/docs/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests.md",1973],b5375b6f:[()=>n.e(1428).then(n.bind(n,7902)),"@site/docs/Explore Algorithms/Responsible AI/PDP and ICE Explainers.md",7902],b576c645:[()=>n.e(322).then(n.bind(n,39461)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Tabular Explainers.md",39461],b66e2100:[()=>n.e(1719).then(n.bind(n,16930)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/Distributed Training.md",16930],b72abe57:[()=>n.e(2195).then(n.bind(n,83847)),"@site/blog/2020-12-01-Large-Scale Intelligent Microservices.md?truncated=true",83847],b75118f0:[()=>n.e(1442).then(n.bind(n,40674)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations.md",40674],b7787e72:[()=>n.e(5253).then(n.bind(n,23339)),"@site/versioned_docs/version-1.0.1/Reference/R Setup.md",23339],b7802ae1:[()=>n.e(8859).then(n.bind(n,49665)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data.md",49665],b7c6295c:[()=>n.e(4233).then(n.bind(n,71955)),"@site/versioned_docs/version-1.0.1/Reference/Developer Setup.md",71955],b80b493a:[()=>n.e(6856).then(n.bind(n,92934)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Create Audiobooks.md",92934],b83021be:[()=>n.e(587).then(n.bind(n,6283)),"@site/docs/Explore Algorithms/Causal Inference/Overview.md",6283],b8963dc0:[()=>n.e(5287).then(n.bind(n,65710)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects.md",65710],b940e0b5:[()=>n.e(8738).then(n.bind(n,7662)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression.md",7662],b962e007:[()=>n.e(4594).then(n.bind(n,46495)),"@site/blog/2019-10-02-MMLSpark empowering AI for Good with Mark Hamilton.md",46495],b9f125cc:[()=>n.e(9806).then(n.bind(n,43252)),"@site/versioned_docs/version-0.11.4/Overview.md",43252],ba9c0924:[()=>n.e(7218).then(n.bind(n,66174)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier.md",66174],bb7a48da:[()=>Promise.all([n.e(532),n.e(9242)]).then(n.bind(n,52528)),"@site/docs/Quick Examples/transformers/transformers_core.md",52528],bc4bf151:[()=>n.e(8197).then(n.bind(n,7297)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference.md",7297],bc6a9944:[()=>n.e(8462).then(n.bind(n,38334)),"@site/docs/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection.md",38334],bd1bcb2c:[()=>n.e(5584).then(n.bind(n,66193)),"@site/docs/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification.md",66193],be95fd8f:[()=>n.e(7887).then(n.bind(n,8801)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML.md",8801],bece3771:[()=>n.e(5538).then(n.bind(n,57450)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data.md",57450],bef0d2d3:[()=>n.e(6286).then(n.bind(n,3766)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Other Algorithms/Cyber ML.md",3766],bf002efe:[()=>n.e(3017).then(n.bind(n,1347)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection.md",1347],c0391845:[()=>n.e(3234).then(n.bind(n,36422)),"@site/docs/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs.md",36422],c065fcb9:[()=>n.e(4800).then(n.bind(n,66225)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis.md",66225],c14fdd92:[()=>n.e(9042).then(n.bind(n,72368)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression.md",72368],c23b5e26:[()=>n.e(5658).then(n.bind(n,75410)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes.md",75410],c2492d56:[()=>n.e(4202).then(n.bind(n,35967)),"@site/versioned_docs/version-0.11.4/Get Started/Create a Spark Cluster.md",35967],c2e40c34:[()=>n.e(5122).then(n.bind(n,99967)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression.md",99967],c2e57a1b:[()=>n.e(6685).then(n.bind(n,39133)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Text Explainers.md",39133],c34b1e36:[()=>n.e(3251).then(n.bind(n,54824)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests.md",54824],c38c658c:[()=>n.e(2565).then(n.bind(n,91960)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection.md",91960],c3b1d949:[()=>n.e(5056).then(n.bind(n,84577)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures.md",84577],c3c516ff:[()=>n.e(5752).then(n.bind(n,68928)),"@site/blog/overview.md?truncated=true",68928],c40984d1:[()=>Promise.all([n.e(532),n.e(7320)]).then(n.bind(n,64356)),"@site/versioned_docs/version-0.11.3/Quick Examples/estimators/estimators_causal.md",64356],c413b43a:[()=>n.e(9767).then(n.bind(n,91730)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms.md",91730],c4d09a44:[()=>n.e(2406).then(n.bind(n,48327)),"@site/versioned_docs/version-0.11.3/Get Started/Quickstart - Your First Models.md",48327],c4f5d8e4:[()=>Promise.all([n.e(532),n.e(7780),n.e(4195)]).then(n.bind(n,35567)),"@site/src/pages/index.js",35567],c5775233:[()=>n.e(7454).then(n.bind(n,21794)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/OpenAI/OpenAI.md",21794],c5c95e45:[()=>n.e(4422).then(n.bind(n,73290)),"@site/docs/Explore Algorithms/Responsible AI/Image Explainers.md",73290],c73cfc52:[()=>n.e(8825).then(n.bind(n,75084)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/OpenCV/Image Transformations.md",75084],c90c942b:[()=>Promise.all([n.e(532),n.e(1824)]).then(n.bind(n,21475)),"@site/versioned_docs/version-0.11.4/Quick Examples/estimators/estimators_core.md",21475],c95882d3:[()=>n.e(1153).then(n.bind(n,19210)),"@site/docs/Use with MLFlow/Autologging.md",19210],c991f47b:[()=>n.e(8549).then(n.bind(n,6034)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Regression/Quickstart - Train Regressor.md",6034],ca0a1bad:[()=>n.e(5305).then(n.bind(n,22468)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance.md",22468],cb5f1a06:[()=>n.e(4528).then(n.bind(n,15346)),"@site/blog/overview.md",15346],cb7c2a83:[()=>n.e(1933).then(n.bind(n,24630)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Text.md",24630],cbc3190d:[()=>n.e(5488).then(n.bind(n,85418)),"@site/docs/Overview.md",85418],ccc49370:[()=>Promise.all([n.e(532),n.e(4572),n.e(6048),n.e(6103)]).then(n.bind(n,65203)),"@theme/BlogPostPage",65203],cd8e97a5:[()=>n.e(4929).then(n.t.bind(n,53485,19)),"~docs/default/version-1-0-1-metadata-prop-e87.json",53485],ceeda143:[()=>n.e(8443).then(n.bind(n,31146)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors.md",31146],cf57716c:[()=>n.e(5e3).then(n.bind(n,74832)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key.md",74832],cff2e56e:[()=>n.e(6373).then(n.bind(n,65611)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search.md",65611],d0c5e4fa:[()=>Promise.all([n.e(532),n.e(5717)]).then(n.bind(n,77718)),"@site/versioned_docs/version-1.0.2/Quick Examples/transformers/transformers_deep_learning.md",77718],d0cb74df:[()=>n.e(4597).then(n.bind(n,82689)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms.md",82689],d1246f49:[()=>Promise.all([n.e(532),n.e(9966)]).then(n.bind(n,16082)),"@site/versioned_docs/version-0.11.4/Quick Examples/estimators/estimators_lightgbm.md",16082],d13e532e:[()=>n.e(8146).then(n.bind(n,90398)),"@site/docs/Explore Algorithms/Responsible AI/Text Explainers.md",90398],d175df5e:[()=>n.e(2805).then(n.t.bind(n,7812,19)),"~blog/default/synapse-ml-blog-archive-c02.json",7812],d252041b:[()=>n.e(6300).then(n.bind(n,29685)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/Distributed Training.md",29685],d25cde70:[()=>n.e(4575).then(n.bind(n,96397)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/AI Services/Quickstart - Flooding Risk.md",96397],d3093636:[()=>n.e(7491).then(n.bind(n,94648)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures.md",94648],d355047f:[()=>n.e(4713).then(n.bind(n,77696)),"@site/versioned_docs/version-0.11.4/Use with MLFlow/Overview.md",77696],d39aa6d3:[()=>n.e(7930).then(n.bind(n,91123)),"@site/versioned_docs/version-0.11.3/Use with MLFlow/Install.md",91123],d3c9b0d7:[()=>n.e(8050).then(n.bind(n,9151)),"@site/versioned_docs/version-0.11.3/Get Started/Install SynapseML.md",9151],d41234a3:[()=>n.e(4177).then(n.bind(n,2193)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format.md",2193],d535b358:[()=>n.e(8984).then(n.bind(n,62051)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Vowpal Wabbit/Contextual Bandits.md",62051],d620a661:[()=>n.e(8746).then(n.bind(n,35215)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations.md",35215],d707d2ed:[()=>n.e(3669).then(n.bind(n,35018)),"@site/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects.md",35018],d8b3ac6a:[()=>n.e(4330).then(n.bind(n,7627)),"@site/docs/Explore Algorithms/Other Algorithms/Cyber ML.md",7627],d8d6ba90:[()=>n.e(1842).then(n.t.bind(n,83769,19)),"/home/vsts/work/1/s/website/.docusaurus/docusaurus-plugin-content-docs/default/plugin-route-context-module-100.json",83769],d9837698:[()=>n.e(7168).then(n.bind(n,80927)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/LightGBM/Overview.md",80927],d989c707:[()=>n.e(804).then(n.bind(n,66657)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Overview.md",66657],d9e5e528:[()=>Promise.all([n.e(532),n.e(8057)]).then(n.bind(n,58319)),"@site/versioned_docs/version-1.0.1/Quick Examples/estimators/estimators_cognitive.md",58319],da508cef:[()=>n.e(3064).then(n.bind(n,16685)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/OpenCV/Image Transformations.md",16685],dac82c00:[()=>Promise.all([n.e(532),n.e(8559)]).then(n.bind(n,21888)),"@site/versioned_docs/version-0.11.4/Quick Examples/transformers/transformers_cognitive.md",21888],db170a23:[()=>n.e(7706).then(n.bind(n,15710)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Responsible AI/PDP and ICE Explainers.md",15710],dc1e40d7:[()=>n.e(7991).then(n.t.bind(n,5244,19)),"~docs/default/version-1-0-2-metadata-prop-290.json",5244],dd29718b:[()=>n.e(5579).then(n.bind(n,6692)),"@site/versioned_docs/version-0.11.4/Reference/Developer Setup.md",6692],dea122e2:[()=>n.e(9781).then(n.bind(n,77541)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Vowpal Wabbit/Contextual Bandits.md",77541],deef0af8:[()=>n.e(9407).then(n.bind(n,41983)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification.md",41983],df01388f:[()=>Promise.all([n.e(532),n.e(6828)]).then(n.bind(n,36579)),"@site/versioned_docs/version-0.11.4/Quick Examples/transformers/transformers_vw.md",36579],e1269457:[()=>n.e(598).then(n.bind(n,10036)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key.md",10036],e12b4691:[()=>n.e(912).then(n.bind(n,19252)),"@site/versioned_docs/version-1.0.2/Deploy Models/Overview.md",19252],e1b2b5f3:[()=>n.e(1340).then(n.bind(n,60269)),"@site/blog/2018-04-01-Flexible and Scalable Deep Learning with MMLSpark.md",60269],e1ed1e14:[()=>n.e(2880).then(n.bind(n,3721)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/OpenCV/Image Transformations.md",3721],e21a3367:[()=>n.e(2638).then(n.bind(n,8940)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Geospatial Services.md",8940],e24ee294:[()=>Promise.all([n.e(532),n.e(8040)]).then(n.bind(n,73198)),"@site/versioned_docs/version-0.11.4/Quick Examples/transformers/transformers_core.md",73198],e2689dfc:[()=>n.e(7258).then(n.bind(n,10290)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Responsible AI/Interpreting Model Predictions.md",10290],e2ce57ed:[()=>n.e(1210).then(n.bind(n,50102)),"@site/blog/2019-06-01-MMLSpark Unifying Machine Learning Ecosystems at Massive Scales.md",50102],e3089280:[()=>n.e(2283).then(n.bind(n,88617)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/OpenAI/Langchain.md",88617],e316de39:[()=>n.e(2011).then(n.bind(n,74053)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier.md",74053],e464d112:[()=>n.e(4508).then(n.bind(n,50791)),"@site/docs/Explore Algorithms/AI Services/Multivariate Anomaly Detection.md",50791],e4ba4487:[()=>n.e(1787).then(n.bind(n,43982)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Hyperparameter Tuning/HyperOpt.md",43982],e4e95844:[()=>n.e(2797).then(n.bind(n,16230)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",16230],e579bad6:[()=>n.e(4627).then(n.bind(n,18579)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression.md",18579],e5c4ef01:[()=>n.e(6673).then(n.bind(n,95705)),"@site/versioned_docs/version-0.11.4/Reference/Docker Setup.md",95705],e7250a93:[()=>n.e(5586).then(n.bind(n,41630)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects.md",41630],e7bd83ca:[()=>Promise.all([n.e(532),n.e(8168)]).then(n.bind(n,51453)),"@site/versioned_docs/version-1.0.1/Quick Examples/estimators/estimators_vw.md",51453],e887b273:[()=>n.e(4654).then(n.bind(n,65011)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects.md",65011],e8b9c2c7:[()=>n.e(4979).then(n.bind(n,28781)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance.md",28781],e8d66fc1:[()=>n.e(271).then(n.bind(n,33942)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data.md",33942],e9aab890:[()=>n.e(1732).then(n.bind(n,48613)),"@site/versioned_docs/version-0.11.4/Reference/Contributor Guide.md",48613],e9b75d67:[()=>n.e(5064).then(n.bind(n,28314)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/OpenAI/OpenAI.md",28314],ea2d2bcc:[()=>n.e(4204).then(n.bind(n,63800)),"@site/docs/Explore Algorithms/Deep Learning/ONNX.md",63800],ebf648dd:[()=>Promise.all([n.e(532),n.e(5566)]).then(n.bind(n,33154)),"@site/versioned_docs/version-1.0.1/Quick Examples/transformers/transformers_vw.md",33154],ed316aed:[()=>n.e(7870).then(n.bind(n,71351)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Hyperparameter Tuning/HyperOpt.md",71351],ed5c6c48:[()=>n.e(2787).then(n.bind(n,99421)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection.md",99421],ed6d544d:[()=>n.e(3448).then(n.bind(n,79176)),"@site/docs/Explore Algorithms/OpenAI/Langchain.md",79176],ee6cea3b:[()=>n.e(829).then(n.bind(n,56433)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/AI Services/Geospatial Services.md",56433],ee83122d:[()=>n.e(5648).then(n.bind(n,25)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier.md",25],ef6ec597:[()=>n.e(3482).then(n.bind(n,88889)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Deep Learning/Distributed Training.md",88889],ef77ef39:[()=>n.e(7392).then(n.bind(n,75405)),"@site/versioned_docs/version-1.0.2/Reference/Quickstart - LightGBM in Dotnet.md",75405],efbc69e1:[()=>n.e(9196).then(n.bind(n,87949)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Causal Inference/Overview.md",87949],efc1978d:[()=>n.e(9079).then(n.bind(n,25012)),"@site/versioned_docs/version-1.0.2/Deploy Models/Quickstart - Deploying a Classifier.md",25012],f14633e7:[()=>Promise.all([n.e(532),n.e(4207)]).then(n.bind(n,61966)),"@site/versioned_docs/version-1.0.2/Quick Examples/estimators/estimators_lightgbm.md",61966],f1b2dc7f:[()=>n.e(8634).then(n.bind(n,56309)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance.md",56309],f21c13c4:[()=>n.e(3807).then(n.bind(n,42334)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Classification/Quickstart - Train Classifier.md",42334],f322d2da:[()=>n.e(445).then(n.bind(n,34609)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs.md",34609],f38a0cbd:[()=>Promise.all([n.e(532),n.e(1829)]).then(n.bind(n,66349)),"@site/versioned_docs/version-1.0.2/Quick Examples/transformers/transformers_core.md",66349],f7580424:[()=>n.e(2158).then(n.bind(n,74640)),"@site/versioned_docs/version-1.0.1/Use with MLFlow/Autologging.md",74640],f7a32432:[()=>Promise.all([n.e(532),n.e(4954)]).then(n.bind(n,19193)),"@site/docs/Quick Examples/transformers/transformers_deep_learning.md",19193],f7bfff73:[()=>Promise.all([n.e(532),n.e(4603)]).then(n.bind(n,81363)),"@site/versioned_docs/version-0.11.4/Quick Examples/transformers/transformers_opencv.md",81363],f8597cb0:[()=>n.e(2744).then(n.bind(n,25907)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests.md",25907],f85db098:[()=>Promise.all([n.e(532),n.e(5049)]).then(n.bind(n,46420)),"@site/docs/Reference/Dotnet Setup.md",46420],f8aab3ca:[()=>n.e(4880).then(n.bind(n,29469)),"@site/versioned_docs/version-1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors.md",29469],fa2e2688:[()=>n.e(4927).then(n.bind(n,78030)),"@site/docs/Explore Algorithms/AI Services/Overview.md",78030],fba72e87:[()=>n.e(1542).then(n.bind(n,20970)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Vowpal Wabbit/Multi-class classification.md",20970],fbb011bb:[()=>n.e(3378).then(n.bind(n,20693)),"@site/docs/Use with MLFlow/Install.md",20693],fc338b02:[()=>n.e(5378).then(n.t.bind(n,7085,19)),"/home/vsts/work/1/s/website/.docusaurus/docusaurus-theme-search-algolia/default/plugin-route-context-module-100.json",7085],fc47fc53:[()=>n.e(9601).then(n.bind(n,44088)),"@site/versioned_docs/version-1.0.1/Get Started/Install SynapseML.md",44088],fd3b6ea5:[()=>n.e(1279).then(n.bind(n,7922)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes.md",7922],fd4bd09d:[()=>n.e(1286).then(n.bind(n,70781)),"@site/versioned_docs/version-0.11.3/Explore Algorithms/Classification/Quickstart - Train Classifier.md",70781],fd748117:[()=>n.e(8809).then(n.bind(n,1359)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/AI Services/Quickstart - Analyze Text.md",1359],fe2c893b:[()=>n.e(297).then(n.bind(n,18859)),"@site/versioned_docs/version-0.11.4/Explore Algorithms/Classification/Quickstart - Train Classifier.md",18859],fece3c24:[()=>Promise.all([n.e(532),n.e(367)]).then(n.bind(n,88387)),"@site/versioned_docs/version-1.0.1/Quick Examples/transformers/transformers_core.md",88387],ff428354:[()=>n.e(3634).then(n.bind(n,92498)),"@site/versioned_docs/version-1.0.2/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors.md",92498],ffb7f88a:[()=>n.e(5433).then(n.t.bind(n,81421,19)),"~docs/default/version-0-11-3-metadata-prop-9e0.json",81421]};function c(e){let{error:t,retry:n,pastDelay:o}=e;return t?r.createElement("div",{style:{textAlign:"center",color:"#fff",backgroundColor:"#fa383e",borderColor:"#fa383e",borderStyle:"solid",borderRadius:"0.25rem",borderWidth:"1px",boxSizing:"border-box",display:"block",padding:"1rem",flex:"0 0 50%",marginLeft:"25%",marginRight:"25%",marginTop:"5rem",maxWidth:"50%",width:"100%"}},r.createElement("p",null,String(t)),r.createElement("div",null,r.createElement("button",{type:"button",onClick:n},"Retry"))):o?r.createElement("div",{style:{display:"flex",justifyContent:"center",alignItems:"center",height:"100vh"}},r.createElement("svg",{id:"loader",style:{width:128,height:110,position:"absolute",top:"calc(100vh - 64%)"},viewBox:"0 0 45 45",xmlns:"http://www.w3.org/2000/svg",stroke:"#61dafb"},r.createElement("g",{fill:"none",fillRule:"evenodd",transform:"translate(1 1)",strokeWidth:"2"},r.createElement("circle",{cx:"22",cy:"22",r:"6",strokeOpacity:"0"},r.createElement("animate",{attributeName:"r",begin:"1.5s",dur:"3s",values:"6;22",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-opacity",begin:"1.5s",dur:"3s",values:"1;0",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-width",begin:"1.5s",dur:"3s",values:"2;0",calcMode:"linear",repeatCount:"indefinite"})),r.createElement("circle",{cx:"22",cy:"22",r:"6",strokeOpacity:"0"},r.createElement("animate",{attributeName:"r",begin:"3s",dur:"3s",values:"6;22",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-opacity",begin:"3s",dur:"3s",values:"1;0",calcMode:"linear",repeatCount:"indefinite"}),r.createElement("animate",{attributeName:"stroke-width",begin:"3s",dur:"3s",values:"2;0",calcMode:"linear",repeatCount:"indefinite"})),r.createElement("circle",{cx:"22",cy:"22",r:"8"},r.createElement("animate",{attributeName:"r",begin:"0s",dur:"1.5s",values:"6;1;2;3;4;5;6",calcMode:"linear",repeatCount:"indefinite"}))))):null}var d=n(99670),p=n(30226);function u(e,t){if("*"===e)return a()({loading:c,loader:()=>Promise.all([n.e(532),n.e(3140)]).then(n.bind(n,53140)),modules:["@theme/NotFound"],webpack:()=>[53140],render(e,t){const n=e.default;return r.createElement(p.z,{value:{plugin:{name:"native",id:"default"}}},r.createElement(n,t))}});const s=i[e+"-"+t],u={},m=[],f=[],h=(0,d.Z)(s);return Object.entries(h).forEach((e=>{let[t,n]=e;const r=l[n];r&&(u[t]=r[0],m.push(r[1]),f.push(r[2]))})),a().Map({loading:c,loader:u,modules:m,webpack:()=>f,render(t,n){const a=JSON.parse(JSON.stringify(s));Object.entries(t).forEach((t=>{let[n,r]=t;const o=r.default;if(!o)throw new Error("The page component at "+e+" doesn't have a default export. This makes it impossible to render anything. Consider default-exporting a React component.");"object"!=typeof o&&"function"!=typeof o||Object.keys(r).filter((e=>"default"!==e)).forEach((e=>{o[e]=r[e]}));let s=a;const i=n.split(".");i.slice(0,-1).forEach((e=>{s=s[e]})),s[i[i.length-1]]=o}));const i=a.__comp;delete a.__comp;const l=a.__context;return delete a.__context,r.createElement(p.z,{value:l},r.createElement(i,(0,o.Z)({},a,n)))}})}const m=[{path:"/SynapseML/blog/",component:u("/SynapseML/blog/","32c"),exact:!0},{path:"/SynapseML/blog/2018/04/01/Flexible and Scalable Deep Learning with MMLSpark/",component:u("/SynapseML/blog/2018/04/01/Flexible and Scalable Deep Learning with MMLSpark/","ecd"),exact:!0},{path:"/SynapseML/blog/2019/06/01/MMLSpark Unifying Machine Learning Ecosystems at Massive Scales/",component:u("/SynapseML/blog/2019/06/01/MMLSpark Unifying Machine Learning Ecosystems at Massive Scales/","870"),exact:!0},{path:"/SynapseML/blog/2019/08/24/Welcome to Azure Cognitive Services/",component:u("/SynapseML/blog/2019/08/24/Welcome to Azure Cognitive Services/","83d"),exact:!0},{path:"/SynapseML/blog/2019/10/02/MMLSpark empowering AI for Good with Mark Hamilton/",component:u("/SynapseML/blog/2019/10/02/MMLSpark empowering AI for Good with Mark Hamilton/","347"),exact:!0},{path:"/SynapseML/blog/2020/12/01/Large-Scale Intelligent Microservices/",component:u("/SynapseML/blog/2020/12/01/Large-Scale Intelligent Microservices/","546"),exact:!0},{path:"/SynapseML/blog/archive/",component:u("/SynapseML/blog/archive/","140"),exact:!0},{path:"/SynapseML/blog/overview/",component:u("/SynapseML/blog/overview/","32f"),exact:!0},{path:"/SynapseML/search/",component:u("/SynapseML/search/","a70"),exact:!0},{path:"/SynapseML/videos/",component:u("/SynapseML/videos/","9fc"),exact:!0},{path:"/SynapseML/docs/0.11.3/",component:u("/SynapseML/docs/0.11.3/","649"),routes:[{path:"/SynapseML/docs/0.11.3/Deploy Models/Overview/",component:u("/SynapseML/docs/0.11.3/Deploy Models/Overview/","107"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Deploy Models/Quickstart - Deploying a Classifier/",component:u("/SynapseML/docs/0.11.3/Deploy Models/Quickstart - Deploying a Classifier/","7ca"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/","428"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Geospatial Services/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Geospatial Services/","20d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Multivariate Anomaly Detection/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Multivariate Anomaly Detection/","dd0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Overview/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Overview/","8b1"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/","7f9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Text/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Text/","9df"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine/","398"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/","475"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/","746"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Flooding Risk/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Flooding Risk/","00a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/","be4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/","4ed"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Overview/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Overview/","f94"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/","af8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/","c3d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/","1f2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Train Classifier/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Train Classifier/","d3c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/","b90"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/","583"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Distributed Training/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Distributed Training/","c90"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Getting Started/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Getting Started/","59d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/ONNX/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/ONNX/","4d0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/","b98"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/","52d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/","018"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/","086"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Hyperparameter Tuning/HyperOpt/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Hyperparameter Tuning/HyperOpt/","2e6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/","cd5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/LightGBM/Overview/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/LightGBM/Overview/","7d2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/","c77"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/","f47"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Langchain/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Langchain/","ffd"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/","c37"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/","3dc"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/OpenCV/Image Transformations/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/OpenCV/Image Transformations/","5b7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Cyber ML/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Cyber ML/","e89"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/","22c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/","6da"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/","4f5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Data Cleaning/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Data Cleaning/","b53"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Train Regressor/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Train Regressor/","e82"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/","eb4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Data Balance Analysis/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Data Balance Analysis/","aa0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Explanation Dashboard/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Explanation Dashboard/","547"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Image Explainers/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Image Explainers/","ca9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Interpreting Model Predictions/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Interpreting Model Predictions/","1c8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/PDP and ICE Explainers/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/PDP and ICE Explainers/","850"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/","103"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/","22a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Tabular Explainers/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Tabular Explainers/","4a3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Text Explainers/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Text Explainers/","51c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/","79d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Multi-class classification/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Multi-class classification/","dbd"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Overview/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Overview/","f6c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/","899"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/","de1"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/",component:u("/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/","6e5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Get Started/Create a Spark Cluster/",component:u("/SynapseML/docs/0.11.3/Get Started/Create a Spark Cluster/","604"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Get Started/Install SynapseML/",component:u("/SynapseML/docs/0.11.3/Get Started/Install SynapseML/","53d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Get Started/Quickstart - Your First Models/",component:u("/SynapseML/docs/0.11.3/Get Started/Quickstart - Your First Models/","bcf"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Get Started/Set up Cognitive Services/",component:u("/SynapseML/docs/0.11.3/Get Started/Set up Cognitive Services/","e8a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Overview/",component:u("/SynapseML/docs/0.11.3/Overview/","201"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_causal/",component:u("/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_causal/","f33"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_cognitive/",component:u("/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_cognitive/","d03"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_core/",component:u("/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_core/","0fc"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_lightgbm/",component:u("/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_lightgbm/","113"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_vw/",component:u("/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_vw/","bcf"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_cognitive/",component:u("/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_cognitive/","3f4"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_core/",component:u("/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_core/","abc"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_deep_learning/",component:u("/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_deep_learning/","b7d"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_opencv/",component:u("/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_opencv/","a66"),exact:!0},{path:"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_vw/",component:u("/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_vw/","b96"),exact:!0},{path:"/SynapseML/docs/0.11.3/Reference/Contributor Guide/",component:u("/SynapseML/docs/0.11.3/Reference/Contributor Guide/","06f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Reference/Developer Setup/",component:u("/SynapseML/docs/0.11.3/Reference/Developer Setup/","cfc"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Reference/Docker Setup/",component:u("/SynapseML/docs/0.11.3/Reference/Docker Setup/","419"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Reference/Dotnet Setup/",component:u("/SynapseML/docs/0.11.3/Reference/Dotnet Setup/","46d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Reference/Quickstart - LightGBM in Dotnet/",component:u("/SynapseML/docs/0.11.3/Reference/Quickstart - LightGBM in Dotnet/","9b3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Reference/R Setup/",component:u("/SynapseML/docs/0.11.3/Reference/R Setup/","1a7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Use with MLFlow/Autologging/",component:u("/SynapseML/docs/0.11.3/Use with MLFlow/Autologging/","6a1"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Use with MLFlow/Install/",component:u("/SynapseML/docs/0.11.3/Use with MLFlow/Install/","aa4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.3/Use with MLFlow/Overview/",component:u("/SynapseML/docs/0.11.3/Use with MLFlow/Overview/","a43"),exact:!0,sidebar:"docs"}]},{path:"/SynapseML/docs/0.11.4/",component:u("/SynapseML/docs/0.11.4/","72b"),routes:[{path:"/SynapseML/docs/0.11.4/Deploy Models/Overview/",component:u("/SynapseML/docs/0.11.4/Deploy Models/Overview/","1a4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Deploy Models/Quickstart - Deploying a Classifier/",component:u("/SynapseML/docs/0.11.4/Deploy Models/Quickstart - Deploying a Classifier/","ceb"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/","f98"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Geospatial Services/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Geospatial Services/","9e7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Multivariate Anomaly Detection/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Multivariate Anomaly Detection/","2c3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Overview/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Overview/","be8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/","1d4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Text/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Text/","31e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine/","8c4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/","4f9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/","d9d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Flooding Risk/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Flooding Risk/","5a7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/","e8f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/","8e2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Overview/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Overview/","78b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/","756"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/","264"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/","c8d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Train Classifier/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Train Classifier/","247"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/","c00"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/","c42"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Distributed Training/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Distributed Training/","53f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Getting Started/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Getting Started/","2d6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/ONNX/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/ONNX/","169"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/","b68"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/","9c7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/","ff8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/","016"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Hyperparameter Tuning/HyperOpt/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Hyperparameter Tuning/HyperOpt/","6a6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/","b11"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/LightGBM/Overview/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/LightGBM/Overview/","e22"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/","934"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/","fea"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Langchain/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Langchain/","cfe"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/","78f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/","163"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/OpenCV/Image Transformations/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/OpenCV/Image Transformations/","29e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Cyber ML/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Cyber ML/","747"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/","faf"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/","566"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/","491"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Data Cleaning/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Data Cleaning/","7a4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Train Regressor/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Train Regressor/","75f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/","2b0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Data Balance Analysis/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Data Balance Analysis/","f95"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Explanation Dashboard/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Explanation Dashboard/","66b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Image Explainers/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Image Explainers/","e63"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Interpreting Model Predictions/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Interpreting Model Predictions/","783"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/PDP and ICE Explainers/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/PDP and ICE Explainers/","e01"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/","3b8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/","80b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Tabular Explainers/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Tabular Explainers/","18e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Text Explainers/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Text Explainers/","128"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/","02f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Multi-class classification/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Multi-class classification/","6d4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Overview/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Overview/","b97"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/","6ca"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/","c86"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/",component:u("/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/","964"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Get Started/Create a Spark Cluster/",component:u("/SynapseML/docs/0.11.4/Get Started/Create a Spark Cluster/","cb4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Get Started/Install SynapseML/",component:u("/SynapseML/docs/0.11.4/Get Started/Install SynapseML/","34f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Get Started/Quickstart - Your First Models/",component:u("/SynapseML/docs/0.11.4/Get Started/Quickstart - Your First Models/","6fa"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Get Started/Set up Cognitive Services/",component:u("/SynapseML/docs/0.11.4/Get Started/Set up Cognitive Services/","528"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Overview/",component:u("/SynapseML/docs/0.11.4/Overview/","83a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_causal/",component:u("/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_causal/","32e"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_cognitive/",component:u("/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_cognitive/","269"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_core/",component:u("/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_core/","11e"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_lightgbm/",component:u("/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_lightgbm/","c94"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_vw/",component:u("/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_vw/","bf0"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_cognitive/",component:u("/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_cognitive/","728"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_core/",component:u("/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_core/","12e"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_deep_learning/",component:u("/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_deep_learning/","1cc"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_opencv/",component:u("/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_opencv/","8fb"),exact:!0},{path:"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_vw/",component:u("/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_vw/","828"),exact:!0},{path:"/SynapseML/docs/0.11.4/Reference/Contributor Guide/",component:u("/SynapseML/docs/0.11.4/Reference/Contributor Guide/","881"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Reference/Developer Setup/",component:u("/SynapseML/docs/0.11.4/Reference/Developer Setup/","171"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Reference/Docker Setup/",component:u("/SynapseML/docs/0.11.4/Reference/Docker Setup/","f85"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Reference/Dotnet Setup/",component:u("/SynapseML/docs/0.11.4/Reference/Dotnet Setup/","f28"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Reference/Quickstart - LightGBM in Dotnet/",component:u("/SynapseML/docs/0.11.4/Reference/Quickstart - LightGBM in Dotnet/","553"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Reference/R Setup/",component:u("/SynapseML/docs/0.11.4/Reference/R Setup/","fd3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Use with MLFlow/Autologging/",component:u("/SynapseML/docs/0.11.4/Use with MLFlow/Autologging/","3cb"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Use with MLFlow/Install/",component:u("/SynapseML/docs/0.11.4/Use with MLFlow/Install/","360"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/0.11.4/Use with MLFlow/Overview/",component:u("/SynapseML/docs/0.11.4/Use with MLFlow/Overview/","4e1"),exact:!0,sidebar:"docs"}]},{path:"/SynapseML/docs/1.0.1/",component:u("/SynapseML/docs/1.0.1/","c9e"),routes:[{path:"/SynapseML/docs/1.0.1/Deploy Models/Overview/",component:u("/SynapseML/docs/1.0.1/Deploy Models/Overview/","7aa"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Deploy Models/Quickstart - Deploying a Classifier/",component:u("/SynapseML/docs/1.0.1/Deploy Models/Quickstart - Deploying a Classifier/","c4a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/","d96"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Geospatial Services/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Geospatial Services/","a96"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Multivariate Anomaly Detection/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Multivariate Anomaly Detection/","4e5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Overview/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Overview/","a84"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/","e94"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Text/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Text/","be5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine/","76f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/","5fa"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/","417"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Flooding Risk/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Flooding Risk/","cb0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/","831"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/","ce6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Overview/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Overview/","a37"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/","0db"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/","d46"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/","b74"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Train Classifier/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Train Classifier/","109"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/","de7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/","250"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Distributed Training/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Distributed Training/","68a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Getting Started/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Getting Started/","920"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/ONNX/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/ONNX/","4a5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/","a53"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/","9d3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/","da8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/","b25"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Hyperparameter Tuning/HyperOpt/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Hyperparameter Tuning/HyperOpt/","18d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/","f90"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/LightGBM/Overview/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/LightGBM/Overview/","15c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/","796"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/","045"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Langchain/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Langchain/","5e3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/","6f5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/","457"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/OpenCV/Image Transformations/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/OpenCV/Image Transformations/","f73"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Cyber ML/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Cyber ML/","0f7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/","fa5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/","201"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/","bd7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Data Cleaning/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Data Cleaning/","979"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Train Regressor/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Train Regressor/","810"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/","1e9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Data Balance Analysis/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Data Balance Analysis/","6f0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Explanation Dashboard/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Explanation Dashboard/","55c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Image Explainers/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Image Explainers/","e7f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Interpreting Model Predictions/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Interpreting Model Predictions/","df0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/PDP and ICE Explainers/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/PDP and ICE Explainers/","94a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/","41d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/","d72"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Tabular Explainers/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Tabular Explainers/","895"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Text Explainers/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Text Explainers/","b41"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/","c46"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Multi-class classification/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Multi-class classification/","728"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Overview/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Overview/","21f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/","a43"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/","7db"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/",component:u("/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/","9d2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Get Started/Create a Spark Cluster/",component:u("/SynapseML/docs/1.0.1/Get Started/Create a Spark Cluster/","697"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Get Started/Install SynapseML/",component:u("/SynapseML/docs/1.0.1/Get Started/Install SynapseML/","349"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Get Started/Quickstart - Your First Models/",component:u("/SynapseML/docs/1.0.1/Get Started/Quickstart - Your First Models/","d39"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Get Started/Set up Cognitive Services/",component:u("/SynapseML/docs/1.0.1/Get Started/Set up Cognitive Services/","2fa"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Overview/",component:u("/SynapseML/docs/1.0.1/Overview/","64e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_causal/",component:u("/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_causal/","8d4"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_cognitive/",component:u("/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_cognitive/","d28"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_core/",component:u("/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_core/","1b9"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_lightgbm/",component:u("/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_lightgbm/","b23"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_vw/",component:u("/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_vw/","86c"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_cognitive/",component:u("/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_cognitive/","03e"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_core/",component:u("/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_core/","0db"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_deep_learning/",component:u("/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_deep_learning/","f4e"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_opencv/",component:u("/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_opencv/","945"),exact:!0},{path:"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_vw/",component:u("/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_vw/","369"),exact:!0},{path:"/SynapseML/docs/1.0.1/Reference/Contributor Guide/",component:u("/SynapseML/docs/1.0.1/Reference/Contributor Guide/","5ab"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Reference/Developer Setup/",component:u("/SynapseML/docs/1.0.1/Reference/Developer Setup/","971"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Reference/Docker Setup/",component:u("/SynapseML/docs/1.0.1/Reference/Docker Setup/","e6e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Reference/Dotnet Setup/",component:u("/SynapseML/docs/1.0.1/Reference/Dotnet Setup/","179"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Reference/Quickstart - LightGBM in Dotnet/",component:u("/SynapseML/docs/1.0.1/Reference/Quickstart - LightGBM in Dotnet/","049"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Reference/R Setup/",component:u("/SynapseML/docs/1.0.1/Reference/R Setup/","392"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Use with MLFlow/Autologging/",component:u("/SynapseML/docs/1.0.1/Use with MLFlow/Autologging/","23e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Use with MLFlow/Install/",component:u("/SynapseML/docs/1.0.1/Use with MLFlow/Install/","0df"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/1.0.1/Use with MLFlow/Overview/",component:u("/SynapseML/docs/1.0.1/Use with MLFlow/Overview/","d32"),exact:!0,sidebar:"docs"}]},{path:"/SynapseML/docs/next/",component:u("/SynapseML/docs/next/","665"),routes:[{path:"/SynapseML/docs/next/Deploy Models/Overview/",component:u("/SynapseML/docs/next/Deploy Models/Overview/","29d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Deploy Models/Quickstart - Deploying a Classifier/",component:u("/SynapseML/docs/next/Deploy Models/Quickstart - Deploying a Classifier/","eeb"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/","12a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Geospatial Services/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Geospatial Services/","00a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Multivariate Anomaly Detection/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Multivariate Anomaly Detection/","e9b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Overview/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Overview/","0d4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/","6d0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Text/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Text/","bef"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine/","4f8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/","3a8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/","385"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Flooding Risk/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Flooding Risk/","5c7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/",component:u("/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/","f4f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/",component:u("/SynapseML/docs/next/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/","bf9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Overview/",component:u("/SynapseML/docs/next/Explore Algorithms/Causal Inference/Overview/","89c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/",component:u("/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/","fc9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/",component:u("/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/","80d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences/",component:u("/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences/","b09"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/",component:u("/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/","12f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier/",component:u("/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier/","86b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/",component:u("/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/","25e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/",component:u("/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/","c31"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Distributed Training/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/Distributed Training/","1a6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Getting Started/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/Getting Started/","270"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/ONNX/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/ONNX/","c9a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/","fdc"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/","9cf"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/","a7b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/",component:u("/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/","641"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/HyperOpt/",component:u("/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/HyperOpt/","6e0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/",component:u("/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/","8d1"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/LightGBM/Overview/",component:u("/SynapseML/docs/next/Explore Algorithms/LightGBM/Overview/","50f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/",component:u("/SynapseML/docs/next/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/","d9a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/OpenAI/",component:u("/SynapseML/docs/next/Explore Algorithms/OpenAI/","ef5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/OpenAI/Langchain/",component:u("/SynapseML/docs/next/Explore Algorithms/OpenAI/Langchain/","43a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/",component:u("/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/","a86"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/",component:u("/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/","101"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/OpenCV/Image Transformations/",component:u("/SynapseML/docs/next/Explore Algorithms/OpenCV/Image Transformations/","5d7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Cyber ML/",component:u("/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Cyber ML/","1e7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/",component:u("/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/","88e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/",component:u("/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/","d5d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/",component:u("/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/","41e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Data Cleaning/",component:u("/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Data Cleaning/","d73"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Train Regressor/",component:u("/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Train Regressor/","267"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/",component:u("/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/","95b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Data Balance Analysis/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Data Balance Analysis/","798"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Explanation Dashboard/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Explanation Dashboard/","0ec"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Image Explainers/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Image Explainers/","039"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Interpreting Model Predictions/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Interpreting Model Predictions/","2fd"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/PDP and ICE Explainers/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/PDP and ICE Explainers/","8f3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/","484"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/","3d2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Tabular Explainers/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Tabular Explainers/","caf"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Text Explainers/",component:u("/SynapseML/docs/next/Explore Algorithms/Responsible AI/Text Explainers/","219"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/",component:u("/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/","b35"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Multi-class classification/",component:u("/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Multi-class classification/","c0f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Overview/",component:u("/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Overview/","fae"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/",component:u("/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/","3c9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/",component:u("/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/","71e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/",component:u("/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/","e9d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Get Started/Create a Spark Cluster/",component:u("/SynapseML/docs/next/Get Started/Create a Spark Cluster/","37f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Get Started/Install SynapseML/",component:u("/SynapseML/docs/next/Get Started/Install SynapseML/","975"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Get Started/Quickstart - Your First Models/",component:u("/SynapseML/docs/next/Get Started/Quickstart - Your First Models/","8a6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Get Started/Set up Cognitive Services/",component:u("/SynapseML/docs/next/Get Started/Set up Cognitive Services/","47d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Overview/",component:u("/SynapseML/docs/next/Overview/","9a5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Quick Examples/estimators/estimators_causal/",component:u("/SynapseML/docs/next/Quick Examples/estimators/estimators_causal/","c47"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/estimators/estimators_cognitive/",component:u("/SynapseML/docs/next/Quick Examples/estimators/estimators_cognitive/","6e1"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/estimators/estimators_core/",component:u("/SynapseML/docs/next/Quick Examples/estimators/estimators_core/","7e6"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/estimators/estimators_lightgbm/",component:u("/SynapseML/docs/next/Quick Examples/estimators/estimators_lightgbm/","5eb"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/estimators/estimators_vw/",component:u("/SynapseML/docs/next/Quick Examples/estimators/estimators_vw/","49f"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/transformers/transformers_cognitive/",component:u("/SynapseML/docs/next/Quick Examples/transformers/transformers_cognitive/","443"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/transformers/transformers_core/",component:u("/SynapseML/docs/next/Quick Examples/transformers/transformers_core/","0a9"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/transformers/transformers_deep_learning/",component:u("/SynapseML/docs/next/Quick Examples/transformers/transformers_deep_learning/","137"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/transformers/transformers_opencv/",component:u("/SynapseML/docs/next/Quick Examples/transformers/transformers_opencv/","3f4"),exact:!0},{path:"/SynapseML/docs/next/Quick Examples/transformers/transformers_vw/",component:u("/SynapseML/docs/next/Quick Examples/transformers/transformers_vw/","d93"),exact:!0},{path:"/SynapseML/docs/next/Reference/Contributor Guide/",component:u("/SynapseML/docs/next/Reference/Contributor Guide/","dec"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Reference/Developer Setup/",component:u("/SynapseML/docs/next/Reference/Developer Setup/","1c5"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Reference/Docker Setup/",component:u("/SynapseML/docs/next/Reference/Docker Setup/","598"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Reference/Dotnet Setup/",component:u("/SynapseML/docs/next/Reference/Dotnet Setup/","0af"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Reference/Quickstart - LightGBM in Dotnet/",component:u("/SynapseML/docs/next/Reference/Quickstart - LightGBM in Dotnet/","81b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Reference/R Setup/",component:u("/SynapseML/docs/next/Reference/R Setup/","d8b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Use with MLFlow/Autologging/",component:u("/SynapseML/docs/next/Use with MLFlow/Autologging/","0ca"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Use with MLFlow/Install/",component:u("/SynapseML/docs/next/Use with MLFlow/Install/","9b7"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/next/Use with MLFlow/Overview/",component:u("/SynapseML/docs/next/Use with MLFlow/Overview/","b10"),exact:!0,sidebar:"docs"}]},{path:"/SynapseML/docs/",component:u("/SynapseML/docs/","e11"),routes:[{path:"/SynapseML/docs/Deploy Models/Overview/",component:u("/SynapseML/docs/Deploy Models/Overview/","892"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Deploy Models/Quickstart - Deploying a Classifier/",component:u("/SynapseML/docs/Deploy Models/Quickstart - Deploying a Classifier/","514"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key/","aca"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Geospatial Services/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Geospatial Services/","c3a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Multivariate Anomaly Detection/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Multivariate Anomaly Detection/","75d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Overview/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Overview/","c5c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes/","6b8"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Analyze Text/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Analyze Text/","cae"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine/","bca"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Create Audiobooks/","03f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs/","e1c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Flooding Risk/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Flooding Risk/","484"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/",component:u("/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance/","bdd"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/",component:u("/SynapseML/docs/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests/","7de"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Causal Inference/Overview/",component:u("/SynapseML/docs/Explore Algorithms/Causal Inference/Overview/","b75"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/",component:u("/SynapseML/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects/","74e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/",component:u("/SynapseML/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects/","69b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/",component:u("/SynapseML/docs/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML/","409"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Train Classifier/",component:u("/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Train Classifier/","23b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/",component:u("/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data/","1db"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/",component:u("/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data/","74f"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/Distributed Training/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/Distributed Training/","f1e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/Getting Started/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/Getting Started/","45d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/ONNX/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/ONNX/","5b1"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier/","300"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier/","e1b"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference/","da0"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/",component:u("/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification/","894"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Hyperparameter Tuning/HyperOpt/",component:u("/SynapseML/docs/Explore Algorithms/Hyperparameter Tuning/HyperOpt/","0a3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/",component:u("/SynapseML/docs/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search/","5c9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/LightGBM/Overview/",component:u("/SynapseML/docs/Explore Algorithms/LightGBM/Overview/","cfd"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/",component:u("/SynapseML/docs/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression/","6de"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/OpenAI/",component:u("/SynapseML/docs/Explore Algorithms/OpenAI/","c2e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/OpenAI/Langchain/",component:u("/SynapseML/docs/Explore Algorithms/OpenAI/Langchain/","93a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/",component:u("/SynapseML/docs/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding/","b6e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/",component:u("/SynapseML/docs/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms/","38e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/OpenCV/Image Transformations/",component:u("/SynapseML/docs/Explore Algorithms/OpenCV/Image Transformations/","19a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Other Algorithms/Cyber ML/",component:u("/SynapseML/docs/Explore Algorithms/Other Algorithms/Cyber ML/","9a9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/",component:u("/SynapseML/docs/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection/","3af"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/",component:u("/SynapseML/docs/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures/","d07"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/",component:u("/SynapseML/docs/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations/","375"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Data Cleaning/",component:u("/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Data Cleaning/","382"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Train Regressor/",component:u("/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Train Regressor/","2a4"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/",component:u("/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM/","691"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Data Balance Analysis/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Data Balance Analysis/","1a6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Explanation Dashboard/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Explanation Dashboard/","19d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Image Explainers/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Image Explainers/","b9c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Interpreting Model Predictions/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Interpreting Model Predictions/","290"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/PDP and ICE Explainers/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/PDP and ICE Explainers/","e18"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis/","406"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection/","731"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Tabular Explainers/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Tabular Explainers/","c66"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Responsible AI/Text Explainers/",component:u("/SynapseML/docs/Explore Algorithms/Responsible AI/Text Explainers/","31c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/",component:u("/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Contextual Bandits/","ad2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Multi-class classification/",component:u("/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Multi-class classification/","863"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Overview/",component:u("/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Overview/","6f6"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/",component:u("/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors/","c6a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/",component:u("/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format/","3e2"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/",component:u("/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression/","63c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Get Started/Create a Spark Cluster/",component:u("/SynapseML/docs/Get Started/Create a Spark Cluster/","907"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Get Started/Install SynapseML/",component:u("/SynapseML/docs/Get Started/Install SynapseML/","f82"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Get Started/Quickstart - Your First Models/",component:u("/SynapseML/docs/Get Started/Quickstart - Your First Models/","6c3"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Get Started/Set up Cognitive Services/",component:u("/SynapseML/docs/Get Started/Set up Cognitive Services/","64d"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Overview/",component:u("/SynapseML/docs/Overview/","e04"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Quick Examples/estimators/estimators_causal/",component:u("/SynapseML/docs/Quick Examples/estimators/estimators_causal/","c9b"),exact:!0},{path:"/SynapseML/docs/Quick Examples/estimators/estimators_cognitive/",component:u("/SynapseML/docs/Quick Examples/estimators/estimators_cognitive/","edb"),exact:!0},{path:"/SynapseML/docs/Quick Examples/estimators/estimators_core/",component:u("/SynapseML/docs/Quick Examples/estimators/estimators_core/","102"),exact:!0},{path:"/SynapseML/docs/Quick Examples/estimators/estimators_lightgbm/",component:u("/SynapseML/docs/Quick Examples/estimators/estimators_lightgbm/","f30"),exact:!0},{path:"/SynapseML/docs/Quick Examples/estimators/estimators_vw/",component:u("/SynapseML/docs/Quick Examples/estimators/estimators_vw/","1fd"),exact:!0},{path:"/SynapseML/docs/Quick Examples/transformers/transformers_cognitive/",component:u("/SynapseML/docs/Quick Examples/transformers/transformers_cognitive/","10d"),exact:!0},{path:"/SynapseML/docs/Quick Examples/transformers/transformers_core/",component:u("/SynapseML/docs/Quick Examples/transformers/transformers_core/","27c"),exact:!0},{path:"/SynapseML/docs/Quick Examples/transformers/transformers_deep_learning/",component:u("/SynapseML/docs/Quick Examples/transformers/transformers_deep_learning/","327"),exact:!0},{path:"/SynapseML/docs/Quick Examples/transformers/transformers_opencv/",component:u("/SynapseML/docs/Quick Examples/transformers/transformers_opencv/","402"),exact:!0},{path:"/SynapseML/docs/Quick Examples/transformers/transformers_vw/",component:u("/SynapseML/docs/Quick Examples/transformers/transformers_vw/","79a"),exact:!0},{path:"/SynapseML/docs/Reference/Contributor Guide/",component:u("/SynapseML/docs/Reference/Contributor Guide/","8b9"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Reference/Developer Setup/",component:u("/SynapseML/docs/Reference/Developer Setup/","40e"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Reference/Docker Setup/",component:u("/SynapseML/docs/Reference/Docker Setup/","a31"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Reference/Dotnet Setup/",component:u("/SynapseML/docs/Reference/Dotnet Setup/","372"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Reference/Quickstart - LightGBM in Dotnet/",component:u("/SynapseML/docs/Reference/Quickstart - LightGBM in Dotnet/","94a"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Reference/R Setup/",component:u("/SynapseML/docs/Reference/R Setup/","21c"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Use with MLFlow/Autologging/",component:u("/SynapseML/docs/Use with MLFlow/Autologging/","ebe"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Use with MLFlow/Install/",component:u("/SynapseML/docs/Use with MLFlow/Install/","436"),exact:!0,sidebar:"docs"},{path:"/SynapseML/docs/Use with MLFlow/Overview/",component:u("/SynapseML/docs/Use with MLFlow/Overview/","42c"),exact:!0,sidebar:"docs"}]},{path:"/SynapseML/",component:u("/SynapseML/","6e1"),exact:!0},{path:"*",component:u("*")}]},98934:(e,t,n)=>{"use strict";n.d(t,{_:()=>o,t:()=>s});var r=n(67294);const o=r.createContext(!1);function s(e){let{children:t}=e;const[n,s]=(0,r.useState)(!1);return(0,r.useEffect)((()=>{s(!0)}),[]),r.createElement(o.Provider,{value:n},t)}},49383:(e,t,n)=>{"use strict";var r=n(67294),o=n(73935),s=n(73727),a=n(70405),i=n(10412);const l=[n(56657),n(32497),n(3310),n(18320),n(52295)];var c=n(723),d=n(16550),p=n(18790);function u(e){let{children:t}=e;return r.createElement(r.Fragment,null,t)}var m=n(83117),f=n(35742),h=n(52263),g=n(44996),b=n(86668),y=n(10833),v=n(94711),x=n(19727),S=n(43320),E=n(90197);function A(){const{i18n:{defaultLocale:e,localeConfigs:t}}=(0,h.Z)(),n=(0,v.l)();return r.createElement(f.Z,null,Object.entries(t).map((e=>{let[t,{htmlLang:o}]=e;return r.createElement("link",{key:t,rel:"alternate",href:n.createUrl({locale:t,fullyQualified:!0}),hrefLang:o})})),r.createElement("link",{rel:"alternate",href:n.createUrl({locale:e,fullyQualified:!0}),hrefLang:"x-default"}))}function L(e){let{permalink:t}=e;const{siteConfig:{url:n}}=(0,h.Z)(),o=function(){const{siteConfig:{url:e}}=(0,h.Z)(),{pathname:t}=(0,d.TH)();return e+(0,g.Z)(t)}(),s=t?""+n+t:o;return r.createElement(f.Z,null,r.createElement("meta",{property:"og:url",content:s}),r.createElement("link",{rel:"canonical",href:s}))}function M(){const{i18n:{currentLocale:e}}=(0,h.Z)(),{metadata:t,image:n}=(0,b.L)();return r.createElement(r.Fragment,null,r.createElement(f.Z,null,r.createElement("meta",{name:"twitter:card",content:"summary_large_image"}),r.createElement("body",{className:x.h})),n&&r.createElement(y.d,{image:n}),r.createElement(L,null),r.createElement(A,null),r.createElement(E.Z,{tag:S.HX,locale:e}),r.createElement(f.Z,null,t.map(((e,t)=>r.createElement("meta",(0,m.Z)({key:t},e))))))}const k=new Map;function w(e){if(k.has(e.pathname))return{...e,pathname:k.get(e.pathname)};if((0,p.f)(c.Z,e.pathname).some((e=>{let{route:t}=e;return!0===t.exact})))return k.set(e.pathname,e.pathname),e;const t=e.pathname.trim().replace(/(?:\/index)?\.html$/,"")||"/";return k.set(e.pathname,t),{...e,pathname:t}}var _=n(98934),I=n(58940);function C(e){for(var t=arguments.length,n=new Array(t>1?t-1:0),r=1;r{var r,o;const s=null!=(r=null==(o=t.default)?void 0:o[e])?r:t[e];return null==s?void 0:s(...n)}));return()=>o.forEach((e=>null==e?void 0:e()))}const T=function(e){let{children:t,location:n,previousLocation:o}=e;return(0,r.useLayoutEffect)((()=>{o!==n&&(!function(e){let{location:t,previousLocation:n}=e;if(!n)return;const r=t.pathname===n.pathname,o=t.hash===n.hash,s=t.search===n.search;if(r&&o&&!s)return;const{hash:a}=t;if(a){const e=decodeURIComponent(a.substring(1)),t=document.getElementById(e);null==t||t.scrollIntoView()}else window.scrollTo(0,0)}({location:n,previousLocation:o}),C("onRouteDidUpdate",{previousLocation:o,location:n}))}),[o,n]),t};function Q(e){const t=Array.from(new Set([e,decodeURI(e)])).map((e=>(0,p.f)(c.Z,e))).flat();return Promise.all(t.map((e=>null==e.route.component.preload?void 0:e.route.component.preload())))}class R extends r.Component{constructor(e){super(e),this.previousLocation=void 0,this.routeUpdateCleanupCb=void 0,this.previousLocation=null,this.routeUpdateCleanupCb=i.Z.canUseDOM?C("onRouteUpdate",{previousLocation:null,location:this.props.location}):()=>{},this.state={nextRouteHasLoaded:!0}}shouldComponentUpdate(e,t){if(e.location===this.props.location)return t.nextRouteHasLoaded;const n=e.location;return this.previousLocation=this.props.location,this.setState({nextRouteHasLoaded:!1}),this.routeUpdateCleanupCb=C("onRouteUpdate",{previousLocation:this.previousLocation,location:n}),Q(n.pathname).then((()=>{this.routeUpdateCleanupCb(),this.setState({nextRouteHasLoaded:!0})})).catch((e=>{console.warn(e),window.location.reload()})),!1}render(){const{children:e,location:t}=this.props;return r.createElement(T,{previousLocation:this.previousLocation,location:t},r.createElement(d.AW,{location:t,render:()=>e}))}}const D=R,O="__docusaurus-base-url-issue-banner-container",P="__docusaurus-base-url-issue-banner-suggestion-container",F="__DOCUSAURUS_INSERT_BASEURL_BANNER";function N(e){return"\nwindow['"+F+"'] = true;\n\ndocument.addEventListener('DOMContentLoaded', maybeInsertBanner);\n\nfunction maybeInsertBanner() {\n var shouldInsert = window['"+F+"'];\n shouldInsert && insertBanner();\n}\n\nfunction insertBanner() {\n var bannerContainer = document.getElementById('"+O+"');\n if (!bannerContainer) {\n return;\n }\n var bannerHtml = "+JSON.stringify(function(e){return'\n
\n

Your Docusaurus site did not load properly.

\n

A very common reason is a wrong site baseUrl configuration.

\n

Current configured baseUrl = '+e+" "+("/"===e?" (default value)":"")+'

\n

We suggest trying baseUrl =

\n
\n'}(e)).replace(/{window[F]=!1}),[]),r.createElement(r.Fragment,null,!i.Z.canUseDOM&&r.createElement(f.Z,null,r.createElement("script",null,N(e))),r.createElement("div",{id:O}))}function V(){const{siteConfig:{baseUrl:e,baseUrlIssueBanner:t}}=(0,h.Z)(),{pathname:n}=(0,d.TH)();return t&&n===e?r.createElement(B,null):null}function G(){const{siteConfig:{favicon:e,title:t,noIndex:n},i18n:{currentLocale:o,localeConfigs:s}}=(0,h.Z)(),a=(0,g.Z)(e),{htmlLang:i,direction:l}=s[o];return r.createElement(f.Z,null,r.createElement("html",{lang:i,dir:l}),r.createElement("title",null,t),r.createElement("meta",{property:"og:title",content:t}),r.createElement("meta",{name:"viewport",content:"width=device-width, initial-scale=1.0"}),n&&r.createElement("meta",{name:"robots",content:"noindex, nofollow"}),e&&r.createElement("link",{rel:"icon",href:a}))}var U=n(44763);function W(){const e=(0,p.H)(c.Z),t=(0,d.TH)();return r.createElement(U.Z,null,r.createElement(I.M,null,r.createElement(_.t,null,r.createElement(u,null,r.createElement(G,null),r.createElement(M,null),r.createElement(V,null),r.createElement(D,{location:w(t)},e)))))}var z=n(16887);const H=function(e){try{return document.createElement("link").relList.supports(e)}catch{return!1}}("prefetch")?function(e){return new Promise(((t,n)=>{var r,o;if("undefined"==typeof document)return void n();const s=document.createElement("link");s.setAttribute("rel","prefetch"),s.setAttribute("href",e),s.onload=()=>t(),s.onerror=()=>n();const a=null!=(r=document.getElementsByTagName("head")[0])?r:null==(o=document.getElementsByName("script")[0])?void 0:o.parentNode;null==a||a.appendChild(s)}))}:function(e){return new Promise(((t,n)=>{const r=new XMLHttpRequest;r.open("GET",e,!0),r.withCredentials=!0,r.onload=()=>{200===r.status?t():n()},r.send(null)}))};var j=n(99670);const $=new Set,Z=new Set,X=()=>{var e,t;return(null==(e=navigator.connection)?void 0:e.effectiveType.includes("2g"))||(null==(t=navigator.connection)?void 0:t.saveData)},K={prefetch(e){if(!(e=>!X()&&!Z.has(e)&&!$.has(e))(e))return!1;$.add(e);const t=(0,p.f)(c.Z,e).flatMap((e=>{return t=e.route.path,Object.entries(z).filter((e=>{let[n]=e;return n.replace(/-[^-]+$/,"")===t})).flatMap((e=>{let[,t]=e;return Object.values((0,j.Z)(t))}));var t}));return Promise.all(t.map((e=>{const t=n.gca(e);return t&&!t.includes("undefined")?H(t).catch((()=>{})):Promise.resolve()})))},preload:e=>!!(e=>!X()&&!Z.has(e))(e)&&(Z.add(e),Q(e))},Y=Object.freeze(K);if(i.Z.canUseDOM){window.docusaurus=Y;const e=o.hydrate;Q(window.location.pathname).then((()=>{e(r.createElement(a.B6,null,r.createElement(s.VK,null,r.createElement(W,null))),document.getElementById("__docusaurus"))}))}},58940:(e,t,n)=>{"use strict";n.d(t,{_:()=>d,M:()=>p});var r=n(67294),o=n(36809);const s=JSON.parse('{"docusaurus-plugin-google-gtag":{"default":{"trackingID":["G-RWPE0183E8"],"anonymizeIP":true,"id":"default"}},"docusaurus-plugin-content-docs":{"default":{"path":"/SynapseML/docs","versions":[{"name":"current","label":"Next","isLast":false,"path":"/SynapseML/docs/next","mainDocId":"Overview","docs":[{"id":"Deploy Models/Overview","path":"/SynapseML/docs/next/Deploy Models/Overview","sidebar":"docs"},{"id":"Deploy Models/Quickstart - Deploying a Classifier","path":"/SynapseML/docs/next/Deploy Models/Quickstart - Deploying a Classifier","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Geospatial Services","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Geospatial Services","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Multivariate Anomaly Detection","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Overview","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Overview","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Analyze Text","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Flooding Risk","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","path":"/SynapseML/docs/next/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","sidebar":"docs"},{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","path":"/SynapseML/docs/next/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Overview","path":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","path":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","path":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences","path":"/SynapseML/docs/next/Explore Algorithms/Causal Inference/Quickstart - Synthetic difference in differences","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","path":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","path":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Train Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","path":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","path":"/SynapseML/docs/next/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Distributed Training","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Distributed Training","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Getting Started","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Getting Started","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/ONNX","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/ONNX","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","path":"/SynapseML/docs/next/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","path":"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/HyperOpt","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","path":"/SynapseML/docs/next/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Overview","path":"/SynapseML/docs/next/Explore Algorithms/LightGBM/Overview","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","path":"/SynapseML/docs/next/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Langchain","path":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Langchain","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/OpenAI","path":"/SynapseML/docs/next/Explore Algorithms/OpenAI/","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","path":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","path":"/SynapseML/docs/next/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","sidebar":"docs"},{"id":"Explore Algorithms/OpenCV/Image Transformations","path":"/SynapseML/docs/next/Explore Algorithms/OpenCV/Image Transformations","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Cyber ML","path":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Cyber ML","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","path":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","path":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","path":"/SynapseML/docs/next/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","path":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Data Cleaning","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","path":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Train Regressor","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","path":"/SynapseML/docs/next/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Explanation Dashboard","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Image Explainers","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Image Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Interpreting Model Predictions","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/PDP and ICE Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Tabular Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Text Explainers","path":"/SynapseML/docs/next/Explore Algorithms/Responsible AI/Text Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","path":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","path":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Multi-class classification","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Overview","path":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","path":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","path":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","path":"/SynapseML/docs/next/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","sidebar":"docs"},{"id":"Get Started/Create a Spark Cluster","path":"/SynapseML/docs/next/Get Started/Create a Spark Cluster","sidebar":"docs"},{"id":"Get Started/Install SynapseML","path":"/SynapseML/docs/next/Get Started/Install SynapseML","sidebar":"docs"},{"id":"Get Started/Quickstart - Your First Models","path":"/SynapseML/docs/next/Get Started/Quickstart - Your First Models","sidebar":"docs"},{"id":"Get Started/Set up Cognitive Services","path":"/SynapseML/docs/next/Get Started/Set up Cognitive Services","sidebar":"docs"},{"id":"Overview","path":"/SynapseML/docs/next/Overview","sidebar":"docs"},{"id":"Quick Examples/estimators/estimators_causal","path":"/SynapseML/docs/next/Quick Examples/estimators/estimators_causal"},{"id":"Quick Examples/estimators/estimators_cognitive","path":"/SynapseML/docs/next/Quick Examples/estimators/estimators_cognitive"},{"id":"Quick Examples/estimators/estimators_core","path":"/SynapseML/docs/next/Quick Examples/estimators/estimators_core"},{"id":"Quick Examples/estimators/estimators_lightgbm","path":"/SynapseML/docs/next/Quick Examples/estimators/estimators_lightgbm"},{"id":"Quick Examples/estimators/estimators_vw","path":"/SynapseML/docs/next/Quick Examples/estimators/estimators_vw"},{"id":"Quick Examples/transformers/transformers_cognitive","path":"/SynapseML/docs/next/Quick Examples/transformers/transformers_cognitive"},{"id":"Quick Examples/transformers/transformers_core","path":"/SynapseML/docs/next/Quick Examples/transformers/transformers_core"},{"id":"Quick Examples/transformers/transformers_deep_learning","path":"/SynapseML/docs/next/Quick Examples/transformers/transformers_deep_learning"},{"id":"Quick Examples/transformers/transformers_opencv","path":"/SynapseML/docs/next/Quick Examples/transformers/transformers_opencv"},{"id":"Quick Examples/transformers/transformers_vw","path":"/SynapseML/docs/next/Quick Examples/transformers/transformers_vw"},{"id":"Reference/Contributor Guide","path":"/SynapseML/docs/next/Reference/Contributor Guide","sidebar":"docs"},{"id":"Reference/Developer Setup","path":"/SynapseML/docs/next/Reference/Developer Setup","sidebar":"docs"},{"id":"Reference/Docker Setup","path":"/SynapseML/docs/next/Reference/Docker Setup","sidebar":"docs"},{"id":"Reference/Dotnet Setup","path":"/SynapseML/docs/next/Reference/Dotnet Setup","sidebar":"docs"},{"id":"Reference/Quickstart - LightGBM in Dotnet","path":"/SynapseML/docs/next/Reference/Quickstart - LightGBM in Dotnet","sidebar":"docs"},{"id":"Reference/R Setup","path":"/SynapseML/docs/next/Reference/R Setup","sidebar":"docs"},{"id":"Use with MLFlow/Autologging","path":"/SynapseML/docs/next/Use with MLFlow/Autologging","sidebar":"docs"},{"id":"Use with MLFlow/Install","path":"/SynapseML/docs/next/Use with MLFlow/Install","sidebar":"docs"},{"id":"Use with MLFlow/Overview","path":"/SynapseML/docs/next/Use with MLFlow/Overview","sidebar":"docs"}],"draftIds":[],"sidebars":{"docs":{"link":{"path":"/SynapseML/docs/next/Overview","label":"What is SynapseML?"}}}},{"name":"1.0.2","label":"1.0.2","isLast":true,"path":"/SynapseML/docs","mainDocId":"Overview","docs":[{"id":"Deploy Models/Overview","path":"/SynapseML/docs/Deploy Models/Overview","sidebar":"docs"},{"id":"Deploy Models/Quickstart - Deploying a Classifier","path":"/SynapseML/docs/Deploy Models/Quickstart - Deploying a Classifier","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","path":"/SynapseML/docs/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Geospatial Services","path":"/SynapseML/docs/Explore Algorithms/AI Services/Geospatial Services","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","path":"/SynapseML/docs/Explore Algorithms/AI Services/Multivariate Anomaly Detection","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Overview","path":"/SynapseML/docs/Explore Algorithms/AI Services/Overview","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Analyze Text","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Flooding Risk","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","path":"/SynapseML/docs/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","sidebar":"docs"},{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","path":"/SynapseML/docs/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Overview","path":"/SynapseML/docs/Explore Algorithms/Causal Inference/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","path":"/SynapseML/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","path":"/SynapseML/docs/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","path":"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","path":"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Train Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","path":"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","path":"/SynapseML/docs/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Distributed Training","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/Distributed Training","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Getting Started","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/Getting Started","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/ONNX","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/ONNX","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","path":"/SynapseML/docs/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","path":"/SynapseML/docs/Explore Algorithms/Hyperparameter Tuning/HyperOpt","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","path":"/SynapseML/docs/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Overview","path":"/SynapseML/docs/Explore Algorithms/LightGBM/Overview","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","path":"/SynapseML/docs/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Langchain","path":"/SynapseML/docs/Explore Algorithms/OpenAI/Langchain","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/OpenAI","path":"/SynapseML/docs/Explore Algorithms/OpenAI/","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","path":"/SynapseML/docs/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","path":"/SynapseML/docs/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","sidebar":"docs"},{"id":"Explore Algorithms/OpenCV/Image Transformations","path":"/SynapseML/docs/Explore Algorithms/OpenCV/Image Transformations","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Cyber ML","path":"/SynapseML/docs/Explore Algorithms/Other Algorithms/Cyber ML","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","path":"/SynapseML/docs/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","path":"/SynapseML/docs/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","path":"/SynapseML/docs/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","path":"/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Data Cleaning","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","path":"/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Train Regressor","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","path":"/SynapseML/docs/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Explanation Dashboard","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Image Explainers","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Image Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Interpreting Model Predictions","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/PDP and ICE Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Tabular Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Text Explainers","path":"/SynapseML/docs/Explore Algorithms/Responsible AI/Text Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","path":"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","path":"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Multi-class classification","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Overview","path":"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","path":"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","path":"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","path":"/SynapseML/docs/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","sidebar":"docs"},{"id":"Get Started/Create a Spark Cluster","path":"/SynapseML/docs/Get Started/Create a Spark Cluster","sidebar":"docs"},{"id":"Get Started/Install SynapseML","path":"/SynapseML/docs/Get Started/Install SynapseML","sidebar":"docs"},{"id":"Get Started/Quickstart - Your First Models","path":"/SynapseML/docs/Get Started/Quickstart - Your First Models","sidebar":"docs"},{"id":"Get Started/Set up Cognitive Services","path":"/SynapseML/docs/Get Started/Set up Cognitive Services","sidebar":"docs"},{"id":"Overview","path":"/SynapseML/docs/Overview","sidebar":"docs"},{"id":"Quick Examples/estimators/estimators_causal","path":"/SynapseML/docs/Quick Examples/estimators/estimators_causal"},{"id":"Quick Examples/estimators/estimators_cognitive","path":"/SynapseML/docs/Quick Examples/estimators/estimators_cognitive"},{"id":"Quick Examples/estimators/estimators_core","path":"/SynapseML/docs/Quick Examples/estimators/estimators_core"},{"id":"Quick Examples/estimators/estimators_lightgbm","path":"/SynapseML/docs/Quick Examples/estimators/estimators_lightgbm"},{"id":"Quick Examples/estimators/estimators_vw","path":"/SynapseML/docs/Quick Examples/estimators/estimators_vw"},{"id":"Quick Examples/transformers/transformers_cognitive","path":"/SynapseML/docs/Quick Examples/transformers/transformers_cognitive"},{"id":"Quick Examples/transformers/transformers_core","path":"/SynapseML/docs/Quick Examples/transformers/transformers_core"},{"id":"Quick Examples/transformers/transformers_deep_learning","path":"/SynapseML/docs/Quick Examples/transformers/transformers_deep_learning"},{"id":"Quick Examples/transformers/transformers_opencv","path":"/SynapseML/docs/Quick Examples/transformers/transformers_opencv"},{"id":"Quick Examples/transformers/transformers_vw","path":"/SynapseML/docs/Quick Examples/transformers/transformers_vw"},{"id":"Reference/Contributor Guide","path":"/SynapseML/docs/Reference/Contributor Guide","sidebar":"docs"},{"id":"Reference/Developer Setup","path":"/SynapseML/docs/Reference/Developer Setup","sidebar":"docs"},{"id":"Reference/Docker Setup","path":"/SynapseML/docs/Reference/Docker Setup","sidebar":"docs"},{"id":"Reference/Dotnet Setup","path":"/SynapseML/docs/Reference/Dotnet Setup","sidebar":"docs"},{"id":"Reference/Quickstart - LightGBM in Dotnet","path":"/SynapseML/docs/Reference/Quickstart - LightGBM in Dotnet","sidebar":"docs"},{"id":"Reference/R Setup","path":"/SynapseML/docs/Reference/R Setup","sidebar":"docs"},{"id":"Use with MLFlow/Autologging","path":"/SynapseML/docs/Use with MLFlow/Autologging","sidebar":"docs"},{"id":"Use with MLFlow/Install","path":"/SynapseML/docs/Use with MLFlow/Install","sidebar":"docs"},{"id":"Use with MLFlow/Overview","path":"/SynapseML/docs/Use with MLFlow/Overview","sidebar":"docs"}],"draftIds":[],"sidebars":{"docs":{"link":{"path":"/SynapseML/docs/Overview","label":"What is SynapseML?"}}}},{"name":"1.0.1","label":"1.0.1","isLast":false,"path":"/SynapseML/docs/1.0.1","mainDocId":"Overview","docs":[{"id":"Deploy Models/Overview","path":"/SynapseML/docs/1.0.1/Deploy Models/Overview","sidebar":"docs"},{"id":"Deploy Models/Quickstart - Deploying a Classifier","path":"/SynapseML/docs/1.0.1/Deploy Models/Quickstart - Deploying a Classifier","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Geospatial Services","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Geospatial Services","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Multivariate Anomaly Detection","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Overview","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Overview","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Analyze Text","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Create a Visual Search Engine","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Flooding Risk","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","path":"/SynapseML/docs/1.0.1/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","sidebar":"docs"},{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Overview","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Train Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Distributed Training","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Distributed Training","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Getting Started","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Getting Started","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/ONNX","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/ONNX","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Hyperparameter Tuning/HyperOpt","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Overview","path":"/SynapseML/docs/1.0.1/Explore Algorithms/LightGBM/Overview","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","path":"/SynapseML/docs/1.0.1/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Langchain","path":"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Langchain","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/OpenAI","path":"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","path":"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","path":"/SynapseML/docs/1.0.1/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","sidebar":"docs"},{"id":"Explore Algorithms/OpenCV/Image Transformations","path":"/SynapseML/docs/1.0.1/Explore Algorithms/OpenCV/Image Transformations","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Cyber ML","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Cyber ML","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Data Cleaning","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Train Regressor","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Explanation Dashboard","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Image Explainers","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Image Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Interpreting Model Predictions","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/PDP and ICE Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Tabular Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Text Explainers","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Responsible AI/Text Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Multi-class classification","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Overview","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","path":"/SynapseML/docs/1.0.1/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","sidebar":"docs"},{"id":"Get Started/Create a Spark Cluster","path":"/SynapseML/docs/1.0.1/Get Started/Create a Spark Cluster","sidebar":"docs"},{"id":"Get Started/Install SynapseML","path":"/SynapseML/docs/1.0.1/Get Started/Install SynapseML","sidebar":"docs"},{"id":"Get Started/Quickstart - Your First Models","path":"/SynapseML/docs/1.0.1/Get Started/Quickstart - Your First Models","sidebar":"docs"},{"id":"Get Started/Set up Cognitive Services","path":"/SynapseML/docs/1.0.1/Get Started/Set up Cognitive Services","sidebar":"docs"},{"id":"Overview","path":"/SynapseML/docs/1.0.1/Overview","sidebar":"docs"},{"id":"Quick Examples/estimators/estimators_causal","path":"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_causal"},{"id":"Quick Examples/estimators/estimators_cognitive","path":"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_cognitive"},{"id":"Quick Examples/estimators/estimators_core","path":"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_core"},{"id":"Quick Examples/estimators/estimators_lightgbm","path":"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_lightgbm"},{"id":"Quick Examples/estimators/estimators_vw","path":"/SynapseML/docs/1.0.1/Quick Examples/estimators/estimators_vw"},{"id":"Quick Examples/transformers/transformers_cognitive","path":"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_cognitive"},{"id":"Quick Examples/transformers/transformers_core","path":"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_core"},{"id":"Quick Examples/transformers/transformers_deep_learning","path":"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_deep_learning"},{"id":"Quick Examples/transformers/transformers_opencv","path":"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_opencv"},{"id":"Quick Examples/transformers/transformers_vw","path":"/SynapseML/docs/1.0.1/Quick Examples/transformers/transformers_vw"},{"id":"Reference/Contributor Guide","path":"/SynapseML/docs/1.0.1/Reference/Contributor Guide","sidebar":"docs"},{"id":"Reference/Developer Setup","path":"/SynapseML/docs/1.0.1/Reference/Developer Setup","sidebar":"docs"},{"id":"Reference/Docker Setup","path":"/SynapseML/docs/1.0.1/Reference/Docker Setup","sidebar":"docs"},{"id":"Reference/Dotnet Setup","path":"/SynapseML/docs/1.0.1/Reference/Dotnet Setup","sidebar":"docs"},{"id":"Reference/Quickstart - LightGBM in Dotnet","path":"/SynapseML/docs/1.0.1/Reference/Quickstart - LightGBM in Dotnet","sidebar":"docs"},{"id":"Reference/R Setup","path":"/SynapseML/docs/1.0.1/Reference/R Setup","sidebar":"docs"},{"id":"Use with MLFlow/Autologging","path":"/SynapseML/docs/1.0.1/Use with MLFlow/Autologging","sidebar":"docs"},{"id":"Use with MLFlow/Install","path":"/SynapseML/docs/1.0.1/Use with MLFlow/Install","sidebar":"docs"},{"id":"Use with MLFlow/Overview","path":"/SynapseML/docs/1.0.1/Use with MLFlow/Overview","sidebar":"docs"}],"draftIds":[],"sidebars":{"docs":{"link":{"path":"/SynapseML/docs/1.0.1/Overview","label":"What is SynapseML?"}}}},{"name":"0.11.4","label":"0.11.4","isLast":false,"path":"/SynapseML/docs/0.11.4","mainDocId":"Overview","docs":[{"id":"Deploy Models/Overview","path":"/SynapseML/docs/0.11.4/Deploy Models/Overview","sidebar":"docs"},{"id":"Deploy Models/Quickstart - Deploying a Classifier","path":"/SynapseML/docs/0.11.4/Deploy Models/Quickstart - Deploying a Classifier","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Geospatial Services","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Geospatial Services","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Multivariate Anomaly Detection","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Overview","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Overview","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Analyze Text","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Flooding Risk","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","path":"/SynapseML/docs/0.11.4/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","sidebar":"docs"},{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Overview","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Train Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Distributed Training","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Distributed Training","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Getting Started","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Getting Started","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/ONNX","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/ONNX","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Hyperparameter Tuning/HyperOpt","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Overview","path":"/SynapseML/docs/0.11.4/Explore Algorithms/LightGBM/Overview","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","path":"/SynapseML/docs/0.11.4/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Langchain","path":"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Langchain","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/OpenAI","path":"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","path":"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","path":"/SynapseML/docs/0.11.4/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","sidebar":"docs"},{"id":"Explore Algorithms/OpenCV/Image Transformations","path":"/SynapseML/docs/0.11.4/Explore Algorithms/OpenCV/Image Transformations","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Cyber ML","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Cyber ML","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Data Cleaning","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Train Regressor","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Explanation Dashboard","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Image Explainers","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Image Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Interpreting Model Predictions","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/PDP and ICE Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Tabular Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Text Explainers","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Responsible AI/Text Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Multi-class classification","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Overview","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","path":"/SynapseML/docs/0.11.4/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","sidebar":"docs"},{"id":"Get Started/Create a Spark Cluster","path":"/SynapseML/docs/0.11.4/Get Started/Create a Spark Cluster","sidebar":"docs"},{"id":"Get Started/Install SynapseML","path":"/SynapseML/docs/0.11.4/Get Started/Install SynapseML","sidebar":"docs"},{"id":"Get Started/Quickstart - Your First Models","path":"/SynapseML/docs/0.11.4/Get Started/Quickstart - Your First Models","sidebar":"docs"},{"id":"Get Started/Set up Cognitive Services","path":"/SynapseML/docs/0.11.4/Get Started/Set up Cognitive Services","sidebar":"docs"},{"id":"Overview","path":"/SynapseML/docs/0.11.4/Overview","sidebar":"docs"},{"id":"Quick Examples/estimators/estimators_causal","path":"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_causal"},{"id":"Quick Examples/estimators/estimators_cognitive","path":"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_cognitive"},{"id":"Quick Examples/estimators/estimators_core","path":"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_core"},{"id":"Quick Examples/estimators/estimators_lightgbm","path":"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_lightgbm"},{"id":"Quick Examples/estimators/estimators_vw","path":"/SynapseML/docs/0.11.4/Quick Examples/estimators/estimators_vw"},{"id":"Quick Examples/transformers/transformers_cognitive","path":"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_cognitive"},{"id":"Quick Examples/transformers/transformers_core","path":"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_core"},{"id":"Quick Examples/transformers/transformers_deep_learning","path":"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_deep_learning"},{"id":"Quick Examples/transformers/transformers_opencv","path":"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_opencv"},{"id":"Quick Examples/transformers/transformers_vw","path":"/SynapseML/docs/0.11.4/Quick Examples/transformers/transformers_vw"},{"id":"Reference/Contributor Guide","path":"/SynapseML/docs/0.11.4/Reference/Contributor Guide","sidebar":"docs"},{"id":"Reference/Developer Setup","path":"/SynapseML/docs/0.11.4/Reference/Developer Setup","sidebar":"docs"},{"id":"Reference/Docker Setup","path":"/SynapseML/docs/0.11.4/Reference/Docker Setup","sidebar":"docs"},{"id":"Reference/Dotnet Setup","path":"/SynapseML/docs/0.11.4/Reference/Dotnet Setup","sidebar":"docs"},{"id":"Reference/Quickstart - LightGBM in Dotnet","path":"/SynapseML/docs/0.11.4/Reference/Quickstart - LightGBM in Dotnet","sidebar":"docs"},{"id":"Reference/R Setup","path":"/SynapseML/docs/0.11.4/Reference/R Setup","sidebar":"docs"},{"id":"Use with MLFlow/Autologging","path":"/SynapseML/docs/0.11.4/Use with MLFlow/Autologging","sidebar":"docs"},{"id":"Use with MLFlow/Install","path":"/SynapseML/docs/0.11.4/Use with MLFlow/Install","sidebar":"docs"},{"id":"Use with MLFlow/Overview","path":"/SynapseML/docs/0.11.4/Use with MLFlow/Overview","sidebar":"docs"}],"draftIds":[],"sidebars":{"docs":{"link":{"path":"/SynapseML/docs/0.11.4/Overview","label":"What is SynapseML?"}}}},{"name":"0.11.3","label":"0.11.3","isLast":false,"path":"/SynapseML/docs/0.11.3","mainDocId":"Overview","docs":[{"id":"Deploy Models/Overview","path":"/SynapseML/docs/0.11.3/Deploy Models/Overview","sidebar":"docs"},{"id":"Deploy Models/Quickstart - Deploying a Classifier","path":"/SynapseML/docs/0.11.3/Deploy Models/Quickstart - Deploying a Classifier","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Advanced Usage - Async, Batching, and Multi-Key","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Geospatial Services","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Geospatial Services","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Multivariate Anomaly Detection","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Multivariate Anomaly Detection","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Overview","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Overview","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Celebrity Quotes","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Analyze Text","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Analyze Text","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Creare a Visual Search Engine","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Create Audiobooks","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Create Audiobooks","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Document Question and Answering with PDFs","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Flooding Risk","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Flooding Risk","sidebar":"docs"},{"id":"Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","path":"/SynapseML/docs/0.11.3/Explore Algorithms/AI Services/Quickstart - Predictive Maintenance","sidebar":"docs"},{"id":"Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Anomaly Detection/Quickstart - Isolation Forests","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Overview","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Causal Effects","sidebar":"docs"},{"id":"Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Causal Inference/Quickstart - Measure Heterogeneous Effects","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - SparkML vs SynapseML","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Train Classifier","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Train Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Tabular Data","sidebar":"docs"},{"id":"Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Classification/Quickstart - Vowpal Wabbit on Text Data","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Distributed Training","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Distributed Training","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Getting Started","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Getting Started","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/ONNX","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/ONNX","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Text Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Fine-tune a Vision Classifier","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - ONNX Model Inference","sidebar":"docs"},{"id":"Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Deep Learning/Quickstart - Transfer Learn for Image Classification","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/HyperOpt","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Hyperparameter Tuning/HyperOpt","sidebar":"docs"},{"id":"Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Hyperparameter Tuning/Quickstart - Random Search","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Overview","path":"/SynapseML/docs/0.11.3/Explore Algorithms/LightGBM/Overview","sidebar":"docs"},{"id":"Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","path":"/SynapseML/docs/0.11.3/Explore Algorithms/LightGBM/Quickstart - Classification, Ranking, and Regression","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Langchain","path":"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Langchain","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/OpenAI","path":"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","path":"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Quickstart - OpenAI Embedding","sidebar":"docs"},{"id":"Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","path":"/SynapseML/docs/0.11.3/Explore Algorithms/OpenAI/Quickstart - Understand and Search Forms","sidebar":"docs"},{"id":"Explore Algorithms/OpenCV/Image Transformations","path":"/SynapseML/docs/0.11.3/Explore Algorithms/OpenCV/Image Transformations","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Cyber ML","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Cyber ML","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Anomalous Access Detection","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Quickstart - Exploring Art Across Cultures","sidebar":"docs"},{"id":"Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Other Algorithms/Smart Adaptive Recommendations","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Data Cleaning","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Data Cleaning","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Train Regressor","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Train Regressor","sidebar":"docs"},{"id":"Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Regression/Quickstart - Vowpal Wabbit and LightGBM","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Data Balance Analysis","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Explanation Dashboard","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Explanation Dashboard","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Image Explainers","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Image Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Interpreting Model Predictions","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Interpreting Model Predictions","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/PDP and ICE Explainers","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/PDP and ICE Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Quickstart - Data Balance Analysis","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Quickstart - Snow Leopard Detection","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Tabular Explainers","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Tabular Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Responsible AI/Text Explainers","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Responsible AI/Text Explainers","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Contextual Bandits","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Contextual Bandits","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Multi-class classification","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Multi-class classification","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Overview","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Overview","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using SparkML Vectors","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification using VW-native Format","sidebar":"docs"},{"id":"Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","path":"/SynapseML/docs/0.11.3/Explore Algorithms/Vowpal Wabbit/Quickstart - Classification, Quantile Regression, and Regression","sidebar":"docs"},{"id":"Get Started/Create a Spark Cluster","path":"/SynapseML/docs/0.11.3/Get Started/Create a Spark Cluster","sidebar":"docs"},{"id":"Get Started/Install SynapseML","path":"/SynapseML/docs/0.11.3/Get Started/Install SynapseML","sidebar":"docs"},{"id":"Get Started/Quickstart - Your First Models","path":"/SynapseML/docs/0.11.3/Get Started/Quickstart - Your First Models","sidebar":"docs"},{"id":"Get Started/Set up Cognitive Services","path":"/SynapseML/docs/0.11.3/Get Started/Set up Cognitive Services","sidebar":"docs"},{"id":"Overview","path":"/SynapseML/docs/0.11.3/Overview","sidebar":"docs"},{"id":"Quick Examples/estimators/estimators_causal","path":"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_causal"},{"id":"Quick Examples/estimators/estimators_cognitive","path":"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_cognitive"},{"id":"Quick Examples/estimators/estimators_core","path":"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_core"},{"id":"Quick Examples/estimators/estimators_lightgbm","path":"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_lightgbm"},{"id":"Quick Examples/estimators/estimators_vw","path":"/SynapseML/docs/0.11.3/Quick Examples/estimators/estimators_vw"},{"id":"Quick Examples/transformers/transformers_cognitive","path":"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_cognitive"},{"id":"Quick Examples/transformers/transformers_core","path":"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_core"},{"id":"Quick Examples/transformers/transformers_deep_learning","path":"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_deep_learning"},{"id":"Quick Examples/transformers/transformers_opencv","path":"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_opencv"},{"id":"Quick Examples/transformers/transformers_vw","path":"/SynapseML/docs/0.11.3/Quick Examples/transformers/transformers_vw"},{"id":"Reference/Contributor Guide","path":"/SynapseML/docs/0.11.3/Reference/Contributor Guide","sidebar":"docs"},{"id":"Reference/Developer Setup","path":"/SynapseML/docs/0.11.3/Reference/Developer Setup","sidebar":"docs"},{"id":"Reference/Docker Setup","path":"/SynapseML/docs/0.11.3/Reference/Docker Setup","sidebar":"docs"},{"id":"Reference/Dotnet Setup","path":"/SynapseML/docs/0.11.3/Reference/Dotnet Setup","sidebar":"docs"},{"id":"Reference/Quickstart - LightGBM in Dotnet","path":"/SynapseML/docs/0.11.3/Reference/Quickstart - LightGBM in Dotnet","sidebar":"docs"},{"id":"Reference/R Setup","path":"/SynapseML/docs/0.11.3/Reference/R Setup","sidebar":"docs"},{"id":"Use with MLFlow/Autologging","path":"/SynapseML/docs/0.11.3/Use with MLFlow/Autologging","sidebar":"docs"},{"id":"Use with MLFlow/Install","path":"/SynapseML/docs/0.11.3/Use with MLFlow/Install","sidebar":"docs"},{"id":"Use with MLFlow/Overview","path":"/SynapseML/docs/0.11.3/Use with MLFlow/Overview","sidebar":"docs"}],"draftIds":[],"sidebars":{"docs":{"link":{"path":"/SynapseML/docs/0.11.3/Overview","label":"What is SynapseML?"}}}}],"breadcrumbs":true}}}'),a=JSON.parse('{"defaultLocale":"en","locales":["en"],"path":"i18n","currentLocale":"en","localeConfigs":{"en":{"label":"English","direction":"ltr","htmlLang":"en","calendar":"gregory","path":"en"}}}');var i=n(57529);const l=JSON.parse('{"docusaurusVersion":"2.4.1","siteVersion":"0.0.0","pluginVersions":{"docusaurus-plugin-content-docs":{"type":"package","name":"@docusaurus/plugin-content-docs","version":"2.4.1"},"docusaurus-plugin-content-blog":{"type":"package","name":"@docusaurus/plugin-content-blog","version":"2.4.1"},"docusaurus-plugin-content-pages":{"type":"package","name":"@docusaurus/plugin-content-pages","version":"2.4.1"},"docusaurus-plugin-google-gtag":{"type":"package","name":"@docusaurus/plugin-google-gtag","version":"2.4.1"},"docusaurus-plugin-sitemap":{"type":"package","name":"@docusaurus/plugin-sitemap","version":"2.4.1"},"docusaurus-theme-classic":{"type":"package","name":"@docusaurus/theme-classic","version":"2.4.1"},"docusaurus-theme-search-algolia":{"type":"package","name":"@docusaurus/theme-search-algolia","version":"2.4.1"},"docusaurus-plugin-client-redirects":{"type":"package","name":"@docusaurus/plugin-client-redirects","version":"2.4.1"}}}'),c={siteConfig:o.default,siteMetadata:l,globalData:s,i18n:a,codeTranslations:i},d=r.createContext(c);function p(e){let{children:t}=e;return r.createElement(d.Provider,{value:c},t)}},44763:(e,t,n)=>{"use strict";n.d(t,{Z:()=>u});var r=n(67294),o=n(10412),s=n(35742),a=n(18780),i=n(7452);function l(e){let{error:t,tryAgain:n}=e;return r.createElement("div",{style:{display:"flex",flexDirection:"column",justifyContent:"center",alignItems:"flex-start",minHeight:"100vh",width:"100%",maxWidth:"80ch",fontSize:"20px",margin:"0 auto",padding:"1rem"}},r.createElement("h1",{style:{fontSize:"3rem"}},"This page crashed"),r.createElement("button",{type:"button",onClick:n,style:{margin:"1rem 0",fontSize:"2rem",cursor:"pointer",borderRadius:20,padding:"1rem"}},"Try again"),r.createElement(c,{error:t}))}function c(e){let{error:t}=e;const n=(0,a.getErrorCausalChain)(t).map((e=>e.message)).join("\n\nCause:\n");return r.createElement("p",{style:{whiteSpace:"pre-wrap"}},n)}function d(e){let{error:t,tryAgain:n}=e;return r.createElement(u,{fallback:()=>r.createElement(l,{error:t,tryAgain:n})},r.createElement(s.Z,null,r.createElement("title",null,"Page Error")),r.createElement(i.Z,null,r.createElement(l,{error:t,tryAgain:n})))}const p=e=>r.createElement(d,e);class u extends r.Component{constructor(e){super(e),this.state={error:null}}componentDidCatch(e){o.Z.canUseDOM&&this.setState({error:e})}render(){const{children:e}=this.props,{error:t}=this.state;if(t){var n;const e={error:t,tryAgain:()=>this.setState({error:null})};return(null!=(n=this.props.fallback)?n:p)(e)}return null!=e?e:null}}},10412:(e,t,n)=>{"use strict";n.d(t,{Z:()=>o});const r="undefined"!=typeof window&&"document"in window&&"createElement"in window.document,o={canUseDOM:r,canUseEventListeners:r&&("addEventListener"in window||"attachEvent"in window),canUseIntersectionObserver:r&&"IntersectionObserver"in window,canUseViewport:r&&"screen"in window}},35742:(e,t,n)=>{"use strict";n.d(t,{Z:()=>s});var r=n(67294),o=n(70405);function s(e){return r.createElement(o.ql,e)}},39960:(e,t,n)=>{"use strict";n.d(t,{Z:()=>m});var r=n(83117),o=n(67294),s=n(73727),a=n(18780),i=n(52263),l=n(13919),c=n(10412);const d=o.createContext({collectLink:()=>{}});var p=n(44996);function u(e,t){var n,u;let{isNavLink:m,to:f,href:h,activeClassName:g,isActive:b,"data-noBrokenLinkCheck":y,autoAddBaseUrl:v=!0,...x}=e;const{siteConfig:{trailingSlash:S,baseUrl:E}}=(0,i.Z)(),{withBaseUrl:A}=(0,p.C)(),L=(0,o.useContext)(d),M=(0,o.useRef)(null);(0,o.useImperativeHandle)(t,(()=>M.current));const k=f||h;const w=(0,l.Z)(k),_=null==k?void 0:k.replace("pathname://","");let I=void 0!==_?(C=_,v&&(e=>e.startsWith("/"))(C)?A(C):C):void 0;var C;I&&w&&(I=(0,a.applyTrailingSlash)(I,{trailingSlash:S,baseUrl:E}));const T=(0,o.useRef)(!1),Q=m?s.OL:s.rU,R=c.Z.canUseIntersectionObserver,D=(0,o.useRef)(),O=()=>{T.current||null==I||(window.docusaurus.preload(I),T.current=!0)};(0,o.useEffect)((()=>(!R&&w&&null!=I&&window.docusaurus.prefetch(I),()=>{R&&D.current&&D.current.disconnect()})),[D,I,R,w]);const P=null!=(n=null==(u=I)?void 0:u.startsWith("#"))&&n,F=!I||!w||P;return F||y||L.collectLink(I),F?o.createElement("a",(0,r.Z)({ref:M,href:I},k&&!w&&{target:"_blank",rel:"noopener noreferrer"},x)):o.createElement(Q,(0,r.Z)({},x,{onMouseEnter:O,onTouchStart:O,innerRef:e=>{M.current=e,R&&e&&w&&(D.current=new window.IntersectionObserver((t=>{t.forEach((t=>{e===t.target&&(t.isIntersecting||t.intersectionRatio>0)&&(D.current.unobserve(e),D.current.disconnect(),null!=I&&window.docusaurus.prefetch(I))}))})),D.current.observe(e))},to:I},m&&{isActive:b,activeClassName:g}))}const m=o.forwardRef(u)},95999:(e,t,n)=>{"use strict";n.d(t,{Z:()=>l,I:()=>i});var r=n(67294);function o(e,t){const n=e.split(/(\{\w+\})/).map(((e,n)=>{if(n%2==1){const n=null==t?void 0:t[e.slice(1,-1)];if(void 0!==n)return n}return e}));return n.some((e=>(0,r.isValidElement)(e)))?n.map(((e,t)=>(0,r.isValidElement)(e)?r.cloneElement(e,{key:t}):e)).filter((e=>""!==e)):n.join("")}var s=n(57529);function a(e){var t,n;let{id:r,message:o}=e;if(void 0===r&&void 0===o)throw new Error("Docusaurus translation declarations must have at least a translation id or a default translation message");return null!=(t=null!=(n=s[null!=r?r:o])?n:o)?t:r}function i(e,t){let{message:n,id:r}=e;return o(a({message:n,id:r}),t)}function l(e){let{children:t,id:n,values:s}=e;if(t&&"string"!=typeof t)throw console.warn("Illegal children",t),new Error("The Docusaurus component only accept simple string values");const i=a({message:t,id:n});return r.createElement(r.Fragment,null,o(i,s))}},29935:(e,t,n)=>{"use strict";n.d(t,{m:()=>r});const r="default"},13919:(e,t,n)=>{"use strict";function r(e){return/^(?:\w*:|\/\/)/.test(e)}function o(e){return void 0!==e&&!r(e)}n.d(t,{Z:()=>o,b:()=>r})},44996:(e,t,n)=>{"use strict";n.d(t,{C:()=>a,Z:()=>i});var r=n(67294),o=n(52263),s=n(13919);function a(){const{siteConfig:{baseUrl:e,url:t}}=(0,o.Z)(),n=(0,r.useCallback)(((n,r)=>function(e,t,n,r){let{forcePrependBaseUrl:o=!1,absolute:a=!1}=void 0===r?{}:r;if(!n||n.startsWith("#")||(0,s.b)(n))return n;if(o)return t+n.replace(/^\//,"");if(n===t.replace(/\/$/,""))return t;const i=n.startsWith(t)?n:t+n.replace(/^\//,"");return a?e+i:i}(t,e,n,r)),[t,e]);return{withBaseUrl:n}}function i(e,t){void 0===t&&(t={});const{withBaseUrl:n}=a();return n(e,t)}},52263:(e,t,n)=>{"use strict";n.d(t,{Z:()=>s});var r=n(67294),o=n(58940);function s(){return(0,r.useContext)(o._)}},72389:(e,t,n)=>{"use strict";n.d(t,{Z:()=>s});var r=n(67294),o=n(98934);function s(){return(0,r.useContext)(o._)}},99670:(e,t,n)=>{"use strict";n.d(t,{Z:()=>r});function r(e){const t={};return function e(n,r){Object.entries(n).forEach((n=>{let[o,s]=n;const a=r?r+"."+o:o;var i;"object"==typeof(i=s)&&i&&Object.keys(i).length>0?e(s,a):t[a]=s}))}(e),t}},30226:(e,t,n)=>{"use strict";n.d(t,{_:()=>o,z:()=>s});var r=n(67294);const o=r.createContext(null);function s(e){let{children:t,value:n}=e;const s=r.useContext(o),a=(0,r.useMemo)((()=>function(e){let{parent:t,value:n}=e;if(!t){if(!n)throw new Error("Unexpected: no Docusaurus route context found");if(!("plugin"in n))throw new Error("Unexpected: Docusaurus topmost route context has no `plugin` attribute");return n}const r={...t.data,...null==n?void 0:n.data};return{plugin:t.plugin,data:r}}({parent:s,value:n})),[s,n]);return r.createElement(o.Provider,{value:a},t)}},80143:(e,t,n)=>{"use strict";n.d(t,{Iw:()=>b,gA:()=>m,WS:()=>f,_r:()=>p,Jo:()=>y,zh:()=>u,yW:()=>g,gB:()=>h});var r=n(16550),o=n(52263),s=n(29935);function a(e,t){void 0===t&&(t={});const n=function(){const{globalData:e}=(0,o.Z)();return e}()[e];if(!n&&t.failfast)throw new Error('Docusaurus plugin global data not found for "'+e+'" plugin.');return n}const i=e=>e.versions.find((e=>e.isLast));function l(e,t){const n=i(e);return[...e.versions.filter((e=>e!==n)),n].find((e=>!!(0,r.LX)(t,{path:e.path,exact:!1,strict:!1})))}function c(e,t){const n=l(e,t),o=null==n?void 0:n.docs.find((e=>!!(0,r.LX)(t,{path:e.path,exact:!0,strict:!1})));return{activeVersion:n,activeDoc:o,alternateDocVersions:o?function(t){const n={};return e.versions.forEach((e=>{e.docs.forEach((r=>{r.id===t&&(n[e.name]=r)}))})),n}(o.id):{}}}const d={},p=()=>{var e;return null!=(e=a("docusaurus-plugin-content-docs"))?e:d},u=e=>function(e,t,n){void 0===t&&(t=s.m),void 0===n&&(n={});const r=a(e),o=null==r?void 0:r[t];if(!o&&n.failfast)throw new Error('Docusaurus plugin global data not found for "'+e+'" plugin with id "'+t+'".');return o}("docusaurus-plugin-content-docs",e,{failfast:!0});function m(e){void 0===e&&(e={});const t=p(),{pathname:n}=(0,r.TH)();return function(e,t,n){void 0===n&&(n={});const o=Object.entries(e).sort(((e,t)=>t[1].path.localeCompare(e[1].path))).find((e=>{let[,n]=e;return!!(0,r.LX)(t,{path:n.path,exact:!1,strict:!1})})),s=o?{pluginId:o[0],pluginData:o[1]}:void 0;if(!s&&n.failfast)throw new Error("Can't find active docs plugin for \""+t+'" pathname, while it was expected to be found. Maybe you tried to use a docs feature that can only be used on a docs-related page? Existing docs plugin paths are: '+Object.values(e).map((e=>e.path)).join(", "));return s}(t,n,e)}function f(e){void 0===e&&(e={});const t=m(e),{pathname:n}=(0,r.TH)();if(!t)return;return{activePlugin:t,activeVersion:l(t.pluginData,n)}}function h(e){return u(e).versions}function g(e){const t=u(e);return i(t)}function b(e){const t=u(e),{pathname:n}=(0,r.TH)();return c(t,n)}function y(e){const t=u(e),{pathname:n}=(0,r.TH)();return function(e,t){const n=i(e);return{latestDocSuggestion:c(e,t).alternateDocVersions[n.name],latestVersionSuggestion:n}}(t,n)}},56657:(e,t,n)=>{"use strict";n.r(t),n.d(t,{default:()=>r});const r={onRouteDidUpdate(e){let{location:t,previousLocation:n}=e;!n||t.pathname===n.pathname&&t.search===n.search&&t.hash===n.hash||setTimeout((()=>{window.gtag("event","page_view",{page_title:document.title,page_location:window.location.href,page_path:t.pathname+t.search+t.hash})}))}}},18320:(e,t,n)=>{"use strict";n.r(t),n.d(t,{default:()=>s});var r=n(74865),o=n.n(r);o().configure({showSpinner:!1});const s={onRouteUpdate(e){let{location:t,previousLocation:n}=e;if(n&&t.pathname!==n.pathname){const e=window.setTimeout((()=>{o().start()}),200);return()=>window.clearTimeout(e)}},onRouteDidUpdate(){o().done()}}},3310:(e,t,n)=>{"use strict";n.r(t);var r=n(87410),o=n(36809);!function(e){const{themeConfig:{prism:t}}=o.default,{additionalLanguages:r}=t;globalThis.Prism=e,r.forEach((e=>{n(55979)("./prism-"+e)})),delete globalThis.Prism}(r.Z)},39471:(e,t,n)=>{"use strict";n.d(t,{Z:()=>s});var r=n(67294);const o="iconExternalLink_nPIU";function s(e){let{width:t=13.5,height:n=13.5}=e;return r.createElement("svg",{width:t,height:n,"aria-hidden":"true",viewBox:"0 0 24 24",className:o},r.createElement("path",{fill:"currentColor",d:"M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"}))}},7452:(e,t,n)=>{"use strict";n.d(t,{Z:()=>Rt});var r=n(67294),o=n(86010),s=n(44763),a=n(10833),i=n(83117),l=n(16550),c=n(95999),d=n(85936);const p="__docusaurus_skipToContent_fallback";function u(e){e.setAttribute("tabindex","-1"),e.focus(),e.removeAttribute("tabindex")}function m(){const e=(0,r.useRef)(null),{action:t}=(0,l.k6)(),n=(0,r.useCallback)((e=>{e.preventDefault();const t=null!=(n=document.querySelector("main:first-of-type"))?n:document.getElementById(p);var n;t&&u(t)}),[]);return(0,d.S)((n=>{let{location:r}=n;e.current&&!r.hash&&"PUSH"===t&&u(e.current)})),{containerRef:e,onClick:n}}const f=(0,c.I)({id:"theme.common.skipToMainContent",description:"The skip to content label used for accessibility, allowing to rapidly navigate to main content with keyboard tab/enter navigation",message:"Skip to main content"});function h(e){var t;const n=null!=(t=e.children)?t:f,{containerRef:o,onClick:s}=m();return r.createElement("div",{ref:o,role:"region","aria-label":f},r.createElement("a",(0,i.Z)({},e,{href:"#"+p,onClick:s}),n))}var g=n(35281),b=n(19727);const y="skipToContent_fXgn";function v(){return r.createElement(h,{className:y})}var x=n(86668),S=n(59689);function E(e){let{width:t=21,height:n=21,color:o="currentColor",strokeWidth:s=1.2,className:a,...l}=e;return r.createElement("svg",(0,i.Z)({viewBox:"0 0 15 15",width:t,height:n},l),r.createElement("g",{stroke:o,strokeWidth:s},r.createElement("path",{d:"M.75.75l13.5 13.5M14.25.75L.75 14.25"})))}const A="closeButton_CVFx";function L(e){return r.createElement("button",(0,i.Z)({type:"button","aria-label":(0,c.I)({id:"theme.AnnouncementBar.closeButtonAriaLabel",message:"Close",description:"The ARIA label for close button of announcement bar"})},e,{className:(0,o.Z)("clean-btn close",A,e.className)}),r.createElement(E,{width:14,height:14,strokeWidth:3.1}))}const M="content_knG7";function k(e){const{announcementBar:t}=(0,x.L)(),{content:n}=t;return r.createElement("div",(0,i.Z)({},e,{className:(0,o.Z)(M,e.className),dangerouslySetInnerHTML:{__html:n}}))}const w="announcementBar_mb4j",_="announcementBarPlaceholder_vyr4",I="announcementBarClose_gvF7",C="announcementBarContent_xLdY";function T(){const{announcementBar:e}=(0,x.L)(),{isActive:t,close:n}=(0,S.nT)();if(!t)return null;const{backgroundColor:o,textColor:s,isCloseable:a}=e;return r.createElement("div",{className:w,style:{backgroundColor:o,color:s},role:"banner"},a&&r.createElement("div",{className:_}),r.createElement(k,{className:C}),a&&r.createElement(L,{onClick:n,className:I}))}var Q=n(93163),R=n(12466);var D=n(902),O=n(13102);const P=r.createContext(null);function F(e){let{children:t}=e;const n=function(){const e=(0,Q.e)(),t=(0,O.HY)(),[n,o]=(0,r.useState)(!1),s=null!==t.component,a=(0,D.D9)(s);return(0,r.useEffect)((()=>{s&&!a&&o(!0)}),[s,a]),(0,r.useEffect)((()=>{s?e.shown||o(!0):o(!1)}),[e.shown,s]),(0,r.useMemo)((()=>[n,o]),[n])}();return r.createElement(P.Provider,{value:n},t)}function N(e){if(e.component){const t=e.component;return r.createElement(t,e.props)}}function B(){const e=(0,r.useContext)(P);if(!e)throw new D.i6("NavbarSecondaryMenuDisplayProvider");const[t,n]=e,o=(0,r.useCallback)((()=>n(!1)),[n]),s=(0,O.HY)();return(0,r.useMemo)((()=>({shown:t,hide:o,content:N(s)})),[o,s,t])}function V(e){let{header:t,primaryMenu:n,secondaryMenu:s}=e;const{shown:a}=B();return r.createElement("div",{className:"navbar-sidebar"},t,r.createElement("div",{className:(0,o.Z)("navbar-sidebar__items",{"navbar-sidebar__items--show-secondary":a})},r.createElement("div",{className:"navbar-sidebar__item menu"},n),r.createElement("div",{className:"navbar-sidebar__item menu"},s)))}var G=n(92949),U=n(72389);function W(e){return r.createElement("svg",(0,i.Z)({viewBox:"0 0 24 24",width:24,height:24},e),r.createElement("path",{fill:"currentColor",d:"M12,9c1.65,0,3,1.35,3,3s-1.35,3-3,3s-3-1.35-3-3S10.35,9,12,9 M12,7c-2.76,0-5,2.24-5,5s2.24,5,5,5s5-2.24,5-5 S14.76,7,12,7L12,7z M2,13l2,0c0.55,0,1-0.45,1-1s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S1.45,13,2,13z M20,13l2,0c0.55,0,1-0.45,1-1 s-0.45-1-1-1l-2,0c-0.55,0-1,0.45-1,1S19.45,13,20,13z M11,2v2c0,0.55,0.45,1,1,1s1-0.45,1-1V2c0-0.55-0.45-1-1-1S11,1.45,11,2z M11,20v2c0,0.55,0.45,1,1,1s1-0.45,1-1v-2c0-0.55-0.45-1-1-1C11.45,19,11,19.45,11,20z M5.99,4.58c-0.39-0.39-1.03-0.39-1.41,0 c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0s0.39-1.03,0-1.41L5.99,4.58z M18.36,16.95 c-0.39-0.39-1.03-0.39-1.41,0c-0.39,0.39-0.39,1.03,0,1.41l1.06,1.06c0.39,0.39,1.03,0.39,1.41,0c0.39-0.39,0.39-1.03,0-1.41 L18.36,16.95z M19.42,5.99c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06c-0.39,0.39-0.39,1.03,0,1.41 s1.03,0.39,1.41,0L19.42,5.99z M7.05,18.36c0.39-0.39,0.39-1.03,0-1.41c-0.39-0.39-1.03-0.39-1.41,0l-1.06,1.06 c-0.39,0.39-0.39,1.03,0,1.41s1.03,0.39,1.41,0L7.05,18.36z"}))}function z(e){return r.createElement("svg",(0,i.Z)({viewBox:"0 0 24 24",width:24,height:24},e),r.createElement("path",{fill:"currentColor",d:"M9.37,5.51C9.19,6.15,9.1,6.82,9.1,7.5c0,4.08,3.32,7.4,7.4,7.4c0.68,0,1.35-0.09,1.99-0.27C17.45,17.19,14.93,19,12,19 c-3.86,0-7-3.14-7-7C5,9.07,6.81,6.55,9.37,5.51z M12,3c-4.97,0-9,4.03-9,9s4.03,9,9,9s9-4.03,9-9c0-0.46-0.04-0.92-0.1-1.36 c-0.98,1.37-2.58,2.26-4.4,2.26c-2.98,0-5.4-2.42-5.4-5.4c0-1.81,0.89-3.42,2.26-4.4C12.92,3.04,12.46,3,12,3L12,3z"}))}const H={toggle:"toggle_vylO",toggleButton:"toggleButton_gllP",darkToggleIcon:"darkToggleIcon_wfgR",lightToggleIcon:"lightToggleIcon_pyhR",toggleButtonDisabled:"toggleButtonDisabled_aARS"};function j(e){let{className:t,buttonClassName:n,value:s,onChange:a}=e;const i=(0,U.Z)(),l=(0,c.I)({message:"Switch between dark and light mode (currently {mode})",id:"theme.colorToggle.ariaLabel",description:"The ARIA label for the navbar color mode toggle"},{mode:"dark"===s?(0,c.I)({message:"dark mode",id:"theme.colorToggle.ariaLabel.mode.dark",description:"The name for the dark color mode"}):(0,c.I)({message:"light mode",id:"theme.colorToggle.ariaLabel.mode.light",description:"The name for the light color mode"})});return r.createElement("div",{className:(0,o.Z)(H.toggle,t)},r.createElement("button",{className:(0,o.Z)("clean-btn",H.toggleButton,!i&&H.toggleButtonDisabled,n),type:"button",onClick:()=>a("dark"===s?"light":"dark"),disabled:!i,title:l,"aria-label":l,"aria-live":"polite"},r.createElement(W,{className:(0,o.Z)(H.toggleIcon,H.lightToggleIcon)}),r.createElement(z,{className:(0,o.Z)(H.toggleIcon,H.darkToggleIcon)})))}const $=r.memo(j),Z="darkNavbarColorModeToggle_X3D1";function X(e){let{className:t}=e;const n=(0,x.L)().navbar.style,o=(0,x.L)().colorMode.disableSwitch,{colorMode:s,setColorMode:a}=(0,G.I)();return o?null:r.createElement($,{className:t,buttonClassName:"dark"===n?Z:void 0,value:s,onChange:a})}var K=n(21327);function Y(){return r.createElement(K.Z,{className:"navbar__brand",imageClassName:"navbar__logo",titleClassName:"navbar__title text--truncate"})}function q(){const e=(0,Q.e)();return r.createElement("button",{type:"button","aria-label":(0,c.I)({id:"theme.docs.sidebar.closeSidebarButtonAriaLabel",message:"Close navigation bar",description:"The ARIA label for close button of mobile sidebar"}),className:"clean-btn navbar-sidebar__close",onClick:()=>e.toggle()},r.createElement(E,{color:"var(--ifm-color-emphasis-600)"}))}function J(){return r.createElement("div",{className:"navbar-sidebar__brand"},r.createElement(Y,null),r.createElement(X,{className:"margin-right--md"}),r.createElement(q,null))}var ee=n(39960),te=n(44996),ne=n(13919),re=n(98022),oe=n(39471);function se(e){let{activeBasePath:t,activeBaseRegex:n,to:o,href:s,label:a,html:l,isDropdownLink:c,prependBaseUrlToHref:d,...p}=e;const u=(0,te.Z)(o),m=(0,te.Z)(t),f=(0,te.Z)(s,{forcePrependBaseUrl:!0}),h=a&&s&&!(0,ne.Z)(s),g=l?{dangerouslySetInnerHTML:{__html:l}}:{children:r.createElement(r.Fragment,null,a,h&&r.createElement(oe.Z,c&&{width:12,height:12}))};return s?r.createElement(ee.Z,(0,i.Z)({href:d?f:s},p,g)):r.createElement(ee.Z,(0,i.Z)({to:u,isNavLink:!0},(t||n)&&{isActive:(e,t)=>n?(0,re.F)(n,t.pathname):t.pathname.startsWith(m)},p,g))}function ae(e){let{className:t,isDropdownItem:n=!1,...s}=e;const a=r.createElement(se,(0,i.Z)({className:(0,o.Z)(n?"dropdown__link":"navbar__item navbar__link",t),isDropdownLink:n},s));return n?r.createElement("li",null,a):a}function ie(e){let{className:t,isDropdownItem:n,...s}=e;return r.createElement("li",{className:"menu__list-item"},r.createElement(se,(0,i.Z)({className:(0,o.Z)("menu__link",t)},s)))}function le(e){var t;let{mobile:n=!1,position:o,...s}=e;const a=n?ie:ae;return r.createElement(a,(0,i.Z)({},s,{activeClassName:null!=(t=s.activeClassName)?t:n?"menu__link--active":"navbar__link--active"}))}var ce=n(86043),de=n(48596),pe=n(52263);function ue(e,t){return e.some((e=>function(e,t){return!!(0,de.Mg)(e.to,t)||!!(0,re.F)(e.activeBaseRegex,t)||!(!e.activeBasePath||!t.startsWith(e.activeBasePath))}(e,t)))}function me(e){var t;let{items:n,position:s,className:a,onClick:l,...c}=e;const d=(0,r.useRef)(null),[p,u]=(0,r.useState)(!1);return(0,r.useEffect)((()=>{const e=e=>{d.current&&!d.current.contains(e.target)&&u(!1)};return document.addEventListener("mousedown",e),document.addEventListener("touchstart",e),document.addEventListener("focusin",e),()=>{document.removeEventListener("mousedown",e),document.removeEventListener("touchstart",e),document.removeEventListener("focusin",e)}}),[d]),r.createElement("div",{ref:d,className:(0,o.Z)("navbar__item","dropdown","dropdown--hoverable",{"dropdown--right":"right"===s,"dropdown--show":p})},r.createElement(se,(0,i.Z)({"aria-haspopup":"true","aria-expanded":p,role:"button",href:c.to?void 0:"#",className:(0,o.Z)("navbar__link",a)},c,{onClick:c.to?void 0:e=>e.preventDefault(),onKeyDown:e=>{"Enter"===e.key&&(e.preventDefault(),u(!p))}}),null!=(t=c.children)?t:c.label),r.createElement("ul",{className:"dropdown__menu"},n.map(((e,t)=>r.createElement(je,(0,i.Z)({isDropdownItem:!0,activeClassName:"dropdown__link--active"},e,{key:t}))))))}function fe(e){var t;let{items:n,className:s,position:a,onClick:c,...d}=e;const p=function(){const{siteConfig:{baseUrl:e}}=(0,pe.Z)(),{pathname:t}=(0,l.TH)();return t.replace(e,"/")}(),u=ue(n,p),{collapsed:m,toggleCollapsed:f,setCollapsed:h}=(0,ce.u)({initialState:()=>!u});return(0,r.useEffect)((()=>{u&&h(!u)}),[p,u,h]),r.createElement("li",{className:(0,o.Z)("menu__list-item",{"menu__list-item--collapsed":m})},r.createElement(se,(0,i.Z)({role:"button",className:(0,o.Z)("menu__link menu__link--sublist menu__link--sublist-caret",s)},d,{onClick:e=>{e.preventDefault(),f()}}),null!=(t=d.children)?t:d.label),r.createElement(ce.z,{lazy:!0,as:"ul",className:"menu__list",collapsed:m},n.map(((e,t)=>r.createElement(je,(0,i.Z)({mobile:!0,isDropdownItem:!0,onClick:c,activeClassName:"menu__link--active"},e,{key:t}))))))}function he(e){let{mobile:t=!1,...n}=e;const o=t?fe:me;return r.createElement(o,n)}var ge=n(94711);function be(e){let{width:t=20,height:n=20,...o}=e;return r.createElement("svg",(0,i.Z)({viewBox:"0 0 24 24",width:t,height:n,"aria-hidden":!0},o),r.createElement("path",{fill:"currentColor",d:"M12.87 15.07l-2.54-2.51.03-.03c1.74-1.94 2.98-4.17 3.71-6.53H17V4h-7V2H8v2H1v1.99h11.17C11.5 7.92 10.44 9.75 9 11.35 8.07 10.32 7.3 9.19 6.69 8h-2c.73 1.63 1.73 3.17 2.98 4.56l-5.09 5.02L4 19l5-5 3.11 3.11.76-2.04zM18.5 10h-2L12 22h2l1.12-3h4.75L21 22h2l-4.5-12zm-2.62 7l1.62-4.33L19.12 17h-3.24z"}))}const ye="iconLanguage_nlXk";function ve(){return r.createElement("svg",{width:"15",height:"15",className:"DocSearch-Control-Key-Icon"},r.createElement("path",{d:"M4.505 4.496h2M5.505 5.496v5M8.216 4.496l.055 5.993M10 7.5c.333.333.5.667.5 1v2M12.326 4.5v5.996M8.384 4.496c1.674 0 2.116 0 2.116 1.5s-.442 1.5-2.116 1.5M3.205 9.303c-.09.448-.277 1.21-1.241 1.203C1 10.5.5 9.513.5 8V7c0-1.57.5-2.5 1.464-2.494.964.006 1.134.598 1.24 1.342M12.553 10.5h1.953",strokeWidth:"1.2",stroke:"currentColor",fill:"none",strokeLinecap:"square"}))}var xe=n(20830),Se=["translations"];function Ee(){return Ee=Object.assign||function(e){for(var t=1;te.length)&&(t=e.length);for(var n=0,r=new Array(t);n=0||(o[n]=e[n]);return o}(e,t);if(Object.getOwnPropertySymbols){var s=Object.getOwnPropertySymbols(e);for(r=0;r=0||Object.prototype.propertyIsEnumerable.call(e,n)&&(o[n]=e[n])}return o}var ke="Ctrl";var we=r.forwardRef((function(e,t){var n=e.translations,o=void 0===n?{}:n,s=Me(e,Se),a=o.buttonText,i=void 0===a?"Search":a,l=o.buttonAriaLabel,c=void 0===l?"Search":l,d=Ae((0,r.useState)(null),2),p=d[0],u=d[1];return(0,r.useEffect)((function(){"undefined"!=typeof navigator&&(/(Mac|iPhone|iPod|iPad)/i.test(navigator.platform)?u("\u2318"):u(ke))}),[]),r.createElement("button",Ee({type:"button",className:"DocSearch DocSearch-Button","aria-label":c},s,{ref:t}),r.createElement("span",{className:"DocSearch-Button-Container"},r.createElement(xe.W,null),r.createElement("span",{className:"DocSearch-Button-Placeholder"},i)),r.createElement("span",{className:"DocSearch-Button-Keys"},null!==p&&r.createElement(r.Fragment,null,r.createElement("kbd",{className:"DocSearch-Button-Key"},p===ke?r.createElement(ve,null):p),r.createElement("kbd",{className:"DocSearch-Button-Key"},"K"))))})),_e=n(35742),Ie=n(66177),Ce=n(239),Te=n(43320);var Qe=n(73935);const Re={button:{buttonText:(0,c.I)({id:"theme.SearchBar.label",message:"Search",description:"The ARIA label and placeholder for search button"}),buttonAriaLabel:(0,c.I)({id:"theme.SearchBar.label",message:"Search",description:"The ARIA label and placeholder for search button"})},modal:{searchBox:{resetButtonTitle:(0,c.I)({id:"theme.SearchModal.searchBox.resetButtonTitle",message:"Clear the query",description:"The label and ARIA label for search box reset button"}),resetButtonAriaLabel:(0,c.I)({id:"theme.SearchModal.searchBox.resetButtonTitle",message:"Clear the query",description:"The label and ARIA label for search box reset button"}),cancelButtonText:(0,c.I)({id:"theme.SearchModal.searchBox.cancelButtonText",message:"Cancel",description:"The label and ARIA label for search box cancel button"}),cancelButtonAriaLabel:(0,c.I)({id:"theme.SearchModal.searchBox.cancelButtonText",message:"Cancel",description:"The label and ARIA label for search box cancel button"})},startScreen:{recentSearchesTitle:(0,c.I)({id:"theme.SearchModal.startScreen.recentSearchesTitle",message:"Recent",description:"The title for recent searches"}),noRecentSearchesText:(0,c.I)({id:"theme.SearchModal.startScreen.noRecentSearchesText",message:"No recent searches",description:"The text when no recent searches"}),saveRecentSearchButtonTitle:(0,c.I)({id:"theme.SearchModal.startScreen.saveRecentSearchButtonTitle",message:"Save this search",description:"The label for save recent search button"}),removeRecentSearchButtonTitle:(0,c.I)({id:"theme.SearchModal.startScreen.removeRecentSearchButtonTitle",message:"Remove this search from history",description:"The label for remove recent search button"}),favoriteSearchesTitle:(0,c.I)({id:"theme.SearchModal.startScreen.favoriteSearchesTitle",message:"Favorite",description:"The title for favorite searches"}),removeFavoriteSearchButtonTitle:(0,c.I)({id:"theme.SearchModal.startScreen.removeFavoriteSearchButtonTitle",message:"Remove this search from favorites",description:"The label for remove favorite search button"})},errorScreen:{titleText:(0,c.I)({id:"theme.SearchModal.errorScreen.titleText",message:"Unable to fetch results",description:"The title for error screen of search modal"}),helpText:(0,c.I)({id:"theme.SearchModal.errorScreen.helpText",message:"You might want to check your network connection.",description:"The help text for error screen of search modal"})},footer:{selectText:(0,c.I)({id:"theme.SearchModal.footer.selectText",message:"to select",description:"The explanatory text of the action for the enter key"}),selectKeyAriaLabel:(0,c.I)({id:"theme.SearchModal.footer.selectKeyAriaLabel",message:"Enter key",description:"The ARIA label for the Enter key button that makes the selection"}),navigateText:(0,c.I)({id:"theme.SearchModal.footer.navigateText",message:"to navigate",description:"The explanatory text of the action for the Arrow up and Arrow down key"}),navigateUpKeyAriaLabel:(0,c.I)({id:"theme.SearchModal.footer.navigateUpKeyAriaLabel",message:"Arrow up",description:"The ARIA label for the Arrow up key button that makes the navigation"}),navigateDownKeyAriaLabel:(0,c.I)({id:"theme.SearchModal.footer.navigateDownKeyAriaLabel",message:"Arrow down",description:"The ARIA label for the Arrow down key button that makes the navigation"}),closeText:(0,c.I)({id:"theme.SearchModal.footer.closeText",message:"to close",description:"The explanatory text of the action for Escape key"}),closeKeyAriaLabel:(0,c.I)({id:"theme.SearchModal.footer.closeKeyAriaLabel",message:"Escape key",description:"The ARIA label for the Escape key button that close the modal"}),searchByText:(0,c.I)({id:"theme.SearchModal.footer.searchByText",message:"Search by",description:"The text explain that the search is making by Algolia"})},noResultsScreen:{noResultsText:(0,c.I)({id:"theme.SearchModal.noResultsScreen.noResultsText",message:"No results for",description:"The text explains that there are no results for the following search"}),suggestedQueryText:(0,c.I)({id:"theme.SearchModal.noResultsScreen.suggestedQueryText",message:"Try searching for",description:"The text for the suggested query when no results are found for the following search"}),reportMissingResultsText:(0,c.I)({id:"theme.SearchModal.noResultsScreen.reportMissingResultsText",message:"Believe this query should return results?",description:"The text for the question where the user thinks there are missing results"}),reportMissingResultsLinkText:(0,c.I)({id:"theme.SearchModal.noResultsScreen.reportMissingResultsLinkText",message:"Let us know.",description:"The text for the link to report missing results"})}},placeholder:(0,c.I)({id:"theme.SearchModal.placeholder",message:"Search docs",description:"The placeholder of the input of the DocSearch pop-up modal"})};let De=null;function Oe(e){let{hit:t,children:n}=e;return r.createElement(ee.Z,{to:t.url},n)}function Pe(e){let{state:t,onClose:n}=e;const o=(0,Ie.M)();return r.createElement(ee.Z,{to:o(t.query),onClick:n},r.createElement(c.Z,{id:"theme.SearchBar.seeAll",values:{count:t.context.nbHits}},"See all {count} results"))}function Fe(e){var t,o;let{contextualSearch:s,externalUrlRegex:a,...c}=e;const{siteMetadata:d}=(0,pe.Z)(),p=(0,Ce.l)(),u=function(){const{locale:e,tags:t}=(0,Te._q)();return["language:"+e,t.map((e=>"docusaurus_tag:"+e))]}(),m=null!=(t=null==(o=c.searchParameters)?void 0:o.facetFilters)?t:[],f=s?function(e,t){const n=e=>"string"==typeof e?[e]:e;return[...n(e),...n(t)]}(u,m):m,h={...c.searchParameters,facetFilters:f},g=(0,l.k6)(),b=(0,r.useRef)(null),y=(0,r.useRef)(null),[v,x]=(0,r.useState)(!1),[S,E]=(0,r.useState)(void 0),A=(0,r.useCallback)((()=>De?Promise.resolve():Promise.all([n.e(6780).then(n.bind(n,76780)),Promise.all([n.e(532),n.e(3969)]).then(n.bind(n,46945)),Promise.all([n.e(532),n.e(8894)]).then(n.bind(n,18894))]).then((e=>{let[{DocSearchModal:t}]=e;De=t}))),[]),L=(0,r.useCallback)((()=>{A().then((()=>{b.current=document.createElement("div"),document.body.insertBefore(b.current,document.body.firstChild),x(!0)}))}),[A,x]),M=(0,r.useCallback)((()=>{var e;x(!1),null==(e=b.current)||e.remove()}),[x]),k=(0,r.useCallback)((e=>{A().then((()=>{x(!0),E(e.key)}))}),[A,x,E]),w=(0,r.useRef)({navigate(e){let{itemUrl:t}=e;(0,re.F)(a,t)?window.location.href=t:g.push(t)}}).current,_=(0,r.useRef)((e=>c.transformItems?c.transformItems(e):e.map((e=>({...e,url:p(e.url)}))))).current,I=(0,r.useMemo)((()=>e=>r.createElement(Pe,(0,i.Z)({},e,{onClose:M}))),[M]),C=(0,r.useCallback)((e=>(e.addAlgoliaAgent("docusaurus",d.docusaurusVersion),e)),[d.docusaurusVersion]);return function(e){var t=e.isOpen,n=e.onOpen,o=e.onClose,s=e.onInput,a=e.searchButtonRef;r.useEffect((function(){function e(e){(27===e.keyCode&&t||"k"===e.key.toLowerCase()&&(e.metaKey||e.ctrlKey)||!function(e){var t=e.target,n=t.tagName;return t.isContentEditable||"INPUT"===n||"SELECT"===n||"TEXTAREA"===n}(e)&&"/"===e.key&&!t)&&(e.preventDefault(),t?o():document.body.classList.contains("DocSearch--active")||document.body.classList.contains("DocSearch--active")||n()),a&&a.current===document.activeElement&&s&&/[a-zA-Z0-9]/.test(String.fromCharCode(e.keyCode))&&s(e)}return window.addEventListener("keydown",e),function(){window.removeEventListener("keydown",e)}}),[t,n,o,s,a])}({isOpen:v,onOpen:L,onClose:M,onInput:k,searchButtonRef:y}),r.createElement(r.Fragment,null,r.createElement(_e.Z,null,r.createElement("link",{rel:"preconnect",href:"https://"+c.appId+"-dsn.algolia.net",crossOrigin:"anonymous"})),r.createElement(we,{onTouchStart:A,onFocus:A,onMouseOver:A,onClick:L,ref:y,translations:Re.button}),v&&De&&b.current&&(0,Qe.createPortal)(r.createElement(De,(0,i.Z)({onClose:M,initialScrollY:window.scrollY,initialQuery:S,navigator:w,transformItems:_,hitComponent:Oe,transformSearchClient:C},c.searchPagePath&&{resultsFooterComponent:I},c,{searchParameters:h,placeholder:Re.placeholder,translations:Re.modal})),b.current))}function Ne(){const{siteConfig:e}=(0,pe.Z)();return r.createElement(Fe,e.themeConfig.algolia)}const Be="searchBox_ZlJk";function Ve(e){let{children:t,className:n}=e;return r.createElement("div",{className:(0,o.Z)(n,Be)},t)}var Ge=n(80143),Ue=n(53438);var We=n(60373);const ze=e=>e.docs.find((t=>t.id===e.mainDocId));const He={default:le,localeDropdown:function(e){let{mobile:t,dropdownItemsBefore:n,dropdownItemsAfter:o,...s}=e;const{i18n:{currentLocale:a,locales:d,localeConfigs:p}}=(0,pe.Z)(),u=(0,ge.l)(),{search:m,hash:f}=(0,l.TH)(),h=[...n,...d.map((e=>{const n=""+("pathname://"+u.createUrl({locale:e,fullyQualified:!1}))+m+f;return{label:p[e].label,lang:p[e].htmlLang,to:n,target:"_self",autoAddBaseUrl:!1,className:e===a?t?"menu__link--active":"dropdown__link--active":""}})),...o],g=t?(0,c.I)({message:"Languages",id:"theme.navbar.mobileLanguageDropdown.label",description:"The label for the mobile language switcher dropdown"}):p[a].label;return r.createElement(he,(0,i.Z)({},s,{mobile:t,label:r.createElement(r.Fragment,null,r.createElement(be,{className:ye}),g),items:h}))},search:function(e){let{mobile:t,className:n}=e;return t?null:r.createElement(Ve,{className:n},r.createElement(Ne,null))},dropdown:he,html:function(e){let{value:t,className:n,mobile:s=!1,isDropdownItem:a=!1}=e;const i=a?"li":"div";return r.createElement(i,{className:(0,o.Z)({navbar__item:!s&&!a,"menu__list-item":s},n),dangerouslySetInnerHTML:{__html:t}})},doc:function(e){let{docId:t,label:n,docsPluginId:o,...s}=e;const{activeDoc:a}=(0,Ge.Iw)(o),l=(0,Ue.vY)(t,o);return null===l?null:r.createElement(le,(0,i.Z)({exact:!0},s,{isActive:()=>(null==a?void 0:a.path)===l.path||!(null==a||!a.sidebar)&&a.sidebar===l.sidebar,label:null!=n?n:l.id,to:l.path}))},docSidebar:function(e){let{sidebarId:t,label:n,docsPluginId:o,...s}=e;const{activeDoc:a}=(0,Ge.Iw)(o),l=(0,Ue.oz)(t,o).link;if(!l)throw new Error('DocSidebarNavbarItem: Sidebar with ID "'+t+"\" doesn't have anything to be linked to.");return r.createElement(le,(0,i.Z)({exact:!0},s,{isActive:()=>(null==a?void 0:a.sidebar)===t,label:null!=n?n:l.label,to:l.path}))},docsVersion:function(e){let{label:t,to:n,docsPluginId:o,...s}=e;const a=(0,Ue.lO)(o)[0],l=null!=t?t:a.label,c=null!=n?n:(e=>e.docs.find((t=>t.id===e.mainDocId)))(a).path;return r.createElement(le,(0,i.Z)({},s,{label:l,to:c}))},docsVersionDropdown:function(e){let{mobile:t,docsPluginId:n,dropdownActiveClassDisabled:o,dropdownItemsBefore:s,dropdownItemsAfter:a,...d}=e;const{search:p,hash:u}=(0,l.TH)(),m=(0,Ge.Iw)(n),f=(0,Ge.gB)(n),{savePreferredVersionName:h}=(0,We.J)(n),g=[...s,...f.map((e=>{var t;const n=null!=(t=m.alternateDocVersions[e.name])?t:ze(e);return{label:e.label,to:""+n.path+p+u,isActive:()=>e===m.activeVersion,onClick:()=>h(e.name)}})),...a],b=(0,Ue.lO)(n)[0],y=t&&g.length>1?(0,c.I)({id:"theme.navbar.mobileVersionsDropdown.label",message:"Versions",description:"The label for the navbar versions dropdown on mobile view"}):b.label,v=t&&g.length>1?void 0:ze(b).path;return g.length<=1?r.createElement(le,(0,i.Z)({},d,{mobile:t,label:y,to:v,isActive:o?()=>!1:void 0})):r.createElement(he,(0,i.Z)({},d,{mobile:t,label:y,to:v,items:g,isActive:o?()=>!1:void 0}))}};function je(e){let{type:t,...n}=e;const o=function(e,t){return e&&"default"!==e?e:"items"in t?"dropdown":"default"}(t,n),s=He[o];if(!s)throw new Error('No NavbarItem component found for type "'+t+'".');return r.createElement(s,n)}function $e(){const e=(0,Q.e)(),t=(0,x.L)().navbar.items;return r.createElement("ul",{className:"menu__list"},t.map(((t,n)=>r.createElement(je,(0,i.Z)({mobile:!0},t,{onClick:()=>e.toggle(),key:n})))))}function Ze(e){return r.createElement("button",(0,i.Z)({},e,{type:"button",className:"clean-btn navbar-sidebar__back"}),r.createElement(c.Z,{id:"theme.navbar.mobileSidebarSecondaryMenu.backButtonLabel",description:"The label of the back button to return to main menu, inside the mobile navbar sidebar secondary menu (notably used to display the docs sidebar)"},"\u2190 Back to main menu"))}function Xe(){const e=0===(0,x.L)().navbar.items.length,t=B();return r.createElement(r.Fragment,null,!e&&r.createElement(Ze,{onClick:()=>t.hide()}),t.content)}function Ke(){const e=(0,Q.e)();var t;return void 0===(t=e.shown)&&(t=!0),(0,r.useEffect)((()=>(document.body.style.overflow=t?"hidden":"visible",()=>{document.body.style.overflow="visible"})),[t]),e.shouldRender?r.createElement(V,{header:r.createElement(J,null),primaryMenu:r.createElement($e,null),secondaryMenu:r.createElement(Xe,null)}):null}const Ye="navbarHideable_m1mJ",qe="navbarHidden_jGov";function Je(e){return r.createElement("div",(0,i.Z)({role:"presentation"},e,{className:(0,o.Z)("navbar-sidebar__backdrop",e.className)}))}function et(e){let{children:t}=e;const{navbar:{hideOnScroll:n,style:s}}=(0,x.L)(),a=(0,Q.e)(),{navbarRef:i,isNavbarVisible:l}=function(e){const[t,n]=(0,r.useState)(e),o=(0,r.useRef)(!1),s=(0,r.useRef)(0),a=(0,r.useCallback)((e=>{null!==e&&(s.current=e.getBoundingClientRect().height)}),[]);return(0,R.RF)(((t,r)=>{let{scrollY:a}=t;if(!e)return;if(a=i?n(!1):a+c{if(!e)return;const r=t.location.hash;if(r?document.getElementById(r.substring(1)):void 0)return o.current=!0,void n(!1);n(!0)})),{navbarRef:a,isNavbarVisible:t}}(n);return r.createElement("nav",{ref:i,"aria-label":(0,c.I)({id:"theme.NavBar.navAriaLabel",message:"Main",description:"The ARIA label for the main navigation"}),className:(0,o.Z)("navbar","navbar--fixed-top",n&&[Ye,!l&&qe],{"navbar--dark":"dark"===s,"navbar--primary":"primary"===s,"navbar-sidebar--show":a.shown})},t,r.createElement(Je,{onClick:a.toggle}),r.createElement(Ke,null))}var tt=n(18780);const nt="errorBoundaryError_a6uf";function rt(e){return r.createElement("button",(0,i.Z)({type:"button"},e),r.createElement(c.Z,{id:"theme.ErrorPageContent.tryAgain",description:"The label of the button to try again rendering when the React error boundary captures an error"},"Try again"))}function ot(e){let{error:t}=e;const n=(0,tt.getErrorCausalChain)(t).map((e=>e.message)).join("\n\nCause:\n");return r.createElement("p",{className:nt},n)}class st extends r.Component{componentDidCatch(e,t){throw this.props.onError(e,t)}render(){return this.props.children}}function at(e){let{width:t=30,height:n=30,className:o,...s}=e;return r.createElement("svg",(0,i.Z)({className:o,width:t,height:n,viewBox:"0 0 30 30","aria-hidden":"true"},s),r.createElement("path",{stroke:"currentColor",strokeLinecap:"round",strokeMiterlimit:"10",strokeWidth:"2",d:"M4 7h22M4 15h22M4 23h22"}))}function it(){const{toggle:e,shown:t}=(0,Q.e)();return r.createElement("button",{onClick:e,"aria-label":(0,c.I)({id:"theme.docs.sidebar.toggleSidebarButtonAriaLabel",message:"Toggle navigation bar",description:"The ARIA label for hamburger menu button of mobile navigation"}),"aria-expanded":t,className:"navbar__toggle clean-btn",type:"button"},r.createElement(at,null))}const lt="colorModeToggle_DEke";function ct(e){let{items:t}=e;return r.createElement(r.Fragment,null,t.map(((e,t)=>r.createElement(st,{key:t,onError:t=>new Error("A theme navbar item failed to render.\nPlease double-check the following navbar item (themeConfig.navbar.items) of your Docusaurus config:\n"+JSON.stringify(e,null,2),{cause:t})},r.createElement(je,e)))))}function dt(e){let{left:t,right:n}=e;return r.createElement("div",{className:"navbar__inner"},r.createElement("div",{className:"navbar__items"},t),r.createElement("div",{className:"navbar__items navbar__items--right"},n))}function pt(){const e=(0,Q.e)(),t=(0,x.L)().navbar.items,[n,o]=function(e){function t(e){var t;return"left"===(null!=(t=e.position)?t:"right")}return[e.filter(t),e.filter((e=>!t(e)))]}(t),s=t.find((e=>"search"===e.type));return r.createElement(dt,{left:r.createElement(r.Fragment,null,!e.disabled&&r.createElement(it,null),r.createElement(Y,null),r.createElement(ct,{items:n})),right:r.createElement(r.Fragment,null,r.createElement(ct,{items:o}),r.createElement(X,{className:lt}),!s&&r.createElement(Ve,null,r.createElement(Ne,null)))})}function ut(){return r.createElement(et,null,r.createElement(pt,null))}function mt(e){let{item:t}=e;const{to:n,href:o,label:s,prependBaseUrlToHref:a,...l}=t,c=(0,te.Z)(n),d=(0,te.Z)(o,{forcePrependBaseUrl:!0});return r.createElement(ee.Z,(0,i.Z)({className:"footer__link-item"},o?{href:a?d:o}:{to:c},l),s,o&&!(0,ne.Z)(o)&&r.createElement(oe.Z,null))}function ft(e){var t;let{item:n}=e;return n.html?r.createElement("li",{className:"footer__item",dangerouslySetInnerHTML:{__html:n.html}}):r.createElement("li",{key:null!=(t=n.href)?t:n.to,className:"footer__item"},r.createElement(mt,{item:n}))}function ht(e){let{column:t}=e;return r.createElement("div",{className:"col footer__col"},r.createElement("div",{className:"footer__title"},t.title),r.createElement("ul",{className:"footer__items clean-list"},t.items.map(((e,t)=>r.createElement(ft,{key:t,item:e})))))}function gt(e){let{columns:t}=e;return r.createElement("div",{className:"row footer__links"},t.map(((e,t)=>r.createElement(ht,{key:t,column:e}))))}function bt(){return r.createElement("span",{className:"footer__link-separator"},"\xb7")}function yt(e){let{item:t}=e;return t.html?r.createElement("span",{className:"footer__link-item",dangerouslySetInnerHTML:{__html:t.html}}):r.createElement(mt,{item:t})}function vt(e){let{links:t}=e;return r.createElement("div",{className:"footer__links text--center"},r.createElement("div",{className:"footer__links"},t.map(((e,n)=>r.createElement(r.Fragment,{key:n},r.createElement(yt,{item:e}),t.length!==n+1&&r.createElement(bt,null))))))}function xt(e){let{links:t}=e;return function(e){return"title"in e[0]}(t)?r.createElement(gt,{columns:t}):r.createElement(vt,{links:t})}var St=n(50941);const Et="footerLogoLink_BH7S";function At(e){var t;let{logo:n}=e;const{withBaseUrl:s}=(0,te.C)(),a={light:s(n.src),dark:s(null!=(t=n.srcDark)?t:n.src)};return r.createElement(St.Z,{className:(0,o.Z)("footer__logo",n.className),alt:n.alt,sources:a,width:n.width,height:n.height,style:n.style})}function Lt(e){let{logo:t}=e;return t.href?r.createElement(ee.Z,{href:t.href,className:Et,target:t.target},r.createElement(At,{logo:t})):r.createElement(At,{logo:t})}function Mt(e){let{copyright:t}=e;return r.createElement("div",{className:"footer__copyright",dangerouslySetInnerHTML:{__html:t}})}function kt(e){let{style:t,links:n,logo:s,copyright:a}=e;return r.createElement("footer",{className:(0,o.Z)("footer",{"footer--dark":"dark"===t})},r.createElement("div",{className:"container container-fluid"},n,(s||a)&&r.createElement("div",{className:"footer__bottom text--center"},s&&r.createElement("div",{className:"margin-bottom--sm"},s),a)))}function wt(){const{footer:e}=(0,x.L)();if(!e)return null;const{copyright:t,links:n,logo:o,style:s}=e;return r.createElement(kt,{style:s,links:n&&n.length>0&&r.createElement(xt,{links:n}),logo:o&&r.createElement(Lt,{logo:o}),copyright:t&&r.createElement(Mt,{copyright:t})})}const _t=r.memo(wt),It=(0,D.Qc)([G.S,S.pl,R.OC,We.L5,a.VC,function(e){let{children:t}=e;return r.createElement(O.n2,null,r.createElement(Q.M,null,r.createElement(F,null,t)))}]);function Ct(e){let{children:t}=e;return r.createElement(It,null,t)}function Tt(e){let{error:t,tryAgain:n}=e;return r.createElement("main",{className:"container margin-vert--xl"},r.createElement("div",{className:"row"},r.createElement("div",{className:"col col--6 col--offset-3"},r.createElement("h1",{className:"hero__title"},r.createElement(c.Z,{id:"theme.ErrorPageContent.title",description:"The title of the fallback page when the page crashed"},"This page crashed.")),r.createElement("div",{className:"margin-vert--lg"},r.createElement(rt,{onClick:n,className:"button button--primary shadow--lw"})),r.createElement("hr",null),r.createElement("div",{className:"margin-vert--md"},r.createElement(ot,{error:t})))))}const Qt="mainWrapper_z2l0";function Rt(e){const{children:t,noFooter:n,wrapperClassName:i,title:l,description:c}=e;return(0,b.t)(),r.createElement(Ct,null,r.createElement(a.d,{title:l,description:c}),r.createElement(v,null),r.createElement(T,null),r.createElement(ut,null),r.createElement("div",{id:p,className:(0,o.Z)(g.k.wrapper.main,Qt,i)},r.createElement(s.Z,{fallback:e=>r.createElement(Tt,e)},t)),!n&&r.createElement(_t,null))}},21327:(e,t,n)=>{"use strict";n.d(t,{Z:()=>p});var r=n(83117),o=n(67294),s=n(39960),a=n(44996),i=n(52263),l=n(86668),c=n(50941);function d(e){let{logo:t,alt:n,imageClassName:r}=e;const s={light:(0,a.Z)(t.src),dark:(0,a.Z)(t.srcDark||t.src)},i=o.createElement(c.Z,{className:t.className,sources:s,height:t.height,width:t.width,alt:n,style:t.style});return r?o.createElement("div",{className:r},i):i}function p(e){var t;const{siteConfig:{title:n}}=(0,i.Z)(),{navbar:{title:c,logo:p}}=(0,l.L)(),{imageClassName:u,titleClassName:m,...f}=e,h=(0,a.Z)((null==p?void 0:p.href)||"/"),g=c?"":n,b=null!=(t=null==p?void 0:p.alt)?t:g;return o.createElement(s.Z,(0,r.Z)({to:h},f,(null==p?void 0:p.target)&&{target:p.target}),p&&o.createElement(d,{logo:p,alt:b,imageClassName:u}),null!=c&&o.createElement("b",{className:m},c))}},90197:(e,t,n)=>{"use strict";n.d(t,{Z:()=>s});var r=n(67294),o=n(35742);function s(e){let{locale:t,version:n,tag:s}=e;const a=t;return r.createElement(o.Z,null,t&&r.createElement("meta",{name:"docusaurus_locale",content:t}),n&&r.createElement("meta",{name:"docusaurus_version",content:n}),s&&r.createElement("meta",{name:"docusaurus_tag",content:s}),a&&r.createElement("meta",{name:"docsearch:language",content:a}),n&&r.createElement("meta",{name:"docsearch:version",content:n}),s&&r.createElement("meta",{name:"docsearch:docusaurus_tag",content:s}))}},50941:(e,t,n)=>{"use strict";n.d(t,{Z:()=>c});var r=n(83117),o=n(67294),s=n(86010),a=n(72389),i=n(92949);const l={themedImage:"themedImage_ToTc","themedImage--light":"themedImage--light_HNdA","themedImage--dark":"themedImage--dark_i4oU"};function c(e){const t=(0,a.Z)(),{colorMode:n}=(0,i.I)(),{sources:c,className:d,alt:p,...u}=e,m=t?"dark"===n?["dark"]:["light"]:["light","dark"];return o.createElement(o.Fragment,null,m.map((e=>o.createElement("img",(0,r.Z)({key:e,src:c[e],alt:p,className:(0,s.Z)(l.themedImage,l["themedImage--"+e],d)},u)))))}},86043:(e,t,n)=>{"use strict";n.d(t,{u:()=>i,z:()=>h});var r=n(83117),o=n(67294),s=n(10412),a=n(91442);function i(e){let{initialState:t}=e;const[n,r]=(0,o.useState)(null!=t&&t),s=(0,o.useCallback)((()=>{r((e=>!e))}),[]);return{collapsed:n,setCollapsed:r,toggleCollapsed:s}}const l={display:"none",overflow:"hidden",height:"0px"},c={display:"block",overflow:"visible",height:"auto"};function d(e,t){const n=t?l:c;e.style.display=n.display,e.style.overflow=n.overflow,e.style.height=n.height}function p(e){let{collapsibleRef:t,collapsed:n,animation:r}=e;const s=(0,o.useRef)(!1);(0,o.useEffect)((()=>{const e=t.current;function o(){var t,n;const o=e.scrollHeight,s=null!=(t=null==r?void 0:r.duration)?t:function(e){if((0,a.n)())return 1;const t=e/36;return Math.round(10*(4+15*t**.25+t/5))}(o);return{transition:"height "+s+"ms "+(null!=(n=null==r?void 0:r.easing)?n:"ease-in-out"),height:o+"px"}}function i(){const t=o();e.style.transition=t.transition,e.style.height=t.height}if(!s.current)return d(e,n),void(s.current=!0);return e.style.willChange="height",function(){const t=requestAnimationFrame((()=>{n?(i(),requestAnimationFrame((()=>{e.style.height=l.height,e.style.overflow=l.overflow}))):(e.style.display="block",requestAnimationFrame((()=>{i()})))}));return()=>cancelAnimationFrame(t)}()}),[t,n,r])}function u(e){if(!s.Z.canUseDOM)return e?l:c}function m(e){let{as:t="div",collapsed:n,children:r,animation:s,onCollapseTransitionEnd:a,className:i,disableSSRStyle:l}=e;const c=(0,o.useRef)(null);return p({collapsibleRef:c,collapsed:n,animation:s}),o.createElement(t,{ref:c,style:l?void 0:u(n),onTransitionEnd:e=>{"height"===e.propertyName&&(d(c.current,n),null==a||a(n))},className:i},r)}function f(e){let{collapsed:t,...n}=e;const[s,a]=(0,o.useState)(!t),[i,l]=(0,o.useState)(t);return(0,o.useLayoutEffect)((()=>{t||a(!0)}),[t]),(0,o.useLayoutEffect)((()=>{s&&l(t)}),[s,t]),s?o.createElement(m,(0,r.Z)({},n,{collapsed:i})):null}function h(e){let{lazy:t,...n}=e;const r=t?f:m;return o.createElement(r,n)}},59689:(e,t,n)=>{"use strict";n.d(t,{nT:()=>f,pl:()=>m});var r=n(67294),o=n(72389),s=n(50012),a=n(902),i=n(86668);const l=(0,s.WA)("docusaurus.announcement.dismiss"),c=(0,s.WA)("docusaurus.announcement.id"),d=()=>"true"===l.get(),p=e=>l.set(String(e)),u=r.createContext(null);function m(e){let{children:t}=e;const n=function(){const{announcementBar:e}=(0,i.L)(),t=(0,o.Z)(),[n,s]=(0,r.useState)((()=>!!t&&d()));(0,r.useEffect)((()=>{s(d())}),[]);const a=(0,r.useCallback)((()=>{p(!0),s(!0)}),[]);return(0,r.useEffect)((()=>{if(!e)return;const{id:t}=e;let n=c.get();"annoucement-bar"===n&&(n="announcement-bar");const r=t!==n;c.set(t),r&&p(!1),!r&&d()||s(!1)}),[e]),(0,r.useMemo)((()=>({isActive:!!e&&!n,close:a})),[e,n,a])}();return r.createElement(u.Provider,{value:n},t)}function f(){const e=(0,r.useContext)(u);if(!e)throw new a.i6("AnnouncementBarProvider");return e}},92949:(e,t,n)=>{"use strict";n.d(t,{I:()=>g,S:()=>h});var r=n(67294),o=n(10412),s=n(902),a=n(50012),i=n(86668);const l=r.createContext(void 0),c="theme",d=(0,a.WA)(c),p="light",u="dark",m=e=>e===u?u:p;function f(){const{colorMode:{defaultMode:e,disableSwitch:t,respectPrefersColorScheme:n}}=(0,i.L)(),[s,a]=(0,r.useState)((e=>o.Z.canUseDOM?m(document.documentElement.getAttribute("data-theme")):m(e))(e));(0,r.useEffect)((()=>{t&&d.del()}),[t]);const l=(0,r.useCallback)((function(t,r){void 0===r&&(r={});const{persist:o=!0}=r;t?(a(t),o&&(e=>{d.set(m(e))})(t)):(a(n?window.matchMedia("(prefers-color-scheme: dark)").matches?u:p:e),d.del())}),[n,e]);(0,r.useEffect)((()=>{document.documentElement.setAttribute("data-theme",m(s))}),[s]),(0,r.useEffect)((()=>{if(t)return;const e=e=>{if(e.key!==c)return;const t=d.get();null!==t&&l(m(t))};return window.addEventListener("storage",e),()=>window.removeEventListener("storage",e)}),[t,l]);const f=(0,r.useRef)(!1);return(0,r.useEffect)((()=>{if(t&&!n)return;const e=window.matchMedia("(prefers-color-scheme: dark)"),r=()=>{window.matchMedia("print").matches||f.current?f.current=window.matchMedia("print").matches:l(null)};return e.addListener(r),()=>e.removeListener(r)}),[l,t,n]),(0,r.useMemo)((()=>({colorMode:s,setColorMode:l,get isDarkTheme(){return s===u},setLightTheme(){l(p)},setDarkTheme(){l(u)}})),[s,l])}function h(e){let{children:t}=e;const n=f();return r.createElement(l.Provider,{value:n},t)}function g(){const e=(0,r.useContext)(l);if(null==e)throw new s.i6("ColorModeProvider","Please see https://docusaurus.io/docs/api/themes/configuration#use-color-mode.");return e}},60373:(e,t,n)=>{"use strict";n.d(t,{J:()=>v,L5:()=>b,Oh:()=>x});var r=n(67294),o=n(80143),s=n(29935),a=n(86668),i=n(53438),l=n(902),c=n(50012);const d=e=>"docs-preferred-version-"+e,p=(e,t,n)=>{(0,c.WA)(d(e),{persistence:t}).set(n)},u=(e,t)=>(0,c.WA)(d(e),{persistence:t}).get(),m=(e,t)=>{(0,c.WA)(d(e),{persistence:t}).del()};const f=r.createContext(null);function h(){const e=(0,o._r)(),t=(0,a.L)().docs.versionPersistence,n=(0,r.useMemo)((()=>Object.keys(e)),[e]),[s,i]=(0,r.useState)((()=>(e=>Object.fromEntries(e.map((e=>[e,{preferredVersionName:null}]))))(n)));(0,r.useEffect)((()=>{i(function(e){let{pluginIds:t,versionPersistence:n,allDocsData:r}=e;function o(e){const t=u(e,n);return r[e].versions.some((e=>e.name===t))?{preferredVersionName:t}:(m(e,n),{preferredVersionName:null})}return Object.fromEntries(t.map((e=>[e,o(e)])))}({allDocsData:e,versionPersistence:t,pluginIds:n}))}),[e,t,n]);return[s,(0,r.useMemo)((()=>({savePreferredVersion:function(e,n){p(e,t,n),i((t=>({...t,[e]:{preferredVersionName:n}})))}})),[t])]}function g(e){let{children:t}=e;const n=h();return r.createElement(f.Provider,{value:n},t)}function b(e){let{children:t}=e;return i.cE?r.createElement(g,null,t):r.createElement(r.Fragment,null,t)}function y(){const e=(0,r.useContext)(f);if(!e)throw new l.i6("DocsPreferredVersionContextProvider");return e}function v(e){var t;void 0===e&&(e=s.m);const n=(0,o.zh)(e),[a,i]=y(),{preferredVersionName:l}=a[e];return{preferredVersion:null!=(t=n.versions.find((e=>e.name===l)))?t:null,savePreferredVersionName:(0,r.useCallback)((t=>{i.savePreferredVersion(e,t)}),[i,e])}}function x(){const e=(0,o._r)(),[t]=y();function n(n){var r;const o=e[n],{preferredVersionName:s}=t[n];return null!=(r=o.versions.find((e=>e.name===s)))?r:null}const r=Object.keys(e);return Object.fromEntries(r.map((e=>[e,n(e)])))}},1116:(e,t,n)=>{"use strict";n.d(t,{V:()=>l,b:()=>i});var r=n(67294),o=n(902);const s=Symbol("EmptyContext"),a=r.createContext(s);function i(e){let{children:t,name:n,items:o}=e;const s=(0,r.useMemo)((()=>n&&o?{name:n,items:o}:null),[n,o]);return r.createElement(a.Provider,{value:s},t)}function l(){const e=(0,r.useContext)(a);if(e===s)throw new o.i6("DocsSidebarProvider");return e}},93163:(e,t,n)=>{"use strict";n.d(t,{M:()=>p,e:()=>u});var r=n(67294),o=n(13102),s=n(87524),a=n(91980),i=n(86668),l=n(902);const c=r.createContext(void 0);function d(){const e=function(){const e=(0,o.HY)(),{items:t}=(0,i.L)().navbar;return 0===t.length&&!e.component}(),t=(0,s.i)(),n=!e&&"mobile"===t,[l,c]=(0,r.useState)(!1);(0,a.Rb)((()=>{if(l)return c(!1),!1}));const d=(0,r.useCallback)((()=>{c((e=>!e))}),[]);return(0,r.useEffect)((()=>{"desktop"===t&&c(!1)}),[t]),(0,r.useMemo)((()=>({disabled:e,shouldRender:n,toggle:d,shown:l})),[e,n,d,l])}function p(e){let{children:t}=e;const n=d();return r.createElement(c.Provider,{value:n},t)}function u(){const e=r.useContext(c);if(void 0===e)throw new l.i6("NavbarMobileSidebarProvider");return e}},13102:(e,t,n)=>{"use strict";n.d(t,{HY:()=>i,Zo:()=>l,n2:()=>a});var r=n(67294),o=n(902);const s=r.createContext(null);function a(e){let{children:t}=e;const n=(0,r.useState)({component:null,props:null});return r.createElement(s.Provider,{value:n},t)}function i(){const e=(0,r.useContext)(s);if(!e)throw new o.i6("NavbarSecondaryMenuContentProvider");return e[0]}function l(e){let{component:t,props:n}=e;const a=(0,r.useContext)(s);if(!a)throw new o.i6("NavbarSecondaryMenuContentProvider");const[,i]=a,l=(0,o.Ql)(n);return(0,r.useEffect)((()=>{i({component:t,props:l})}),[i,t,l]),(0,r.useEffect)((()=>()=>i({component:null,props:null})),[i]),null}},19727:(e,t,n)=>{"use strict";n.d(t,{h:()=>o,t:()=>s});var r=n(67294);const o="navigation-with-keyboard";function s(){(0,r.useEffect)((()=>{function e(e){"keydown"===e.type&&"Tab"===e.key&&document.body.classList.add(o),"mousedown"===e.type&&document.body.classList.remove(o)}return document.addEventListener("keydown",e),document.addEventListener("mousedown",e),()=>{document.body.classList.remove(o),document.removeEventListener("keydown",e),document.removeEventListener("mousedown",e)}}),[])}},66177:(e,t,n)=>{"use strict";n.d(t,{K:()=>a,M:()=>i});var r=n(67294),o=n(52263),s=n(91980);function a(){return(0,s.Nc)("q")}function i(){const{siteConfig:{baseUrl:e,themeConfig:t}}=(0,o.Z)(),{algolia:{searchPagePath:n}}=t;return(0,r.useCallback)((t=>""+e+n+"?q="+encodeURIComponent(t)),[e,n])}},87524:(e,t,n)=>{"use strict";n.d(t,{i:()=>c});var r=n(67294),o=n(10412);const s="desktop",a="mobile",i="ssr";function l(){return o.Z.canUseDOM?window.innerWidth>996?s:a:i}function c(){const[e,t]=(0,r.useState)((()=>l()));return(0,r.useEffect)((()=>{function e(){t(l())}return window.addEventListener("resize",e),()=>{window.removeEventListener("resize",e),clearTimeout(undefined)}}),[]),e}},35281:(e,t,n)=>{"use strict";n.d(t,{k:()=>r});const r={page:{blogListPage:"blog-list-page",blogPostPage:"blog-post-page",blogTagsListPage:"blog-tags-list-page",blogTagPostListPage:"blog-tags-post-list-page",docsDocPage:"docs-doc-page",docsTagsListPage:"docs-tags-list-page",docsTagDocListPage:"docs-tags-doc-list-page",mdxPage:"mdx-page"},wrapper:{main:"main-wrapper",blogPages:"blog-wrapper",docsPages:"docs-wrapper",mdxPages:"mdx-wrapper"},common:{editThisPage:"theme-edit-this-page",lastUpdated:"theme-last-updated",backToTopButton:"theme-back-to-top-button",codeBlock:"theme-code-block",admonition:"theme-admonition",admonitionType:e=>"theme-admonition-"+e},layout:{},docs:{docVersionBanner:"theme-doc-version-banner",docVersionBadge:"theme-doc-version-badge",docBreadcrumbs:"theme-doc-breadcrumbs",docMarkdown:"theme-doc-markdown",docTocMobile:"theme-doc-toc-mobile",docTocDesktop:"theme-doc-toc-desktop",docFooter:"theme-doc-footer",docFooterTagsRow:"theme-doc-footer-tags-row",docFooterEditMetaRow:"theme-doc-footer-edit-meta-row",docSidebarContainer:"theme-doc-sidebar-container",docSidebarMenu:"theme-doc-sidebar-menu",docSidebarItemCategory:"theme-doc-sidebar-item-category",docSidebarItemLink:"theme-doc-sidebar-item-link",docSidebarItemCategoryLevel:e=>"theme-doc-sidebar-item-category-level-"+e,docSidebarItemLinkLevel:e=>"theme-doc-sidebar-item-link-level-"+e},blog:{}}},91442:(e,t,n)=>{"use strict";function r(){return window.matchMedia("(prefers-reduced-motion: reduce)").matches}n.d(t,{n:()=>r})},53438:(e,t,n)=>{"use strict";n.d(t,{Wl:()=>u,_F:()=>f,cE:()=>p,hI:()=>x,lO:()=>b,oz:()=>y,s1:()=>g,vY:()=>v});var r=n(67294),o=n(16550),s=n(18790),a=n(80143),i=n(60373),l=n(1116),c=n(67392),d=n(48596);const p=!!a._r;function u(e){if(e.href)return e.href;for(const t of e.items){if("link"===t.type)return t.href;if("category"===t.type){const e=u(t);if(e)return e}}}const m=(e,t)=>void 0!==e&&(0,d.Mg)(e,t);function f(e,t){return"link"===e.type?m(e.href,t):"category"===e.type&&(m(e.href,t)||((e,t)=>e.some((e=>f(e,t))))(e.items,t))}function h(e){let{sidebarItems:t,pathname:n,onlyCategories:r=!1}=e;const o=[];return function e(t){for(const s of t)if("category"===s.type&&((0,d.Mg)(s.href,n)||e(s.items))||"link"===s.type&&(0,d.Mg)(s.href,n)){return r&&"category"!==s.type||o.unshift(s),!0}return!1}(t),o}function g(){var e;const t=(0,l.V)(),{pathname:n}=(0,o.TH)();return!1!==(null==(e=(0,a.gA)())?void 0:e.pluginData.breadcrumbs)&&t?h({sidebarItems:t.items,pathname:n}):null}function b(e){const{activeVersion:t}=(0,a.Iw)(e),{preferredVersion:n}=(0,i.J)(e),o=(0,a.yW)(e);return(0,r.useMemo)((()=>(0,c.j)([t,n,o].filter(Boolean))),[t,n,o])}function y(e,t){const n=b(t);return(0,r.useMemo)((()=>{const t=n.flatMap((e=>e.sidebars?Object.entries(e.sidebars):[])),r=t.find((t=>t[0]===e));if(!r)throw new Error("Can't find any sidebar with id \""+e+'" in version'+(n.length>1?"s":"")+" "+n.map((e=>e.name)).join(", ")+'".\nAvailable sidebar ids are:\n- '+t.map((e=>e[0])).join("\n- "));return r[1]}),[e,n])}function v(e,t){const n=b(t);return(0,r.useMemo)((()=>{const t=n.flatMap((e=>e.docs)),r=t.find((t=>t.id===e));if(!r){if(n.flatMap((e=>e.draftIds)).includes(e))return null;throw new Error("Couldn't find any doc with id \""+e+'" in version'+(n.length>1?"s":"")+' "'+n.map((e=>e.name)).join(", ")+'".\nAvailable doc ids are:\n- '+(0,c.j)(t.map((e=>e.id))).join("\n- "))}return r}),[e,n])}function x(e){let{route:t,versionMetadata:n}=e;const r=(0,o.TH)(),a=t.routes,i=a.find((e=>(0,o.LX)(r.pathname,e)));if(!i)return null;const l=i.sidebar,c=l?n.docsSidebars[l]:void 0;return{docElement:(0,s.H)(a),sidebarName:l,sidebarItems:c}}},82128:(e,t,n)=>{"use strict";n.d(t,{p:()=>o});var r=n(52263);function o(e){const{siteConfig:t}=(0,r.Z)(),{title:n,titleDelimiter:o}=t;return null!=e&&e.trim().length?e.trim()+" "+o+" "+n:n}},91980:(e,t,n)=>{"use strict";n.d(t,{Nc:()=>c,Rb:()=>i,_X:()=>l});var r=n(67294),o=n(16550),s=n(61688),a=n(902);function i(e){!function(e){const t=(0,o.k6)(),n=(0,a.zX)(e);(0,r.useEffect)((()=>t.block(((e,t)=>n(e,t)))),[t,n])}(((t,n)=>{if("POP"===n)return e(t,n)}))}function l(e){return function(e){const t=(0,o.k6)();return(0,s.useSyncExternalStore)(t.listen,(()=>e(t)),(()=>e(t)))}((t=>null===e?null:new URLSearchParams(t.location.search).get(e)))}function c(e){var t;const n=null!=(t=l(e))?t:"",s=function(){const e=(0,o.k6)();return(0,r.useCallback)(((t,n,r)=>{const o=new URLSearchParams(e.location.search);n?o.set(t,n):o.delete(t),(null!=r&&r.push?e.push:e.replace)({search:o.toString()})}),[e])}();return[n,(0,r.useCallback)(((t,n)=>{s(e,t,n)}),[s,e])]}},67392:(e,t,n)=>{"use strict";function r(e,t){return void 0===t&&(t=(e,t)=>e===t),e.filter(((n,r)=>e.findIndex((e=>t(e,n)))!==r))}function o(e){return Array.from(new Set(e))}n.d(t,{j:()=>o,l:()=>r})},10833:(e,t,n)=>{"use strict";n.d(t,{FG:()=>u,d:()=>d,VC:()=>m});var r=n(67294),o=n(86010),s=n(35742),a=n(30226);function i(){const e=r.useContext(a._);if(!e)throw new Error("Unexpected: no Docusaurus route context found");return e}var l=n(44996),c=n(82128);function d(e){let{title:t,description:n,keywords:o,image:a,children:i}=e;const d=(0,c.p)(t),{withBaseUrl:p}=(0,l.C)(),u=a?p(a,{absolute:!0}):void 0;return r.createElement(s.Z,null,t&&r.createElement("title",null,d),t&&r.createElement("meta",{property:"og:title",content:d}),n&&r.createElement("meta",{name:"description",content:n}),n&&r.createElement("meta",{property:"og:description",content:n}),o&&r.createElement("meta",{name:"keywords",content:Array.isArray(o)?o.join(","):o}),u&&r.createElement("meta",{property:"og:image",content:u}),u&&r.createElement("meta",{name:"twitter:image",content:u}),i)}const p=r.createContext(void 0);function u(e){let{className:t,children:n}=e;const a=r.useContext(p),i=(0,o.Z)(a,t);return r.createElement(p.Provider,{value:i},r.createElement(s.Z,null,r.createElement("html",{className:i})),n)}function m(e){let{children:t}=e;const n=i(),s="plugin-"+n.plugin.name.replace(/docusaurus-(?:plugin|theme)-(?:content-)?/gi,"");const a="plugin-id-"+n.plugin.id;return r.createElement(u,{className:(0,o.Z)(s,a)},t)}},902:(e,t,n)=>{"use strict";n.d(t,{D9:()=>a,Qc:()=>c,Ql:()=>l,i6:()=>i,zX:()=>s});var r=n(67294);const o=n(10412).Z.canUseDOM?r.useLayoutEffect:r.useEffect;function s(e){const t=(0,r.useRef)(e);return o((()=>{t.current=e}),[e]),(0,r.useCallback)((function(){return t.current(...arguments)}),[])}function a(e){const t=(0,r.useRef)();return o((()=>{t.current=e})),t.current}class i extends Error{constructor(e,t){var n,r,o,s;super(),this.name="ReactContextError",this.message="Hook "+(null!=(n=null==(r=this.stack)||null==(o=r.split("\n")[1])||null==(s=o.match(/at (?:\w+\.)?(?\w+)/))?void 0:s.groups.name)?n:"")+" is called outside the <"+e+">. "+(null!=t?t:"")}}function l(e){const t=Object.entries(e);return t.sort(((e,t)=>e[0].localeCompare(t[0]))),(0,r.useMemo)((()=>e),t.flat())}function c(e){return t=>{let{children:n}=t;return r.createElement(r.Fragment,null,e.reduceRight(((e,t)=>r.createElement(t,null,e)),n))}}},98022:(e,t,n)=>{"use strict";function r(e,t){return void 0!==e&&void 0!==t&&new RegExp(e,"gi").test(t)}n.d(t,{F:()=>r})},48596:(e,t,n)=>{"use strict";n.d(t,{Mg:()=>a,Ns:()=>i});var r=n(67294),o=n(723),s=n(52263);function a(e,t){const n=e=>{var t;return null==(t=!e||e.endsWith("/")?e:e+"/")?void 0:t.toLowerCase()};return n(e)===n(t)}function i(){const{baseUrl:e}=(0,s.Z)().siteConfig;return(0,r.useMemo)((()=>function(e){let{baseUrl:t,routes:n}=e;function r(e){return e.path===t&&!0===e.exact}function o(e){return e.path===t&&!e.exact}return function e(t){if(0===t.length)return;return t.find(r)||e(t.filter(o).flatMap((e=>{var t;return null!=(t=e.routes)?t:[]})))}(n)}({routes:o.Z,baseUrl:e})),[e])}},12466:(e,t,n)=>{"use strict";n.d(t,{Ct:()=>m,OC:()=>l,RF:()=>p,o5:()=>u});var r=n(67294),o=n(10412),s=n(72389),a=n(902);const i=r.createContext(void 0);function l(e){let{children:t}=e;const n=function(){const e=(0,r.useRef)(!0);return(0,r.useMemo)((()=>({scrollEventsEnabledRef:e,enableScrollEvents:()=>{e.current=!0},disableScrollEvents:()=>{e.current=!1}})),[])}();return r.createElement(i.Provider,{value:n},t)}function c(){const e=(0,r.useContext)(i);if(null==e)throw new a.i6("ScrollControllerProvider");return e}const d=()=>o.Z.canUseDOM?{scrollX:window.pageXOffset,scrollY:window.pageYOffset}:null;function p(e,t){void 0===t&&(t=[]);const{scrollEventsEnabledRef:n}=c(),o=(0,r.useRef)(d()),s=(0,a.zX)(e);(0,r.useEffect)((()=>{const e=()=>{if(!n.current)return;const e=d();s(e,o.current),o.current=e},t={passive:!0};return e(),window.addEventListener("scroll",e,t),()=>window.removeEventListener("scroll",e,t)}),[s,n,...t])}function u(){const e=c(),t=function(){const e=(0,r.useRef)({elem:null,top:0}),t=(0,r.useCallback)((t=>{e.current={elem:t,top:t.getBoundingClientRect().top}}),[]),n=(0,r.useCallback)((()=>{const{current:{elem:t,top:n}}=e;if(!t)return{restored:!1};const r=t.getBoundingClientRect().top-n;return r&&window.scrollBy({left:0,top:r}),e.current={elem:null,top:0},{restored:0!==r}}),[]);return(0,r.useMemo)((()=>({save:t,restore:n})),[n,t])}(),n=(0,r.useRef)(void 0),o=(0,r.useCallback)((r=>{t.save(r),e.disableScrollEvents(),n.current=()=>{const{restored:r}=t.restore();if(n.current=void 0,r){const t=()=>{e.enableScrollEvents(),window.removeEventListener("scroll",t)};window.addEventListener("scroll",t)}else e.enableScrollEvents()}}),[e,t]);return(0,r.useLayoutEffect)((()=>{queueMicrotask((()=>null==n.current?void 0:n.current()))})),{blockElementScrollPositionUntilNextRender:o}}function m(){const e=(0,r.useRef)(null),t=(0,s.Z)()&&"smooth"===getComputedStyle(document.documentElement).scrollBehavior;return{startScroll:n=>{e.current=t?function(e){return window.scrollTo({top:e,behavior:"smooth"}),()=>{}}(n):function(e){let t=null;const n=document.documentElement.scrollTop>e;return function r(){const o=document.documentElement.scrollTop;(n&&o>e||!n&&ot&&cancelAnimationFrame(t)}(n)},cancelScroll:()=>null==e.current?void 0:e.current()}}},43320:(e,t,n)=>{"use strict";n.d(t,{HX:()=>a,_q:()=>l,os:()=>i});var r=n(80143),o=n(52263),s=n(60373);const a="default";function i(e,t){return"docs-"+e+"-"+t}function l(){const{i18n:e}=(0,o.Z)(),t=(0,r._r)(),n=(0,r.WS)(),l=(0,s.Oh)();const c=[a,...Object.keys(t).map((function(e){var r;const o=(null==n?void 0:n.activePlugin.pluginId)===e?n.activeVersion:void 0,s=l[e],a=t[e].versions.find((e=>e.isLast));return i(e,(null!=(r=null!=o?o:s)?r:a).name)}))];return{locale:e.currentLocale,tags:c}}},50012:(e,t,n)=>{"use strict";n.d(t,{Nk:()=>p,WA:()=>d});var r=n(67294),o=n(61688);const s="localStorage";function a(e){let{key:t,oldValue:n,newValue:r,storage:o}=e;if(n===r)return;const s=document.createEvent("StorageEvent");s.initStorageEvent("storage",!1,!1,t,n,r,window.location.href,o),window.dispatchEvent(s)}function i(e){if(void 0===e&&(e=s),"undefined"==typeof window)throw new Error("Browser storage is not available on Node.js/Docusaurus SSR process.");if("none"===e)return null;try{return window[e]}catch(n){return t=n,l||(console.warn("Docusaurus browser storage is not available.\nPossible reasons: running Docusaurus in an iframe, in an incognito browser session, or using too strict browser privacy settings.",t),l=!0),null}var t}let l=!1;const c={get:()=>null,set:()=>{},del:()=>{},listen:()=>()=>{}};function d(e,t){if("undefined"==typeof window)return function(e){function t(){throw new Error('Illegal storage API usage for storage key "'+e+'".\nDocusaurus storage APIs are not supposed to be called on the server-rendering process.\nPlease only call storage APIs in effects and event handlers.')}return{get:t,set:t,del:t,listen:t}}(e);const n=i(null==t?void 0:t.persistence);return null===n?c:{get:()=>{try{return n.getItem(e)}catch(t){return console.error("Docusaurus storage error, can't get key="+e,t),null}},set:t=>{try{const r=n.getItem(e);n.setItem(e,t),a({key:e,oldValue:r,newValue:t,storage:n})}catch(r){console.error("Docusaurus storage error, can't set "+e+"="+t,r)}},del:()=>{try{const t=n.getItem(e);n.removeItem(e),a({key:e,oldValue:t,newValue:null,storage:n})}catch(t){console.error("Docusaurus storage error, can't delete key="+e,t)}},listen:t=>{try{const r=r=>{r.storageArea===n&&r.key===e&&t(r)};return window.addEventListener("storage",r),()=>window.removeEventListener("storage",r)}catch(r){return console.error("Docusaurus storage error, can't listen for changes of key="+e,r),()=>{}}}}}function p(e,t){const n=(0,r.useRef)((()=>null===e?c:d(e,t))).current(),s=(0,r.useCallback)((e=>"undefined"==typeof window?()=>{}:n.listen(e)),[n]);return[(0,o.useSyncExternalStore)(s,(()=>"undefined"==typeof window?null:n.get()),(()=>null)),n]}},94711:(e,t,n)=>{"use strict";n.d(t,{l:()=>s});var r=n(52263),o=n(16550);function s(){const{siteConfig:{baseUrl:e,url:t},i18n:{defaultLocale:n,currentLocale:s}}=(0,r.Z)(),{pathname:a}=(0,o.TH)(),i=s===n?e:e.replace("/"+s+"/","/"),l=a.replace(e,"");return{createUrl:function(e){let{locale:r,fullyQualified:o}=e;return""+(o?t:"")+function(e){return e===n?""+i:""+i+e+"/"}(r)+l}}}},85936:(e,t,n)=>{"use strict";n.d(t,{S:()=>a});var r=n(67294),o=n(16550),s=n(902);function a(e){const t=(0,o.TH)(),n=(0,s.D9)(t),a=(0,s.zX)(e);(0,r.useEffect)((()=>{n&&t!==n&&a({location:t,previousLocation:n})}),[a,t,n])}},86668:(e,t,n)=>{"use strict";n.d(t,{L:()=>o});var r=n(52263);function o(){return(0,r.Z)().siteConfig.themeConfig}},6278:(e,t,n)=>{"use strict";n.d(t,{L:()=>o});var r=n(52263);function o(){const{siteConfig:{themeConfig:e}}=(0,r.Z)();return e}},239:(e,t,n)=>{"use strict";n.d(t,{l:()=>i});var r=n(67294),o=n(98022),s=n(44996),a=n(6278);function i(){const{withBaseUrl:e}=(0,s.C)(),{algolia:{externalUrlRegex:t,replaceSearchResultPathname:n}}=(0,a.L)();return(0,r.useCallback)((r=>{const s=new URL(r);if((0,o.F)(t,s.href))return r;const a=""+(s.pathname+s.hash);return e(function(e,t){return t?e.replaceAll(new RegExp(t.from,"g"),t.to):e}(a,n))}),[e,t,n])}},8802:(e,t)=>{"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.default=function(e,t){const{trailingSlash:n,baseUrl:r}=t;if(e.startsWith("#"))return e;if(void 0===n)return e;const[o]=e.split(/[#?]/),s="/"===o||o===r?o:(a=o,n?function(e){return e.endsWith("/")?e:e+"/"}(a):function(e){return e.endsWith("/")?e.slice(0,-1):e}(a));var a;return e.replace(o,s)}},54143:(e,t)=>{"use strict";Object.defineProperty(t,"__esModule",{value:!0}),t.getErrorCausalChain=void 0,t.getErrorCausalChain=function e(t){return t.cause?[t,...e(t.cause)]:[t]}},18780:function(e,t,n){"use strict";var r=this&&this.__importDefault||function(e){return e&&e.__esModule?e:{default:e}};Object.defineProperty(t,"__esModule",{value:!0}),t.getErrorCausalChain=t.applyTrailingSlash=t.blogPostContainerID=void 0,t.blogPostContainerID="__blog-post-container";var o=n(8802);Object.defineProperty(t,"applyTrailingSlash",{enumerable:!0,get:function(){return r(o).default}});var s=n(54143);Object.defineProperty(t,"getErrorCausalChain",{enumerable:!0,get:function(){return s.getErrorCausalChain}})},86010:(e,t,n)=>{"use strict";function r(e){var t,n,o="";if("string"==typeof e||"number"==typeof e)o+=e;else if("object"==typeof e)if(Array.isArray(e))for(t=0;to});const o=function(){for(var e,t,n=0,o="";n{"use strict";n.d(t,{lX:()=>x,q_:()=>k,ob:()=>m,PP:()=>_,Ep:()=>u});var r=n(83117);function o(e){return"/"===e.charAt(0)}function s(e,t){for(var n=t,r=n+1,o=e.length;r=0;u--){var m=a[u];"."===m?s(a,u):".."===m?(s(a,u),p++):p&&(s(a,u),p--)}if(!c)for(;p--;p)a.unshift("..");!c||""===a[0]||a[0]&&o(a[0])||a.unshift("");var f=a.join("/");return n&&"/"!==f.substr(-1)&&(f+="/"),f};var i=n(2177);function l(e){return"/"===e.charAt(0)?e:"/"+e}function c(e){return"/"===e.charAt(0)?e.substr(1):e}function d(e,t){return function(e,t){return 0===e.toLowerCase().indexOf(t.toLowerCase())&&-1!=="/?#".indexOf(e.charAt(t.length))}(e,t)?e.substr(t.length):e}function p(e){return"/"===e.charAt(e.length-1)?e.slice(0,-1):e}function u(e){var t=e.pathname,n=e.search,r=e.hash,o=t||"/";return n&&"?"!==n&&(o+="?"===n.charAt(0)?n:"?"+n),r&&"#"!==r&&(o+="#"===r.charAt(0)?r:"#"+r),o}function m(e,t,n,o){var s;"string"==typeof e?(s=function(e){var t=e||"/",n="",r="",o=t.indexOf("#");-1!==o&&(r=t.substr(o),t=t.substr(0,o));var s=t.indexOf("?");return-1!==s&&(n=t.substr(s),t=t.substr(0,s)),{pathname:t,search:"?"===n?"":n,hash:"#"===r?"":r}}(e),s.state=t):(void 0===(s=(0,r.Z)({},e)).pathname&&(s.pathname=""),s.search?"?"!==s.search.charAt(0)&&(s.search="?"+s.search):s.search="",s.hash?"#"!==s.hash.charAt(0)&&(s.hash="#"+s.hash):s.hash="",void 0!==t&&void 0===s.state&&(s.state=t));try{s.pathname=decodeURI(s.pathname)}catch(i){throw i instanceof URIError?new URIError('Pathname "'+s.pathname+'" could not be decoded. This is likely caused by an invalid percent-encoding.'):i}return n&&(s.key=n),o?s.pathname?"/"!==s.pathname.charAt(0)&&(s.pathname=a(s.pathname,o.pathname)):s.pathname=o.pathname:s.pathname||(s.pathname="/"),s}function f(){var e=null;var t=[];return{setPrompt:function(t){return e=t,function(){e===t&&(e=null)}},confirmTransitionTo:function(t,n,r,o){if(null!=e){var s="function"==typeof e?e(t,n):e;"string"==typeof s?"function"==typeof r?r(s,o):o(!0):o(!1!==s)}else o(!0)},appendListener:function(e){var n=!0;function r(){n&&e.apply(void 0,arguments)}return t.push(r),function(){n=!1,t=t.filter((function(e){return e!==r}))}},notifyListeners:function(){for(var e=arguments.length,n=new Array(e),r=0;rt?n.splice(t,n.length-t,o):n.push(o),p({action:r,location:o,index:t,entries:n})}}))},replace:function(e,t){var r="REPLACE",o=m(e,t,h(),x.location);d.confirmTransitionTo(o,r,n,(function(e){e&&(x.entries[x.index]=o,p({action:r,location:o}))}))},go:v,goBack:function(){v(-1)},goForward:function(){v(1)},canGo:function(e){var t=x.index+e;return t>=0&&t{"use strict";var r=n(59864),o={childContextTypes:!0,contextType:!0,contextTypes:!0,defaultProps:!0,displayName:!0,getDefaultProps:!0,getDerivedStateFromError:!0,getDerivedStateFromProps:!0,mixins:!0,propTypes:!0,type:!0},s={name:!0,length:!0,prototype:!0,caller:!0,callee:!0,arguments:!0,arity:!0},a={$$typeof:!0,compare:!0,defaultProps:!0,displayName:!0,propTypes:!0,type:!0},i={};function l(e){return r.isMemo(e)?a:i[e.$$typeof]||o}i[r.ForwardRef]={$$typeof:!0,render:!0,defaultProps:!0,displayName:!0,propTypes:!0},i[r.Memo]=a;var c=Object.defineProperty,d=Object.getOwnPropertyNames,p=Object.getOwnPropertySymbols,u=Object.getOwnPropertyDescriptor,m=Object.getPrototypeOf,f=Object.prototype;e.exports=function e(t,n,r){if("string"!=typeof n){if(f){var o=m(n);o&&o!==f&&e(t,o,r)}var a=d(n);p&&(a=a.concat(p(n)));for(var i=l(t),h=l(n),g=0;g{"use strict";e.exports=function(e,t,n,r,o,s,a,i){if(!e){var l;if(void 0===t)l=new Error("Minified exception occurred; use the non-minified dev environment for the full error message and additional helpful warnings.");else{var c=[n,r,o,s,a,i],d=0;(l=new Error(t.replace(/%s/g,(function(){return c[d++]})))).name="Invariant Violation"}throw l.framesToPop=1,l}}},5826:e=>{e.exports=Array.isArray||function(e){return"[object Array]"==Object.prototype.toString.call(e)}},32497:(e,t,n)=>{"use strict";n.r(t)},52295:(e,t,n)=>{"use strict";n.r(t)},74865:function(e,t,n){var r,o;r=function(){var e,t,n={version:"0.2.0"},r=n.settings={minimum:.08,easing:"ease",positionUsing:"",speed:200,trickle:!0,trickleRate:.02,trickleSpeed:800,showSpinner:!0,barSelector:'[role="bar"]',spinnerSelector:'[role="spinner"]',parent:"body",template:'
'};function o(e,t,n){return en?n:e}function s(e){return 100*(-1+e)}function a(e,t,n){var o;return(o="translate3d"===r.positionUsing?{transform:"translate3d("+s(e)+"%,0,0)"}:"translate"===r.positionUsing?{transform:"translate("+s(e)+"%,0)"}:{"margin-left":s(e)+"%"}).transition="all "+t+"ms "+n,o}n.configure=function(e){var t,n;for(t in e)void 0!==(n=e[t])&&e.hasOwnProperty(t)&&(r[t]=n);return this},n.status=null,n.set=function(e){var t=n.isStarted();e=o(e,r.minimum,1),n.status=1===e?null:e;var s=n.render(!t),c=s.querySelector(r.barSelector),d=r.speed,p=r.easing;return s.offsetWidth,i((function(t){""===r.positionUsing&&(r.positionUsing=n.getPositioningCSS()),l(c,a(e,d,p)),1===e?(l(s,{transition:"none",opacity:1}),s.offsetWidth,setTimeout((function(){l(s,{transition:"all "+d+"ms linear",opacity:0}),setTimeout((function(){n.remove(),t()}),d)}),d)):setTimeout(t,d)})),this},n.isStarted=function(){return"number"==typeof n.status},n.start=function(){n.status||n.set(0);var e=function(){setTimeout((function(){n.status&&(n.trickle(),e())}),r.trickleSpeed)};return r.trickle&&e(),this},n.done=function(e){return e||n.status?n.inc(.3+.5*Math.random()).set(1):this},n.inc=function(e){var t=n.status;return t?("number"!=typeof e&&(e=(1-t)*o(Math.random()*t,.1,.95)),t=o(t+e,0,.994),n.set(t)):n.start()},n.trickle=function(){return n.inc(Math.random()*r.trickleRate)},e=0,t=0,n.promise=function(r){return r&&"resolved"!==r.state()?(0===t&&n.start(),e++,t++,r.always((function(){0==--t?(e=0,n.done()):n.set((e-t)/e)})),this):this},n.render=function(e){if(n.isRendered())return document.getElementById("nprogress");d(document.documentElement,"nprogress-busy");var t=document.createElement("div");t.id="nprogress",t.innerHTML=r.template;var o,a=t.querySelector(r.barSelector),i=e?"-100":s(n.status||0),c=document.querySelector(r.parent);return l(a,{transition:"all 0 linear",transform:"translate3d("+i+"%,0,0)"}),r.showSpinner||(o=t.querySelector(r.spinnerSelector))&&m(o),c!=document.body&&d(c,"nprogress-custom-parent"),c.appendChild(t),t},n.remove=function(){p(document.documentElement,"nprogress-busy"),p(document.querySelector(r.parent),"nprogress-custom-parent");var e=document.getElementById("nprogress");e&&m(e)},n.isRendered=function(){return!!document.getElementById("nprogress")},n.getPositioningCSS=function(){var e=document.body.style,t="WebkitTransform"in e?"Webkit":"MozTransform"in e?"Moz":"msTransform"in e?"ms":"OTransform"in e?"O":"";return t+"Perspective"in e?"translate3d":t+"Transform"in e?"translate":"margin"};var i=function(){var e=[];function t(){var n=e.shift();n&&n(t)}return function(n){e.push(n),1==e.length&&t()}}(),l=function(){var e=["Webkit","O","Moz","ms"],t={};function n(e){return e.replace(/^-ms-/,"ms-").replace(/-([\da-z])/gi,(function(e,t){return t.toUpperCase()}))}function r(t){var n=document.body.style;if(t in n)return t;for(var r,o=e.length,s=t.charAt(0).toUpperCase()+t.slice(1);o--;)if((r=e[o]+s)in n)return r;return t}function o(e){return e=n(e),t[e]||(t[e]=r(e))}function s(e,t,n){t=o(t),e.style[t]=n}return function(e,t){var n,r,o=arguments;if(2==o.length)for(n in t)void 0!==(r=t[n])&&t.hasOwnProperty(n)&&s(e,n,r);else s(e,o[1],o[2])}}();function c(e,t){return("string"==typeof e?e:u(e)).indexOf(" "+t+" ")>=0}function d(e,t){var n=u(e),r=n+t;c(n,t)||(e.className=r.substring(1))}function p(e,t){var n,r=u(e);c(e,t)&&(n=r.replace(" "+t+" "," "),e.className=n.substring(1,n.length-1))}function u(e){return(" "+(e.className||"")+" ").replace(/\s+/gi," ")}function m(e){e&&e.parentNode&&e.parentNode.removeChild(e)}return n},void 0===(o="function"==typeof r?r.call(t,n,t,e):r)||(e.exports=o)},27418:e=>{"use strict";var t=Object.getOwnPropertySymbols,n=Object.prototype.hasOwnProperty,r=Object.prototype.propertyIsEnumerable;function o(e){if(null==e)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(e)}e.exports=function(){try{if(!Object.assign)return!1;var e=new String("abc");if(e[5]="de","5"===Object.getOwnPropertyNames(e)[0])return!1;for(var t={},n=0;n<10;n++)t["_"+String.fromCharCode(n)]=n;if("0123456789"!==Object.getOwnPropertyNames(t).map((function(e){return t[e]})).join(""))return!1;var r={};return"abcdefghijklmnopqrst".split("").forEach((function(e){r[e]=e})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},r)).join("")}catch(o){return!1}}()?Object.assign:function(e,s){for(var a,i,l=o(e),c=1;c{"use strict";n.d(t,{Z:()=>s});var r=function(){var e=/(?:^|\s)lang(?:uage)?-([\w-]+)(?=\s|$)/i,t=0,n={},r={util:{encode:function e(t){return t instanceof o?new o(t.type,e(t.content),t.alias):Array.isArray(t)?t.map(e):t.replace(/&/g,"&").replace(/=p.reach);A+=E.value.length,E=E.next){var L=E.value;if(t.length>e.length)return;if(!(L instanceof o)){var M,k=1;if(y){if(!(M=s(S,A,e,b))||M.index>=e.length)break;var w=M.index,_=M.index+M[0].length,I=A;for(I+=E.value.length;w>=I;)I+=(E=E.next).value.length;if(A=I-=E.value.length,E.value instanceof o)continue;for(var C=E;C!==t.tail&&(I<_||"string"==typeof C.value);C=C.next)k++,I+=C.value.length;k--,L=e.slice(A,I),M.index-=A}else if(!(M=s(S,0,L,b)))continue;w=M.index;var T=M[0],Q=L.slice(0,w),R=L.slice(w+T.length),D=A+L.length;p&&D>p.reach&&(p.reach=D);var O=E.prev;if(Q&&(O=l(t,O,Q),A+=Q.length),c(t,O,k),E=l(t,O,new o(u,g?r.tokenize(T,g):T,v,T)),R&&l(t,E,R),k>1){var P={cause:u+","+f,reach:D};a(e,t,n,E.prev,A,P),p&&P.reach>p.reach&&(p.reach=P.reach)}}}}}}function i(){var e={value:null,prev:null,next:null},t={value:null,prev:e,next:null};e.next=t,this.head=e,this.tail=t,this.length=0}function l(e,t,n){var r=t.next,o={value:n,prev:t,next:r};return t.next=o,r.prev=o,e.length++,o}function c(e,t,n){for(var r=t.next,o=0;o"+s.content+""},r}(),o=r;r.default=r,o.languages.markup={comment:{pattern://,greedy:!0},prolog:{pattern:/<\?[\s\S]+?\?>/,greedy:!0},doctype:{pattern:/"'[\]]|"[^"]*"|'[^']*')+(?:\[(?:[^<"'\]]|"[^"]*"|'[^']*'|<(?!!--)|)*\]\s*)?>/i,greedy:!0,inside:{"internal-subset":{pattern:/(^[^\[]*\[)[\s\S]+(?=\]>$)/,lookbehind:!0,greedy:!0,inside:null},string:{pattern:/"[^"]*"|'[^']*'/,greedy:!0},punctuation:/^$|[[\]]/,"doctype-tag":/^DOCTYPE/i,name:/[^\s<>'"]+/}},cdata:{pattern://i,greedy:!0},tag:{pattern:/<\/?(?!\d)[^\s>\/=$<%]+(?:\s(?:\s*[^\s>\/=]+(?:\s*=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+(?=[\s>]))|(?=[\s/>])))+)?\s*\/?>/,greedy:!0,inside:{tag:{pattern:/^<\/?[^\s>\/]+/,inside:{punctuation:/^<\/?/,namespace:/^[^\s>\/:]+:/}},"special-attr":[],"attr-value":{pattern:/=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+)/,inside:{punctuation:[{pattern:/^=/,alias:"attr-equals"},/"|'/]}},punctuation:/\/?>/,"attr-name":{pattern:/[^\s>\/]+/,inside:{namespace:/^[^\s>\/:]+:/}}}},entity:[{pattern:/&[\da-z]{1,8};/i,alias:"named-entity"},/&#x?[\da-f]{1,8};/i]},o.languages.markup.tag.inside["attr-value"].inside.entity=o.languages.markup.entity,o.languages.markup.doctype.inside["internal-subset"].inside=o.languages.markup,o.hooks.add("wrap",(function(e){"entity"===e.type&&(e.attributes.title=e.content.replace(/&/,"&"))})),Object.defineProperty(o.languages.markup.tag,"addInlined",{value:function(e,t){var n={};n["language-"+t]={pattern:/(^$)/i,lookbehind:!0,inside:o.languages[t]},n.cdata=/^$/i;var r={"included-cdata":{pattern://i,inside:n}};r["language-"+t]={pattern:/[\s\S]+/,inside:o.languages[t]};var s={};s[e]={pattern:RegExp(/(<__[^>]*>)(?:))*\]\]>|(?!)/.source.replace(/__/g,(function(){return e})),"i"),lookbehind:!0,greedy:!0,inside:r},o.languages.insertBefore("markup","cdata",s)}}),Object.defineProperty(o.languages.markup.tag,"addAttribute",{value:function(e,t){o.languages.markup.tag.inside["special-attr"].push({pattern:RegExp(/(^|["'\s])/.source+"(?:"+e+")"+/\s*=\s*(?:"[^"]*"|'[^']*'|[^\s'">=]+(?=[\s>]))/.source,"i"),lookbehind:!0,inside:{"attr-name":/^[^\s=]+/,"attr-value":{pattern:/=[\s\S]+/,inside:{value:{pattern:/(^=\s*(["']|(?!["'])))\S[\s\S]*(?=\2$)/,lookbehind:!0,alias:[t,"language-"+t],inside:o.languages[t]},punctuation:[{pattern:/^=/,alias:"attr-equals"},/"|'/]}}}})}}),o.languages.html=o.languages.markup,o.languages.mathml=o.languages.markup,o.languages.svg=o.languages.markup,o.languages.xml=o.languages.extend("markup",{}),o.languages.ssml=o.languages.xml,o.languages.atom=o.languages.xml,o.languages.rss=o.languages.xml,function(e){var t="\\b(?:BASH|BASHOPTS|BASH_ALIASES|BASH_ARGC|BASH_ARGV|BASH_CMDS|BASH_COMPLETION_COMPAT_DIR|BASH_LINENO|BASH_REMATCH|BASH_SOURCE|BASH_VERSINFO|BASH_VERSION|COLORTERM|COLUMNS|COMP_WORDBREAKS|DBUS_SESSION_BUS_ADDRESS|DEFAULTS_PATH|DESKTOP_SESSION|DIRSTACK|DISPLAY|EUID|GDMSESSION|GDM_LANG|GNOME_KEYRING_CONTROL|GNOME_KEYRING_PID|GPG_AGENT_INFO|GROUPS|HISTCONTROL|HISTFILE|HISTFILESIZE|HISTSIZE|HOME|HOSTNAME|HOSTTYPE|IFS|INSTANCE|JOB|LANG|LANGUAGE|LC_ADDRESS|LC_ALL|LC_IDENTIFICATION|LC_MEASUREMENT|LC_MONETARY|LC_NAME|LC_NUMERIC|LC_PAPER|LC_TELEPHONE|LC_TIME|LESSCLOSE|LESSOPEN|LINES|LOGNAME|LS_COLORS|MACHTYPE|MAILCHECK|MANDATORY_PATH|NO_AT_BRIDGE|OLDPWD|OPTERR|OPTIND|ORBIT_SOCKETDIR|OSTYPE|PAPERSIZE|PATH|PIPESTATUS|PPID|PS1|PS2|PS3|PS4|PWD|RANDOM|REPLY|SECONDS|SELINUX_INIT|SESSION|SESSIONTYPE|SESSION_MANAGER|SHELL|SHELLOPTS|SHLVL|SSH_AUTH_SOCK|TERM|UID|UPSTART_EVENTS|UPSTART_INSTANCE|UPSTART_JOB|UPSTART_SESSION|USER|WINDOWID|XAUTHORITY|XDG_CONFIG_DIRS|XDG_CURRENT_DESKTOP|XDG_DATA_DIRS|XDG_GREETER_DATA_DIR|XDG_MENU_PREFIX|XDG_RUNTIME_DIR|XDG_SEAT|XDG_SEAT_PATH|XDG_SESSION_DESKTOP|XDG_SESSION_ID|XDG_SESSION_PATH|XDG_SESSION_TYPE|XDG_VTNR|XMODIFIERS)\\b",n={pattern:/(^(["']?)\w+\2)[ \t]+\S.*/,lookbehind:!0,alias:"punctuation",inside:null},r={bash:n,environment:{pattern:RegExp("\\$"+t),alias:"constant"},variable:[{pattern:/\$?\(\([\s\S]+?\)\)/,greedy:!0,inside:{variable:[{pattern:/(^\$\(\([\s\S]+)\)\)/,lookbehind:!0},/^\$\(\(/],number:/\b0x[\dA-Fa-f]+\b|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:[Ee]-?\d+)?/,operator:/--|\+\+|\*\*=?|<<=?|>>=?|&&|\|\||[=!+\-*/%<>^&|]=?|[?~:]/,punctuation:/\(\(?|\)\)?|,|;/}},{pattern:/\$\((?:\([^)]+\)|[^()])+\)|`[^`]+`/,greedy:!0,inside:{variable:/^\$\(|^`|\)$|`$/}},{pattern:/\$\{[^}]+\}/,greedy:!0,inside:{operator:/:[-=?+]?|[!\/]|##?|%%?|\^\^?|,,?/,punctuation:/[\[\]]/,environment:{pattern:RegExp("(\\{)"+t),lookbehind:!0,alias:"constant"}}},/\$(?:\w+|[#?*!@$])/],entity:/\\(?:[abceEfnrtv\\"]|O?[0-7]{1,3}|U[0-9a-fA-F]{8}|u[0-9a-fA-F]{4}|x[0-9a-fA-F]{1,2})/};e.languages.bash={shebang:{pattern:/^#!\s*\/.*/,alias:"important"},comment:{pattern:/(^|[^"{\\$])#.*/,lookbehind:!0},"function-name":[{pattern:/(\bfunction\s+)[\w-]+(?=(?:\s*\(?:\s*\))?\s*\{)/,lookbehind:!0,alias:"function"},{pattern:/\b[\w-]+(?=\s*\(\s*\)\s*\{)/,alias:"function"}],"for-or-select":{pattern:/(\b(?:for|select)\s+)\w+(?=\s+in\s)/,alias:"variable",lookbehind:!0},"assign-left":{pattern:/(^|[\s;|&]|[<>]\()\w+(?=\+?=)/,inside:{environment:{pattern:RegExp("(^|[\\s;|&]|[<>]\\()"+t),lookbehind:!0,alias:"constant"}},alias:"variable",lookbehind:!0},string:[{pattern:/((?:^|[^<])<<-?\s*)(\w+)\s[\s\S]*?(?:\r?\n|\r)\2/,lookbehind:!0,greedy:!0,inside:r},{pattern:/((?:^|[^<])<<-?\s*)(["'])(\w+)\2\s[\s\S]*?(?:\r?\n|\r)\3/,lookbehind:!0,greedy:!0,inside:{bash:n}},{pattern:/(^|[^\\](?:\\\\)*)"(?:\\[\s\S]|\$\([^)]+\)|\$(?!\()|`[^`]+`|[^"\\`$])*"/,lookbehind:!0,greedy:!0,inside:r},{pattern:/(^|[^$\\])'[^']*'/,lookbehind:!0,greedy:!0},{pattern:/\$'(?:[^'\\]|\\[\s\S])*'/,greedy:!0,inside:{entity:r.entity}}],environment:{pattern:RegExp("\\$?"+t),alias:"constant"},variable:r.variable,function:{pattern:/(^|[\s;|&]|[<>]\()(?:add|apropos|apt|apt-cache|apt-get|aptitude|aspell|automysqlbackup|awk|basename|bash|bc|bconsole|bg|bzip2|cal|cat|cfdisk|chgrp|chkconfig|chmod|chown|chroot|cksum|clear|cmp|column|comm|composer|cp|cron|crontab|csplit|curl|cut|date|dc|dd|ddrescue|debootstrap|df|diff|diff3|dig|dir|dircolors|dirname|dirs|dmesg|docker|docker-compose|du|egrep|eject|env|ethtool|expand|expect|expr|fdformat|fdisk|fg|fgrep|file|find|fmt|fold|format|free|fsck|ftp|fuser|gawk|git|gparted|grep|groupadd|groupdel|groupmod|groups|grub-mkconfig|gzip|halt|head|hg|history|host|hostname|htop|iconv|id|ifconfig|ifdown|ifup|import|install|ip|jobs|join|kill|killall|less|link|ln|locate|logname|logrotate|look|lpc|lpr|lprint|lprintd|lprintq|lprm|ls|lsof|lynx|make|man|mc|mdadm|mkconfig|mkdir|mke2fs|mkfifo|mkfs|mkisofs|mknod|mkswap|mmv|more|most|mount|mtools|mtr|mutt|mv|nano|nc|netstat|nice|nl|node|nohup|notify-send|npm|nslookup|op|open|parted|passwd|paste|pathchk|ping|pkill|pnpm|podman|podman-compose|popd|pr|printcap|printenv|ps|pushd|pv|quota|quotacheck|quotactl|ram|rar|rcp|reboot|remsync|rename|renice|rev|rm|rmdir|rpm|rsync|scp|screen|sdiff|sed|sendmail|seq|service|sftp|sh|shellcheck|shuf|shutdown|sleep|slocate|sort|split|ssh|stat|strace|su|sudo|sum|suspend|swapon|sync|tac|tail|tar|tee|time|timeout|top|touch|tr|traceroute|tsort|tty|umount|uname|unexpand|uniq|units|unrar|unshar|unzip|update-grub|uptime|useradd|userdel|usermod|users|uudecode|uuencode|v|vcpkg|vdir|vi|vim|virsh|vmstat|wait|watch|wc|wget|whereis|which|who|whoami|write|xargs|xdg-open|yarn|yes|zenity|zip|zsh|zypper)(?=$|[)\s;|&])/,lookbehind:!0},keyword:{pattern:/(^|[\s;|&]|[<>]\()(?:case|do|done|elif|else|esac|fi|for|function|if|in|select|then|until|while)(?=$|[)\s;|&])/,lookbehind:!0},builtin:{pattern:/(^|[\s;|&]|[<>]\()(?:\.|:|alias|bind|break|builtin|caller|cd|command|continue|declare|echo|enable|eval|exec|exit|export|getopts|hash|help|let|local|logout|mapfile|printf|pwd|read|readarray|readonly|return|set|shift|shopt|source|test|times|trap|type|typeset|ulimit|umask|unalias|unset)(?=$|[)\s;|&])/,lookbehind:!0,alias:"class-name"},boolean:{pattern:/(^|[\s;|&]|[<>]\()(?:false|true)(?=$|[)\s;|&])/,lookbehind:!0},"file-descriptor":{pattern:/\B&\d\b/,alias:"important"},operator:{pattern:/\d?<>|>\||\+=|=[=~]?|!=?|<<[<-]?|[&\d]?>>|\d[<>]&?|[<>][&=]?|&[>&]?|\|[&|]?/,inside:{"file-descriptor":{pattern:/^\d/,alias:"important"}}},punctuation:/\$?\(\(?|\)\)?|\.\.|[{}[\];\\]/,number:{pattern:/(^|\s)(?:[1-9]\d*|0)(?:[.,]\d+)?\b/,lookbehind:!0}},n.inside=e.languages.bash;for(var o=["comment","function-name","for-or-select","assign-left","string","environment","function","keyword","builtin","boolean","file-descriptor","operator","punctuation","number"],s=r.variable[1].inside,a=0;a]=?|[!=]=?=?|--?|\+\+?|&&?|\|\|?|[?*/~^%]/,punctuation:/[{}[\];(),.:]/},o.languages.c=o.languages.extend("clike",{comment:{pattern:/\/\/(?:[^\r\n\\]|\\(?:\r\n?|\n|(?![\r\n])))*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},string:{pattern:/"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"/,greedy:!0},"class-name":{pattern:/(\b(?:enum|struct)\s+(?:__attribute__\s*\(\([\s\S]*?\)\)\s*)?)\w+|\b[a-z]\w*_t\b/,lookbehind:!0},keyword:/\b(?:_Alignas|_Alignof|_Atomic|_Bool|_Complex|_Generic|_Imaginary|_Noreturn|_Static_assert|_Thread_local|__attribute__|asm|auto|break|case|char|const|continue|default|do|double|else|enum|extern|float|for|goto|if|inline|int|long|register|return|short|signed|sizeof|static|struct|switch|typedef|typeof|union|unsigned|void|volatile|while)\b/,function:/\b[a-z_]\w*(?=\s*\()/i,number:/(?:\b0x(?:[\da-f]+(?:\.[\da-f]*)?|\.[\da-f]+)(?:p[+-]?\d+)?|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:e[+-]?\d+)?)[ful]{0,4}/i,operator:/>>=?|<<=?|->|([-+&|:])\1|[?:~]|[-+*/%&|^!=<>]=?/}),o.languages.insertBefore("c","string",{char:{pattern:/'(?:\\(?:\r\n|[\s\S])|[^'\\\r\n]){0,32}'/,greedy:!0}}),o.languages.insertBefore("c","string",{macro:{pattern:/(^[\t ]*)#\s*[a-z](?:[^\r\n\\/]|\/(?!\*)|\/\*(?:[^*]|\*(?!\/))*\*\/|\\(?:\r\n|[\s\S]))*/im,lookbehind:!0,greedy:!0,alias:"property",inside:{string:[{pattern:/^(#\s*include\s*)<[^>]+>/,lookbehind:!0},o.languages.c.string],char:o.languages.c.char,comment:o.languages.c.comment,"macro-name":[{pattern:/(^#\s*define\s+)\w+\b(?!\()/i,lookbehind:!0},{pattern:/(^#\s*define\s+)\w+\b(?=\()/i,lookbehind:!0,alias:"function"}],directive:{pattern:/^(#\s*)[a-z]+/,lookbehind:!0,alias:"keyword"},"directive-hash":/^#/,punctuation:/##|\\(?=[\r\n])/,expression:{pattern:/\S[\s\S]*/,inside:o.languages.c}}}}),o.languages.insertBefore("c","function",{constant:/\b(?:EOF|NULL|SEEK_CUR|SEEK_END|SEEK_SET|__DATE__|__FILE__|__LINE__|__TIMESTAMP__|__TIME__|__func__|stderr|stdin|stdout)\b/}),delete o.languages.c.boolean,function(e){var t=/\b(?:alignas|alignof|asm|auto|bool|break|case|catch|char|char16_t|char32_t|char8_t|class|co_await|co_return|co_yield|compl|concept|const|const_cast|consteval|constexpr|constinit|continue|decltype|default|delete|do|double|dynamic_cast|else|enum|explicit|export|extern|final|float|for|friend|goto|if|import|inline|int|int16_t|int32_t|int64_t|int8_t|long|module|mutable|namespace|new|noexcept|nullptr|operator|override|private|protected|public|register|reinterpret_cast|requires|return|short|signed|sizeof|static|static_assert|static_cast|struct|switch|template|this|thread_local|throw|try|typedef|typeid|typename|uint16_t|uint32_t|uint64_t|uint8_t|union|unsigned|using|virtual|void|volatile|wchar_t|while)\b/,n=/\b(?!)\w+(?:\s*\.\s*\w+)*\b/.source.replace(//g,(function(){return t.source}));e.languages.cpp=e.languages.extend("c",{"class-name":[{pattern:RegExp(/(\b(?:class|concept|enum|struct|typename)\s+)(?!)\w+/.source.replace(//g,(function(){return t.source}))),lookbehind:!0},/\b[A-Z]\w*(?=\s*::\s*\w+\s*\()/,/\b[A-Z_]\w*(?=\s*::\s*~\w+\s*\()/i,/\b\w+(?=\s*<(?:[^<>]|<(?:[^<>]|<[^<>]*>)*>)*>\s*::\s*\w+\s*\()/],keyword:t,number:{pattern:/(?:\b0b[01']+|\b0x(?:[\da-f']+(?:\.[\da-f']*)?|\.[\da-f']+)(?:p[+-]?[\d']+)?|(?:\b[\d']+(?:\.[\d']*)?|\B\.[\d']+)(?:e[+-]?[\d']+)?)[ful]{0,4}/i,greedy:!0},operator:/>>=?|<<=?|->|--|\+\+|&&|\|\||[?:~]|<=>|[-+*/%&|^!=<>]=?|\b(?:and|and_eq|bitand|bitor|not|not_eq|or|or_eq|xor|xor_eq)\b/,boolean:/\b(?:false|true)\b/}),e.languages.insertBefore("cpp","string",{module:{pattern:RegExp(/(\b(?:import|module)\s+)/.source+"(?:"+/"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"|<[^<>\r\n]*>/.source+"|"+/(?:\s*:\s*)?|:\s*/.source.replace(//g,(function(){return n}))+")"),lookbehind:!0,greedy:!0,inside:{string:/^[<"][\s\S]+/,operator:/:/,punctuation:/\./}},"raw-string":{pattern:/R"([^()\\ ]{0,16})\([\s\S]*?\)\1"/,alias:"string",greedy:!0}}),e.languages.insertBefore("cpp","keyword",{"generic-function":{pattern:/\b(?!operator\b)[a-z_]\w*\s*<(?:[^<>]|<[^<>]*>)*>(?=\s*\()/i,inside:{function:/^\w+/,generic:{pattern:/<[\s\S]+/,alias:"class-name",inside:e.languages.cpp}}}}),e.languages.insertBefore("cpp","operator",{"double-colon":{pattern:/::/,alias:"punctuation"}}),e.languages.insertBefore("cpp","class-name",{"base-clause":{pattern:/(\b(?:class|struct)\s+\w+\s*:\s*)[^;{}"'\s]+(?:\s+[^;{}"'\s]+)*(?=\s*[;{])/,lookbehind:!0,greedy:!0,inside:e.languages.extend("cpp",{})}}),e.languages.insertBefore("inside","double-colon",{"class-name":/\b[a-z_]\w*\b(?!\s*::)/i},e.languages.cpp["base-clause"])}(o),function(e){var t=/(?:"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"|'(?:\\(?:\r\n|[\s\S])|[^'\\\r\n])*')/;e.languages.css={comment:/\/\*[\s\S]*?\*\//,atrule:{pattern:/@[\w-](?:[^;{\s]|\s+(?![\s{]))*(?:;|(?=\s*\{))/,inside:{rule:/^@[\w-]+/,"selector-function-argument":{pattern:/(\bselector\s*\(\s*(?![\s)]))(?:[^()\s]|\s+(?![\s)])|\((?:[^()]|\([^()]*\))*\))+(?=\s*\))/,lookbehind:!0,alias:"selector"},keyword:{pattern:/(^|[^\w-])(?:and|not|only|or)(?![\w-])/,lookbehind:!0}}},url:{pattern:RegExp("\\burl\\((?:"+t.source+"|"+/(?:[^\\\r\n()"']|\\[\s\S])*/.source+")\\)","i"),greedy:!0,inside:{function:/^url/i,punctuation:/^\(|\)$/,string:{pattern:RegExp("^"+t.source+"$"),alias:"url"}}},selector:{pattern:RegExp("(^|[{}\\s])[^{}\\s](?:[^{};\"'\\s]|\\s+(?![\\s{])|"+t.source+")*(?=\\s*\\{)"),lookbehind:!0},string:{pattern:t,greedy:!0},property:{pattern:/(^|[^-\w\xA0-\uFFFF])(?!\s)[-_a-z\xA0-\uFFFF](?:(?!\s)[-\w\xA0-\uFFFF])*(?=\s*:)/i,lookbehind:!0},important:/!important\b/i,function:{pattern:/(^|[^-a-z0-9])[-a-z0-9]+(?=\()/i,lookbehind:!0},punctuation:/[(){};:,]/},e.languages.css.atrule.inside.rest=e.languages.css;var n=e.languages.markup;n&&(n.tag.addInlined("style","css"),n.tag.addAttribute("style","css"))}(o),function(e){var t,n=/("|')(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/;e.languages.css.selector={pattern:e.languages.css.selector.pattern,lookbehind:!0,inside:t={"pseudo-element":/:(?:after|before|first-letter|first-line|selection)|::[-\w]+/,"pseudo-class":/:[-\w]+/,class:/\.[-\w]+/,id:/#[-\w]+/,attribute:{pattern:RegExp("\\[(?:[^[\\]\"']|"+n.source+")*\\]"),greedy:!0,inside:{punctuation:/^\[|\]$/,"case-sensitivity":{pattern:/(\s)[si]$/i,lookbehind:!0,alias:"keyword"},namespace:{pattern:/^(\s*)(?:(?!\s)[-*\w\xA0-\uFFFF])*\|(?!=)/,lookbehind:!0,inside:{punctuation:/\|$/}},"attr-name":{pattern:/^(\s*)(?:(?!\s)[-\w\xA0-\uFFFF])+/,lookbehind:!0},"attr-value":[n,{pattern:/(=\s*)(?:(?!\s)[-\w\xA0-\uFFFF])+(?=\s*$)/,lookbehind:!0}],operator:/[|~*^$]?=/}},"n-th":[{pattern:/(\(\s*)[+-]?\d*[\dn](?:\s*[+-]\s*\d+)?(?=\s*\))/,lookbehind:!0,inside:{number:/[\dn]+/,operator:/[+-]/}},{pattern:/(\(\s*)(?:even|odd)(?=\s*\))/i,lookbehind:!0}],combinator:/>|\+|~|\|\|/,punctuation:/[(),]/}},e.languages.css.atrule.inside["selector-function-argument"].inside=t,e.languages.insertBefore("css","property",{variable:{pattern:/(^|[^-\w\xA0-\uFFFF])--(?!\s)[-_a-z\xA0-\uFFFF](?:(?!\s)[-\w\xA0-\uFFFF])*/i,lookbehind:!0}});var r={pattern:/(\b\d+)(?:%|[a-z]+(?![\w-]))/,lookbehind:!0},o={pattern:/(^|[^\w.-])-?(?:\d+(?:\.\d+)?|\.\d+)/,lookbehind:!0};e.languages.insertBefore("css","function",{operator:{pattern:/(\s)[+\-*\/](?=\s)/,lookbehind:!0},hexcode:{pattern:/\B#[\da-f]{3,8}\b/i,alias:"color"},color:[{pattern:/(^|[^\w-])(?:AliceBlue|AntiqueWhite|Aqua|Aquamarine|Azure|Beige|Bisque|Black|BlanchedAlmond|Blue|BlueViolet|Brown|BurlyWood|CadetBlue|Chartreuse|Chocolate|Coral|CornflowerBlue|Cornsilk|Crimson|Cyan|DarkBlue|DarkCyan|DarkGoldenRod|DarkGr[ae]y|DarkGreen|DarkKhaki|DarkMagenta|DarkOliveGreen|DarkOrange|DarkOrchid|DarkRed|DarkSalmon|DarkSeaGreen|DarkSlateBlue|DarkSlateGr[ae]y|DarkTurquoise|DarkViolet|DeepPink|DeepSkyBlue|DimGr[ae]y|DodgerBlue|FireBrick|FloralWhite|ForestGreen|Fuchsia|Gainsboro|GhostWhite|Gold|GoldenRod|Gr[ae]y|Green|GreenYellow|HoneyDew|HotPink|IndianRed|Indigo|Ivory|Khaki|Lavender|LavenderBlush|LawnGreen|LemonChiffon|LightBlue|LightCoral|LightCyan|LightGoldenRodYellow|LightGr[ae]y|LightGreen|LightPink|LightSalmon|LightSeaGreen|LightSkyBlue|LightSlateGr[ae]y|LightSteelBlue|LightYellow|Lime|LimeGreen|Linen|Magenta|Maroon|MediumAquaMarine|MediumBlue|MediumOrchid|MediumPurple|MediumSeaGreen|MediumSlateBlue|MediumSpringGreen|MediumTurquoise|MediumVioletRed|MidnightBlue|MintCream|MistyRose|Moccasin|NavajoWhite|Navy|OldLace|Olive|OliveDrab|Orange|OrangeRed|Orchid|PaleGoldenRod|PaleGreen|PaleTurquoise|PaleVioletRed|PapayaWhip|PeachPuff|Peru|Pink|Plum|PowderBlue|Purple|Red|RosyBrown|RoyalBlue|SaddleBrown|Salmon|SandyBrown|SeaGreen|SeaShell|Sienna|Silver|SkyBlue|SlateBlue|SlateGr[ae]y|Snow|SpringGreen|SteelBlue|Tan|Teal|Thistle|Tomato|Transparent|Turquoise|Violet|Wheat|White|WhiteSmoke|Yellow|YellowGreen)(?![\w-])/i,lookbehind:!0},{pattern:/\b(?:hsl|rgb)\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*\)\B|\b(?:hsl|rgb)a\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*,\s*(?:0|0?\.\d+|1)\s*\)\B/i,inside:{unit:r,number:o,function:/[\w-]+(?=\()/,punctuation:/[(),]/}}],entity:/\\[\da-f]{1,8}/i,unit:r,number:o})}(o),o.languages.javascript=o.languages.extend("clike",{"class-name":[o.languages.clike["class-name"],{pattern:/(^|[^$\w\xA0-\uFFFF])(?!\s)[_$A-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\.(?:constructor|prototype))/,lookbehind:!0}],keyword:[{pattern:/((?:^|\})\s*)catch\b/,lookbehind:!0},{pattern:/(^|[^.]|\.\.\.\s*)\b(?:as|assert(?=\s*\{)|async(?=\s*(?:function\b|\(|[$\w\xA0-\uFFFF]|$))|await|break|case|class|const|continue|debugger|default|delete|do|else|enum|export|extends|finally(?=\s*(?:\{|$))|for|from(?=\s*(?:['"]|$))|function|(?:get|set)(?=\s*(?:[#\[$\w\xA0-\uFFFF]|$))|if|implements|import|in|instanceof|interface|let|new|null|of|package|private|protected|public|return|static|super|switch|this|throw|try|typeof|undefined|var|void|while|with|yield)\b/,lookbehind:!0}],function:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*(?:\.\s*(?:apply|bind|call)\s*)?\()/,number:{pattern:RegExp(/(^|[^\w$])/.source+"(?:"+/NaN|Infinity/.source+"|"+/0[bB][01]+(?:_[01]+)*n?/.source+"|"+/0[oO][0-7]+(?:_[0-7]+)*n?/.source+"|"+/0[xX][\dA-Fa-f]+(?:_[\dA-Fa-f]+)*n?/.source+"|"+/\d+(?:_\d+)*n/.source+"|"+/(?:\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\.\d+(?:_\d+)*)(?:[Ee][+-]?\d+(?:_\d+)*)?/.source+")"+/(?![\w$])/.source),lookbehind:!0},operator:/--|\+\+|\*\*=?|=>|&&=?|\|\|=?|[!=]==|<<=?|>>>?=?|[-+*/%&|^!=<>]=?|\.{3}|\?\?=?|\?\.?|[~:]/}),o.languages.javascript["class-name"][0].pattern=/(\b(?:class|extends|implements|instanceof|interface|new)\s+)[\w.\\]+/,o.languages.insertBefore("javascript","keyword",{regex:{pattern:/((?:^|[^$\w\xA0-\uFFFF."'\])\s]|\b(?:return|yield))\s*)\/(?:\[(?:[^\]\\\r\n]|\\.)*\]|\\.|[^/\\\[\r\n])+\/[dgimyus]{0,7}(?=(?:\s|\/\*(?:[^*]|\*(?!\/))*\*\/)*(?:$|[\r\n,.;:})\]]|\/\/))/,lookbehind:!0,greedy:!0,inside:{"regex-source":{pattern:/^(\/)[\s\S]+(?=\/[a-z]*$)/,lookbehind:!0,alias:"language-regex",inside:o.languages.regex},"regex-delimiter":/^\/|\/$/,"regex-flags":/^[a-z]+$/}},"function-variable":{pattern:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*[=:]\s*(?:async\s*)?(?:\bfunction\b|(?:\((?:[^()]|\([^()]*\))*\)|(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*)\s*=>))/,alias:"function"},parameter:[{pattern:/(function(?:\s+(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*)?\s*\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\))/,lookbehind:!0,inside:o.languages.javascript},{pattern:/(^|[^$\w\xA0-\uFFFF])(?!\s)[_$a-z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*=>)/i,lookbehind:!0,inside:o.languages.javascript},{pattern:/(\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\)\s*=>)/,lookbehind:!0,inside:o.languages.javascript},{pattern:/((?:\b|\s|^)(?!(?:as|async|await|break|case|catch|class|const|continue|debugger|default|delete|do|else|enum|export|extends|finally|for|from|function|get|if|implements|import|in|instanceof|interface|let|new|null|of|package|private|protected|public|return|set|static|super|switch|this|throw|try|typeof|undefined|var|void|while|with|yield)(?![$\w\xA0-\uFFFF]))(?:(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*\s*)\(\s*|\]\s*\(\s*)(?!\s)(?:[^()\s]|\s+(?![\s)])|\([^()]*\))+(?=\s*\)\s*\{)/,lookbehind:!0,inside:o.languages.javascript}],constant:/\b[A-Z](?:[A-Z_]|\dx?)*\b/}),o.languages.insertBefore("javascript","string",{hashbang:{pattern:/^#!.*/,greedy:!0,alias:"comment"},"template-string":{pattern:/`(?:\\[\s\S]|\$\{(?:[^{}]|\{(?:[^{}]|\{[^}]*\})*\})+\}|(?!\$\{)[^\\`])*`/,greedy:!0,inside:{"template-punctuation":{pattern:/^`|`$/,alias:"string"},interpolation:{pattern:/((?:^|[^\\])(?:\\{2})*)\$\{(?:[^{}]|\{(?:[^{}]|\{[^}]*\})*\})+\}/,lookbehind:!0,inside:{"interpolation-punctuation":{pattern:/^\$\{|\}$/,alias:"punctuation"},rest:o.languages.javascript}},string:/[\s\S]+/}},"string-property":{pattern:/((?:^|[,{])[ \t]*)(["'])(?:\\(?:\r\n|[\s\S])|(?!\2)[^\\\r\n])*\2(?=\s*:)/m,lookbehind:!0,greedy:!0,alias:"property"}}),o.languages.insertBefore("javascript","operator",{"literal-property":{pattern:/((?:^|[,{])[ \t]*)(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*(?=\s*:)/m,lookbehind:!0,alias:"property"}}),o.languages.markup&&(o.languages.markup.tag.addInlined("script","javascript"),o.languages.markup.tag.addAttribute(/on(?:abort|blur|change|click|composition(?:end|start|update)|dblclick|error|focus(?:in|out)?|key(?:down|up)|load|mouse(?:down|enter|leave|move|out|over|up)|reset|resize|scroll|select|slotchange|submit|unload|wheel)/.source,"javascript")),o.languages.js=o.languages.javascript,function(e){var t=/#(?!\{).+/,n={pattern:/#\{[^}]+\}/,alias:"variable"};e.languages.coffeescript=e.languages.extend("javascript",{comment:t,string:[{pattern:/'(?:\\[\s\S]|[^\\'])*'/,greedy:!0},{pattern:/"(?:\\[\s\S]|[^\\"])*"/,greedy:!0,inside:{interpolation:n}}],keyword:/\b(?:and|break|by|catch|class|continue|debugger|delete|do|each|else|extend|extends|false|finally|for|if|in|instanceof|is|isnt|let|loop|namespace|new|no|not|null|of|off|on|or|own|return|super|switch|then|this|throw|true|try|typeof|undefined|unless|until|when|while|window|with|yes|yield)\b/,"class-member":{pattern:/@(?!\d)\w+/,alias:"variable"}}),e.languages.insertBefore("coffeescript","comment",{"multiline-comment":{pattern:/###[\s\S]+?###/,alias:"comment"},"block-regex":{pattern:/\/{3}[\s\S]*?\/{3}/,alias:"regex",inside:{comment:t,interpolation:n}}}),e.languages.insertBefore("coffeescript","string",{"inline-javascript":{pattern:/`(?:\\[\s\S]|[^\\`])*`/,inside:{delimiter:{pattern:/^`|`$/,alias:"punctuation"},script:{pattern:/[\s\S]+/,alias:"language-javascript",inside:e.languages.javascript}}},"multiline-string":[{pattern:/'''[\s\S]*?'''/,greedy:!0,alias:"string"},{pattern:/"""[\s\S]*?"""/,greedy:!0,alias:"string",inside:{interpolation:n}}]}),e.languages.insertBefore("coffeescript","keyword",{property:/(?!\d)\w+(?=\s*:(?!:))/}),delete e.languages.coffeescript["template-string"],e.languages.coffee=e.languages.coffeescript}(o),function(e){var t=/[*&][^\s[\]{},]+/,n=/!(?:<[\w\-%#;/?:@&=+$,.!~*'()[\]]+>|(?:[a-zA-Z\d-]*!)?[\w\-%#;/?:@&=+$.~*'()]+)?/,r="(?:"+n.source+"(?:[ \t]+"+t.source+")?|"+t.source+"(?:[ \t]+"+n.source+")?)",o=/(?:[^\s\x00-\x08\x0e-\x1f!"#%&'*,\-:>?@[\]`{|}\x7f-\x84\x86-\x9f\ud800-\udfff\ufffe\uffff]|[?:-])(?:[ \t]*(?:(?![#:])|:))*/.source.replace(//g,(function(){return/[^\s\x00-\x08\x0e-\x1f,[\]{}\x7f-\x84\x86-\x9f\ud800-\udfff\ufffe\uffff]/.source})),s=/"(?:[^"\\\r\n]|\\.)*"|'(?:[^'\\\r\n]|\\.)*'/.source;function a(e,t){t=(t||"").replace(/m/g,"")+"m";var n=/([:\-,[{]\s*(?:\s<>[ \t]+)?)(?:<>)(?=[ \t]*(?:$|,|\]|\}|(?:[\r\n]\s*)?#))/.source.replace(/<>/g,(function(){return r})).replace(/<>/g,(function(){return e}));return RegExp(n,t)}e.languages.yaml={scalar:{pattern:RegExp(/([\-:]\s*(?:\s<>[ \t]+)?[|>])[ \t]*(?:((?:\r?\n|\r)[ \t]+)\S[^\r\n]*(?:\2[^\r\n]+)*)/.source.replace(/<>/g,(function(){return r}))),lookbehind:!0,alias:"string"},comment:/#.*/,key:{pattern:RegExp(/((?:^|[:\-,[{\r\n?])[ \t]*(?:<>[ \t]+)?)<>(?=\s*:\s)/.source.replace(/<>/g,(function(){return r})).replace(/<>/g,(function(){return"(?:"+o+"|"+s+")"}))),lookbehind:!0,greedy:!0,alias:"atrule"},directive:{pattern:/(^[ \t]*)%.+/m,lookbehind:!0,alias:"important"},datetime:{pattern:a(/\d{4}-\d\d?-\d\d?(?:[tT]|[ \t]+)\d\d?:\d{2}:\d{2}(?:\.\d*)?(?:[ \t]*(?:Z|[-+]\d\d?(?::\d{2})?))?|\d{4}-\d{2}-\d{2}|\d\d?:\d{2}(?::\d{2}(?:\.\d*)?)?/.source),lookbehind:!0,alias:"number"},boolean:{pattern:a(/false|true/.source,"i"),lookbehind:!0,alias:"important"},null:{pattern:a(/null|~/.source,"i"),lookbehind:!0,alias:"important"},string:{pattern:a(s),lookbehind:!0,greedy:!0},number:{pattern:a(/[+-]?(?:0x[\da-f]+|0o[0-7]+|(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?|\.inf|\.nan)/.source,"i"),lookbehind:!0},tag:n,important:t,punctuation:/---|[:[\]{}\-,|>?]|\.\.\./},e.languages.yml=e.languages.yaml}(o),function(e){var t=/(?:\\.|[^\\\n\r]|(?:\n|\r\n?)(?![\r\n]))/.source;function n(e){return e=e.replace(//g,(function(){return t})),RegExp(/((?:^|[^\\])(?:\\{2})*)/.source+"(?:"+e+")")}var r=/(?:\\.|``(?:[^`\r\n]|`(?!`))+``|`[^`\r\n]+`|[^\\|\r\n`])+/.source,o=/\|?__(?:\|__)+\|?(?:(?:\n|\r\n?)|(?![\s\S]))/.source.replace(/__/g,(function(){return r})),s=/\|?[ \t]*:?-{3,}:?[ \t]*(?:\|[ \t]*:?-{3,}:?[ \t]*)+\|?(?:\n|\r\n?)/.source;e.languages.markdown=e.languages.extend("markup",{}),e.languages.insertBefore("markdown","prolog",{"front-matter-block":{pattern:/(^(?:\s*[\r\n])?)---(?!.)[\s\S]*?[\r\n]---(?!.)/,lookbehind:!0,greedy:!0,inside:{punctuation:/^---|---$/,"front-matter":{pattern:/\S+(?:\s+\S+)*/,alias:["yaml","language-yaml"],inside:e.languages.yaml}}},blockquote:{pattern:/^>(?:[\t ]*>)*/m,alias:"punctuation"},table:{pattern:RegExp("^"+o+s+"(?:"+o+")*","m"),inside:{"table-data-rows":{pattern:RegExp("^("+o+s+")(?:"+o+")*$"),lookbehind:!0,inside:{"table-data":{pattern:RegExp(r),inside:e.languages.markdown},punctuation:/\|/}},"table-line":{pattern:RegExp("^("+o+")"+s+"$"),lookbehind:!0,inside:{punctuation:/\||:?-{3,}:?/}},"table-header-row":{pattern:RegExp("^"+o+"$"),inside:{"table-header":{pattern:RegExp(r),alias:"important",inside:e.languages.markdown},punctuation:/\|/}}}},code:[{pattern:/((?:^|\n)[ \t]*\n|(?:^|\r\n?)[ \t]*\r\n?)(?: {4}|\t).+(?:(?:\n|\r\n?)(?: {4}|\t).+)*/,lookbehind:!0,alias:"keyword"},{pattern:/^```[\s\S]*?^```$/m,greedy:!0,inside:{"code-block":{pattern:/^(```.*(?:\n|\r\n?))[\s\S]+?(?=(?:\n|\r\n?)^```$)/m,lookbehind:!0},"code-language":{pattern:/^(```).+/,lookbehind:!0},punctuation:/```/}}],title:[{pattern:/\S.*(?:\n|\r\n?)(?:==+|--+)(?=[ \t]*$)/m,alias:"important",inside:{punctuation:/==+$|--+$/}},{pattern:/(^\s*)#.+/m,lookbehind:!0,alias:"important",inside:{punctuation:/^#+|#+$/}}],hr:{pattern:/(^\s*)([*-])(?:[\t ]*\2){2,}(?=\s*$)/m,lookbehind:!0,alias:"punctuation"},list:{pattern:/(^\s*)(?:[*+-]|\d+\.)(?=[\t ].)/m,lookbehind:!0,alias:"punctuation"},"url-reference":{pattern:/!?\[[^\]]+\]:[\t ]+(?:\S+|<(?:\\.|[^>\\])+>)(?:[\t ]+(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\)))?/,inside:{variable:{pattern:/^(!?\[)[^\]]+/,lookbehind:!0},string:/(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\))$/,punctuation:/^[\[\]!:]|[<>]/},alias:"url"},bold:{pattern:n(/\b__(?:(?!_)|_(?:(?!_))+_)+__\b|\*\*(?:(?!\*)|\*(?:(?!\*))+\*)+\*\*/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^..)[\s\S]+(?=..$)/,lookbehind:!0,inside:{}},punctuation:/\*\*|__/}},italic:{pattern:n(/\b_(?:(?!_)|__(?:(?!_))+__)+_\b|\*(?:(?!\*)|\*\*(?:(?!\*))+\*\*)+\*/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^.)[\s\S]+(?=.$)/,lookbehind:!0,inside:{}},punctuation:/[*_]/}},strike:{pattern:n(/(~~?)(?:(?!~))+\2/.source),lookbehind:!0,greedy:!0,inside:{content:{pattern:/(^~~?)[\s\S]+(?=\1$)/,lookbehind:!0,inside:{}},punctuation:/~~?/}},"code-snippet":{pattern:/(^|[^\\`])(?:``[^`\r\n]+(?:`[^`\r\n]+)*``(?!`)|`[^`\r\n]+`(?!`))/,lookbehind:!0,greedy:!0,alias:["code","keyword"]},url:{pattern:n(/!?\[(?:(?!\]))+\](?:\([^\s)]+(?:[\t ]+"(?:\\.|[^"\\])*")?\)|[ \t]?\[(?:(?!\]))+\])/.source),lookbehind:!0,greedy:!0,inside:{operator:/^!/,content:{pattern:/(^\[)[^\]]+(?=\])/,lookbehind:!0,inside:{}},variable:{pattern:/(^\][ \t]?\[)[^\]]+(?=\]$)/,lookbehind:!0},url:{pattern:/(^\]\()[^\s)]+/,lookbehind:!0},string:{pattern:/(^[ \t]+)"(?:\\.|[^"\\])*"(?=\)$)/,lookbehind:!0}}}}),["url","bold","italic","strike"].forEach((function(t){["url","bold","italic","strike","code-snippet"].forEach((function(n){t!==n&&(e.languages.markdown[t].inside.content.inside[n]=e.languages.markdown[n])}))})),e.hooks.add("after-tokenize",(function(e){"markdown"!==e.language&&"md"!==e.language||function e(t){if(t&&"string"!=typeof t)for(var n=0,r=t.length;n",quot:'"'},l=String.fromCodePoint||String.fromCharCode;e.languages.md=e.languages.markdown}(o),o.languages.graphql={comment:/#.*/,description:{pattern:/(?:"""(?:[^"]|(?!""")")*"""|"(?:\\.|[^\\"\r\n])*")(?=\s*[a-z_])/i,greedy:!0,alias:"string",inside:{"language-markdown":{pattern:/(^"(?:"")?)(?!\1)[\s\S]+(?=\1$)/,lookbehind:!0,inside:o.languages.markdown}}},string:{pattern:/"""(?:[^"]|(?!""")")*"""|"(?:\\.|[^\\"\r\n])*"/,greedy:!0},number:/(?:\B-|\b)\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,boolean:/\b(?:false|true)\b/,variable:/\$[a-z_]\w*/i,directive:{pattern:/@[a-z_]\w*/i,alias:"function"},"attr-name":{pattern:/\b[a-z_]\w*(?=\s*(?:\((?:[^()"]|"(?:\\.|[^\\"\r\n])*")*\))?:)/i,greedy:!0},"atom-input":{pattern:/\b[A-Z]\w*Input\b/,alias:"class-name"},scalar:/\b(?:Boolean|Float|ID|Int|String)\b/,constant:/\b[A-Z][A-Z_\d]*\b/,"class-name":{pattern:/(\b(?:enum|implements|interface|on|scalar|type|union)\s+|&\s*|:\s*|\[)[A-Z_]\w*/,lookbehind:!0},fragment:{pattern:/(\bfragment\s+|\.{3}\s*(?!on\b))[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},"definition-mutation":{pattern:/(\bmutation\s+)[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},"definition-query":{pattern:/(\bquery\s+)[a-zA-Z_]\w*/,lookbehind:!0,alias:"function"},keyword:/\b(?:directive|enum|extend|fragment|implements|input|interface|mutation|on|query|repeatable|scalar|schema|subscription|type|union)\b/,operator:/[!=|&]|\.{3}/,"property-query":/\w+(?=\s*\()/,object:/\w+(?=\s*\{)/,punctuation:/[!(){}\[\]:=,]/,property:/\w+/},o.hooks.add("after-tokenize",(function(e){if("graphql"===e.language)for(var t=e.tokens.filter((function(e){return"string"!=typeof e&&"comment"!==e.type&&"scalar"!==e.type})),n=0;n0)){var i=u(/^\{$/,/^\}$/);if(-1===i)continue;for(var l=n;l=0&&m(c,"variable-input")}}}}function d(e){return t[n+e]}function p(e,t){t=t||0;for(var n=0;n?|<|>)?|>[>=]?|\b(?:AND|BETWEEN|DIV|ILIKE|IN|IS|LIKE|NOT|OR|REGEXP|RLIKE|SOUNDS LIKE|XOR)\b/i,punctuation:/[;[\]()`,.]/},function(e){var t=e.languages.javascript["template-string"],n=t.pattern.source,r=t.inside.interpolation,o=r.inside["interpolation-punctuation"],s=r.pattern.source;function a(t,r){if(e.languages[t])return{pattern:RegExp("((?:"+r+")\\s*)"+n),lookbehind:!0,greedy:!0,inside:{"template-punctuation":{pattern:/^`|`$/,alias:"string"},"embedded-code":{pattern:/[\s\S]+/,alias:t}}}}function i(e,t){return"___"+t.toUpperCase()+"_"+e+"___"}function l(t,n,r){var o={code:t,grammar:n,language:r};return e.hooks.run("before-tokenize",o),o.tokens=e.tokenize(o.code,o.grammar),e.hooks.run("after-tokenize",o),o.tokens}function c(t){var n={};n["interpolation-punctuation"]=o;var s=e.tokenize(t,n);if(3===s.length){var a=[1,1];a.push.apply(a,l(s[1],e.languages.javascript,"javascript")),s.splice.apply(s,a)}return new e.Token("interpolation",s,r.alias,t)}function d(t,n,r){var o=e.tokenize(t,{interpolation:{pattern:RegExp(s),lookbehind:!0}}),a=0,d={},p=l(o.map((function(e){if("string"==typeof e)return e;for(var n,o=e.content;-1!==t.indexOf(n=i(a++,r)););return d[n]=o,n})).join(""),n,r),u=Object.keys(d);return a=0,function e(t){for(var n=0;n=u.length)return;var r=t[n];if("string"==typeof r||"string"==typeof r.content){var o=u[a],s="string"==typeof r?r:r.content,i=s.indexOf(o);if(-1!==i){++a;var l=s.substring(0,i),p=c(d[o]),m=s.substring(i+o.length),f=[];if(l&&f.push(l),f.push(p),m){var h=[m];e(h),f.push.apply(f,h)}"string"==typeof r?(t.splice.apply(t,[n,1].concat(f)),n+=f.length-1):r.content=f}}else{var g=r.content;Array.isArray(g)?e(g):e([g])}}}(p),new e.Token(r,p,"language-"+r,t)}e.languages.javascript["template-string"]=[a("css",/\b(?:styled(?:\([^)]*\))?(?:\s*\.\s*\w+(?:\([^)]*\))*)*|css(?:\s*\.\s*(?:global|resolve))?|createGlobalStyle|keyframes)/.source),a("html",/\bhtml|\.\s*(?:inner|outer)HTML\s*\+?=/.source),a("svg",/\bsvg/.source),a("markdown",/\b(?:markdown|md)/.source),a("graphql",/\b(?:gql|graphql(?:\s*\.\s*experimental)?)/.source),a("sql",/\bsql/.source),t].filter(Boolean);var p={javascript:!0,js:!0,typescript:!0,ts:!0,jsx:!0,tsx:!0};function u(e){return"string"==typeof e?e:Array.isArray(e)?e.map(u).join(""):u(e.content)}e.hooks.add("after-tokenize",(function(t){t.language in p&&function t(n){for(var r=0,o=n.length;r]|<(?:[^<>]|<[^<>]*>)*>)*>)?/,lookbehind:!0,greedy:!0,inside:null},builtin:/\b(?:Array|Function|Promise|any|boolean|console|never|number|string|symbol|unknown)\b/}),e.languages.typescript.keyword.push(/\b(?:abstract|declare|is|keyof|readonly|require)\b/,/\b(?:asserts|infer|interface|module|namespace|type)\b(?=\s*(?:[{_$a-zA-Z\xA0-\uFFFF]|$))/,/\btype\b(?=\s*(?:[\{*]|$))/),delete e.languages.typescript.parameter,delete e.languages.typescript["literal-property"];var t=e.languages.extend("typescript",{});delete t["class-name"],e.languages.typescript["class-name"].inside=t,e.languages.insertBefore("typescript","function",{decorator:{pattern:/@[$\w\xA0-\uFFFF]+/,inside:{at:{pattern:/^@/,alias:"operator"},function:/^[\s\S]+/}},"generic-function":{pattern:/#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*\s*<(?:[^<>]|<(?:[^<>]|<[^<>]*>)*>)*>(?=\s*\()/,greedy:!0,inside:{function:/^#?(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*/,generic:{pattern:/<[\s\S]+/,alias:"class-name",inside:t}}}}),e.languages.ts=e.languages.typescript}(o),function(e){function t(e,t){return RegExp(e.replace(//g,(function(){return/(?!\s)[_$a-zA-Z\xA0-\uFFFF](?:(?!\s)[$\w\xA0-\uFFFF])*/.source})),t)}e.languages.insertBefore("javascript","function-variable",{"method-variable":{pattern:RegExp("(\\.\\s*)"+e.languages.javascript["function-variable"].pattern.source),lookbehind:!0,alias:["function-variable","method","function","property-access"]}}),e.languages.insertBefore("javascript","function",{method:{pattern:RegExp("(\\.\\s*)"+e.languages.javascript.function.source),lookbehind:!0,alias:["function","property-access"]}}),e.languages.insertBefore("javascript","constant",{"known-class-name":[{pattern:/\b(?:(?:Float(?:32|64)|(?:Int|Uint)(?:8|16|32)|Uint8Clamped)?Array|ArrayBuffer|BigInt|Boolean|DataView|Date|Error|Function|Intl|JSON|(?:Weak)?(?:Map|Set)|Math|Number|Object|Promise|Proxy|Reflect|RegExp|String|Symbol|WebAssembly)\b/,alias:"class-name"},{pattern:/\b(?:[A-Z]\w*)Error\b/,alias:"class-name"}]}),e.languages.insertBefore("javascript","keyword",{imports:{pattern:t(/(\bimport\b\s*)(?:(?:\s*,\s*(?:\*\s*as\s+|\{[^{}]*\}))?|\*\s*as\s+|\{[^{}]*\})(?=\s*\bfrom\b)/.source),lookbehind:!0,inside:e.languages.javascript},exports:{pattern:t(/(\bexport\b\s*)(?:\*(?:\s*as\s+)?(?=\s*\bfrom\b)|\{[^{}]*\})/.source),lookbehind:!0,inside:e.languages.javascript}}),e.languages.javascript.keyword.unshift({pattern:/\b(?:as|default|export|from|import)\b/,alias:"module"},{pattern:/\b(?:await|break|catch|continue|do|else|finally|for|if|return|switch|throw|try|while|yield)\b/,alias:"control-flow"},{pattern:/\bnull\b/,alias:["null","nil"]},{pattern:/\bundefined\b/,alias:"nil"}),e.languages.insertBefore("javascript","operator",{spread:{pattern:/\.{3}/,alias:"operator"},arrow:{pattern:/=>/,alias:"operator"}}),e.languages.insertBefore("javascript","punctuation",{"property-access":{pattern:t(/(\.\s*)#?/.source),lookbehind:!0},"maybe-class-name":{pattern:/(^|[^$\w\xA0-\uFFFF])[A-Z][$\w\xA0-\uFFFF]+/,lookbehind:!0},dom:{pattern:/\b(?:document|(?:local|session)Storage|location|navigator|performance|window)\b/,alias:"variable"},console:{pattern:/\bconsole(?=\s*\.)/,alias:"class-name"}});for(var n=["function","function-variable","method","method-variable","property-access"],r=0;r*\.{3}(?:[^{}]|)*\})/.source;function s(e,t){return e=e.replace(//g,(function(){return n})).replace(//g,(function(){return r})).replace(//g,(function(){return o})),RegExp(e,t)}o=s(o).source,e.languages.jsx=e.languages.extend("markup",t),e.languages.jsx.tag.pattern=s(/<\/?(?:[\w.:-]+(?:+(?:[\w.:$-]+(?:=(?:"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*'|[^\s{'"/>=]+|))?|))**\/?)?>/.source),e.languages.jsx.tag.inside.tag.pattern=/^<\/?[^\s>\/]*/,e.languages.jsx.tag.inside["attr-value"].pattern=/=(?!\{)(?:"(?:\\[\s\S]|[^\\"])*"|'(?:\\[\s\S]|[^\\'])*'|[^\s'">]+)/,e.languages.jsx.tag.inside.tag.inside["class-name"]=/^[A-Z]\w*(?:\.[A-Z]\w*)*$/,e.languages.jsx.tag.inside.comment=t.comment,e.languages.insertBefore("inside","attr-name",{spread:{pattern:s(//.source),inside:e.languages.jsx}},e.languages.jsx.tag),e.languages.insertBefore("inside","special-attr",{script:{pattern:s(/=/.source),alias:"language-javascript",inside:{"script-punctuation":{pattern:/^=(?=\{)/,alias:"punctuation"},rest:e.languages.jsx}}},e.languages.jsx.tag);var a=function(e){return e?"string"==typeof e?e:"string"==typeof e.content?e.content:e.content.map(a).join(""):""},i=function(t){for(var n=[],r=0;r0&&n[n.length-1].tagName===a(o.content[0].content[1])&&n.pop():"/>"===o.content[o.content.length-1].content||n.push({tagName:a(o.content[0].content[1]),openedBraces:0}):n.length>0&&"punctuation"===o.type&&"{"===o.content?n[n.length-1].openedBraces++:n.length>0&&n[n.length-1].openedBraces>0&&"punctuation"===o.type&&"}"===o.content?n[n.length-1].openedBraces--:s=!0),(s||"string"==typeof o)&&n.length>0&&0===n[n.length-1].openedBraces){var l=a(o);r0&&("string"==typeof t[r-1]||"plain-text"===t[r-1].type)&&(l=a(t[r-1])+l,t.splice(r-1,1),r--),t[r]=new e.Token("plain-text",l,null,l)}o.content&&"string"!=typeof o.content&&i(o.content)}};e.hooks.add("after-tokenize",(function(e){"jsx"!==e.language&&"tsx"!==e.language||i(e.tokens)}))}(o),function(e){e.languages.diff={coord:[/^(?:\*{3}|-{3}|\+{3}).*$/m,/^@@.*@@$/m,/^\d.*$/m]};var t={"deleted-sign":"-","deleted-arrow":"<","inserted-sign":"+","inserted-arrow":">",unchanged:" ",diff:"!"};Object.keys(t).forEach((function(n){var r=t[n],o=[];/^\w+$/.test(n)||o.push(/\w+/.exec(n)[0]),"diff"===n&&o.push("bold"),e.languages.diff[n]={pattern:RegExp("^(?:["+r+"].*(?:\r\n?|\n|(?![\\s\\S])))+","m"),alias:o,inside:{line:{pattern:/(.)(?=[\s\S]).*(?:\r\n?|\n)?/,lookbehind:!0},prefix:{pattern:/[\s\S]/,alias:/\w+/.exec(n)[0]}}}})),Object.defineProperty(e.languages.diff,"PREFIXES",{value:t})}(o),o.languages.git={comment:/^#.*/m,deleted:/^[-\u2013].*/m,inserted:/^\+.*/m,string:/("|')(?:\\.|(?!\1)[^\\\r\n])*\1/,command:{pattern:/^.*\$ git .*$/m,inside:{parameter:/\s--?\w+/}},coord:/^@@.*@@$/m,"commit-sha1":/^commit \w{40}$/m},o.languages.go=o.languages.extend("clike",{string:{pattern:/(^|[^\\])"(?:\\.|[^"\\\r\n])*"|`[^`]*`/,lookbehind:!0,greedy:!0},keyword:/\b(?:break|case|chan|const|continue|default|defer|else|fallthrough|for|func|go(?:to)?|if|import|interface|map|package|range|return|select|struct|switch|type|var)\b/,boolean:/\b(?:_|false|iota|nil|true)\b/,number:[/\b0(?:b[01_]+|o[0-7_]+)i?\b/i,/\b0x(?:[a-f\d_]+(?:\.[a-f\d_]*)?|\.[a-f\d_]+)(?:p[+-]?\d+(?:_\d+)*)?i?(?!\w)/i,/(?:\b\d[\d_]*(?:\.[\d_]*)?|\B\.\d[\d_]*)(?:e[+-]?[\d_]+)?i?(?!\w)/i],operator:/[*\/%^!=]=?|\+[=+]?|-[=-]?|\|[=|]?|&(?:=|&|\^=?)?|>(?:>=?|=)?|<(?:<=?|=|-)?|:=|\.\.\./,builtin:/\b(?:append|bool|byte|cap|close|complex|complex(?:64|128)|copy|delete|error|float(?:32|64)|u?int(?:8|16|32|64)?|imag|len|make|new|panic|print(?:ln)?|real|recover|rune|string|uintptr)\b/}),o.languages.insertBefore("go","string",{char:{pattern:/'(?:\\.|[^'\\\r\n]){0,10}'/,greedy:!0}}),delete o.languages.go["class-name"],function(e){function t(e,t){return"___"+e.toUpperCase()+t+"___"}Object.defineProperties(e.languages["markup-templating"]={},{buildPlaceholders:{value:function(n,r,o,s){if(n.language===r){var a=n.tokenStack=[];n.code=n.code.replace(o,(function(e){if("function"==typeof s&&!s(e))return e;for(var o,i=a.length;-1!==n.code.indexOf(o=t(r,i));)++i;return a[i]=e,o})),n.grammar=e.languages.markup}}},tokenizePlaceholders:{value:function(n,r){if(n.language===r&&n.tokenStack){n.grammar=e.languages[r];var o=0,s=Object.keys(n.tokenStack);!function a(i){for(var l=0;l=s.length);l++){var c=i[l];if("string"==typeof c||c.content&&"string"==typeof c.content){var d=s[o],p=n.tokenStack[d],u="string"==typeof c?c:c.content,m=t(r,d),f=u.indexOf(m);if(f>-1){++o;var h=u.substring(0,f),g=new e.Token(r,e.tokenize(p,n.grammar),"language-"+r,p),b=u.substring(f+m.length),y=[];h&&y.push.apply(y,a([h])),y.push(g),b&&y.push.apply(y,a([b])),"string"==typeof c?i.splice.apply(i,[l,1].concat(y)):c.content=y}}else c.content&&a(c.content)}return i}(n.tokens)}}}})}(o),function(e){e.languages.handlebars={comment:/\{\{![\s\S]*?\}\}/,delimiter:{pattern:/^\{\{\{?|\}\}\}?$/,alias:"punctuation"},string:/(["'])(?:\\.|(?!\1)[^\\\r\n])*\1/,number:/\b0x[\dA-Fa-f]+\b|(?:\b\d+(?:\.\d*)?|\B\.\d+)(?:[Ee][+-]?\d+)?/,boolean:/\b(?:false|true)\b/,block:{pattern:/^(\s*(?:~\s*)?)[#\/]\S+?(?=\s*(?:~\s*)?$|\s)/,lookbehind:!0,alias:"keyword"},brackets:{pattern:/\[[^\]]+\]/,inside:{punctuation:/\[|\]/,variable:/[\s\S]+/}},punctuation:/[!"#%&':()*+,.\/;<=>@\[\\\]^`{|}~]/,variable:/[^!"#%&'()*+,\/;<=>@\[\\\]^`{|}~\s]+/},e.hooks.add("before-tokenize",(function(t){e.languages["markup-templating"].buildPlaceholders(t,"handlebars",/\{\{\{[\s\S]+?\}\}\}|\{\{[\s\S]+?\}\}/g)})),e.hooks.add("after-tokenize",(function(t){e.languages["markup-templating"].tokenizePlaceholders(t,"handlebars")})),e.languages.hbs=e.languages.handlebars}(o),o.languages.json={property:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?=\s*:)/,lookbehind:!0,greedy:!0},string:{pattern:/(^|[^\\])"(?:\\.|[^\\"\r\n])*"(?!\s*:)/,lookbehind:!0,greedy:!0},comment:{pattern:/\/\/.*|\/\*[\s\S]*?(?:\*\/|$)/,greedy:!0},number:/-?\b\d+(?:\.\d+)?(?:e[+-]?\d+)?\b/i,punctuation:/[{}[\],]/,operator:/:/,boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"}},o.languages.webmanifest=o.languages.json,o.languages.less=o.languages.extend("css",{comment:[/\/\*[\s\S]*?\*\//,{pattern:/(^|[^\\])\/\/.*/,lookbehind:!0}],atrule:{pattern:/@[\w-](?:\((?:[^(){}]|\([^(){}]*\))*\)|[^(){};\s]|\s+(?!\s))*?(?=\s*\{)/,inside:{punctuation:/[:()]/}},selector:{pattern:/(?:@\{[\w-]+\}|[^{};\s@])(?:@\{[\w-]+\}|\((?:[^(){}]|\([^(){}]*\))*\)|[^(){};@\s]|\s+(?!\s))*?(?=\s*\{)/,inside:{variable:/@+[\w-]+/}},property:/(?:@\{[\w-]+\}|[\w-])+(?:\+_?)?(?=\s*:)/,operator:/[+\-*\/]/}),o.languages.insertBefore("less","property",{variable:[{pattern:/@[\w-]+\s*:/,inside:{punctuation:/:/}},/@@?[\w-]+/],"mixin-usage":{pattern:/([{;]\s*)[.#](?!\d)[\w-].*?(?=[(;])/,lookbehind:!0,alias:"function"}}),o.languages.makefile={comment:{pattern:/(^|[^\\])#(?:\\(?:\r\n|[\s\S])|[^\\\r\n])*/,lookbehind:!0},string:{pattern:/(["'])(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/,greedy:!0},"builtin-target":{pattern:/\.[A-Z][^:#=\s]+(?=\s*:(?!=))/,alias:"builtin"},target:{pattern:/^(?:[^:=\s]|[ \t]+(?![\s:]))+(?=\s*:(?!=))/m,alias:"symbol",inside:{variable:/\$+(?:(?!\$)[^(){}:#=\s]+|(?=[({]))/}},variable:/\$+(?:(?!\$)[^(){}:#=\s]+|\([@*%<^+?][DF]\)|(?=[({]))/,keyword:/-include\b|\b(?:define|else|endef|endif|export|ifn?def|ifn?eq|include|override|private|sinclude|undefine|unexport|vpath)\b/,function:{pattern:/(\()(?:abspath|addsuffix|and|basename|call|dir|error|eval|file|filter(?:-out)?|findstring|firstword|flavor|foreach|guile|if|info|join|lastword|load|notdir|or|origin|patsubst|realpath|shell|sort|strip|subst|suffix|value|warning|wildcard|word(?:list|s)?)(?=[ \t])/,lookbehind:!0},operator:/(?:::|[?:+!])?=|[|@]/,punctuation:/[:;(){}]/},o.languages.objectivec=o.languages.extend("c",{string:{pattern:/@?"(?:\\(?:\r\n|[\s\S])|[^"\\\r\n])*"/,greedy:!0},keyword:/\b(?:asm|auto|break|case|char|const|continue|default|do|double|else|enum|extern|float|for|goto|if|in|inline|int|long|register|return|self|short|signed|sizeof|static|struct|super|switch|typedef|typeof|union|unsigned|void|volatile|while)\b|(?:@interface|@end|@implementation|@protocol|@class|@public|@protected|@private|@property|@try|@catch|@finally|@throw|@synthesize|@dynamic|@selector)\b/,operator:/-[->]?|\+\+?|!=?|<>?=?|==?|&&?|\|\|?|[~^%?*\/@]/}),delete o.languages.objectivec["class-name"],o.languages.objc=o.languages.objectivec,o.languages.ocaml={comment:{pattern:/\(\*[\s\S]*?\*\)/,greedy:!0},char:{pattern:/'(?:[^\\\r\n']|\\(?:.|[ox]?[0-9a-f]{1,3}))'/i,greedy:!0},string:[{pattern:/"(?:\\(?:[\s\S]|\r\n)|[^\\\r\n"])*"/,greedy:!0},{pattern:/\{([a-z_]*)\|[\s\S]*?\|\1\}/,greedy:!0}],number:[/\b(?:0b[01][01_]*|0o[0-7][0-7_]*)\b/i,/\b0x[a-f0-9][a-f0-9_]*(?:\.[a-f0-9_]*)?(?:p[+-]?\d[\d_]*)?(?!\w)/i,/\b\d[\d_]*(?:\.[\d_]*)?(?:e[+-]?\d[\d_]*)?(?!\w)/i],directive:{pattern:/\B#\w+/,alias:"property"},label:{pattern:/\B~\w+/,alias:"property"},"type-variable":{pattern:/\B'\w+/,alias:"function"},variant:{pattern:/`\w+/,alias:"symbol"},keyword:/\b(?:as|assert|begin|class|constraint|do|done|downto|else|end|exception|external|for|fun|function|functor|if|in|include|inherit|initializer|lazy|let|match|method|module|mutable|new|nonrec|object|of|open|private|rec|sig|struct|then|to|try|type|val|value|virtual|when|where|while|with)\b/,boolean:/\b(?:false|true)\b/,"operator-like-punctuation":{pattern:/\[[<>|]|[>|]\]|\{<|>\}/,alias:"punctuation"},operator:/\.[.~]|:[=>]|[=<>@^|&+\-*\/$%!?~][!$%&*+\-.\/:<=>?@^|~]*|\b(?:and|asr|land|lor|lsl|lsr|lxor|mod|or)\b/,punctuation:/;;|::|[(){}\[\].,:;#]|\b_\b/},o.languages.python={comment:{pattern:/(^|[^\\])#.*/,lookbehind:!0,greedy:!0},"string-interpolation":{pattern:/(?:f|fr|rf)(?:("""|''')[\s\S]*?\1|("|')(?:\\.|(?!\2)[^\\\r\n])*\2)/i,greedy:!0,inside:{interpolation:{pattern:/((?:^|[^{])(?:\{\{)*)\{(?!\{)(?:[^{}]|\{(?!\{)(?:[^{}]|\{(?!\{)(?:[^{}])+\})+\})+\}/,lookbehind:!0,inside:{"format-spec":{pattern:/(:)[^:(){}]+(?=\}$)/,lookbehind:!0},"conversion-option":{pattern:/![sra](?=[:}]$)/,alias:"punctuation"},rest:null}},string:/[\s\S]+/}},"triple-quoted-string":{pattern:/(?:[rub]|br|rb)?("""|''')[\s\S]*?\1/i,greedy:!0,alias:"string"},string:{pattern:/(?:[rub]|br|rb)?("|')(?:\\.|(?!\1)[^\\\r\n])*\1/i,greedy:!0},function:{pattern:/((?:^|\s)def[ \t]+)[a-zA-Z_]\w*(?=\s*\()/g,lookbehind:!0},"class-name":{pattern:/(\bclass\s+)\w+/i,lookbehind:!0},decorator:{pattern:/(^[\t ]*)@\w+(?:\.\w+)*/m,lookbehind:!0,alias:["annotation","punctuation"],inside:{punctuation:/\./}},keyword:/\b(?:_(?=\s*:)|and|as|assert|async|await|break|case|class|continue|def|del|elif|else|except|exec|finally|for|from|global|if|import|in|is|lambda|match|nonlocal|not|or|pass|print|raise|return|try|while|with|yield)\b/,builtin:/\b(?:__import__|abs|all|any|apply|ascii|basestring|bin|bool|buffer|bytearray|bytes|callable|chr|classmethod|cmp|coerce|compile|complex|delattr|dict|dir|divmod|enumerate|eval|execfile|file|filter|float|format|frozenset|getattr|globals|hasattr|hash|help|hex|id|input|int|intern|isinstance|issubclass|iter|len|list|locals|long|map|max|memoryview|min|next|object|oct|open|ord|pow|property|range|raw_input|reduce|reload|repr|reversed|round|set|setattr|slice|sorted|staticmethod|str|sum|super|tuple|type|unichr|unicode|vars|xrange|zip)\b/,boolean:/\b(?:False|None|True)\b/,number:/\b0(?:b(?:_?[01])+|o(?:_?[0-7])+|x(?:_?[a-f0-9])+)\b|(?:\b\d+(?:_\d+)*(?:\.(?:\d+(?:_\d+)*)?)?|\B\.\d+(?:_\d+)*)(?:e[+-]?\d+(?:_\d+)*)?j?(?!\w)/i,operator:/[-+%=]=?|!=|:=|\*\*?=?|\/\/?=?|<[<=>]?|>[=>]?|[&|^~]/,punctuation:/[{}[\];(),.:]/},o.languages.python["string-interpolation"].inside.interpolation.inside.rest=o.languages.python,o.languages.py=o.languages.python,o.languages.reason=o.languages.extend("clike",{string:{pattern:/"(?:\\(?:\r\n|[\s\S])|[^\\\r\n"])*"/,greedy:!0},"class-name":/\b[A-Z]\w*/,keyword:/\b(?:and|as|assert|begin|class|constraint|do|done|downto|else|end|exception|external|for|fun|function|functor|if|in|include|inherit|initializer|lazy|let|method|module|mutable|new|nonrec|object|of|open|or|private|rec|sig|struct|switch|then|to|try|type|val|virtual|when|while|with)\b/,operator:/\.{3}|:[:=]|\|>|->|=(?:==?|>)?|<=?|>=?|[|^?'#!~`]|[+\-*\/]\.?|\b(?:asr|land|lor|lsl|lsr|lxor|mod)\b/}),o.languages.insertBefore("reason","class-name",{char:{pattern:/'(?:\\x[\da-f]{2}|\\o[0-3][0-7][0-7]|\\\d{3}|\\.|[^'\\\r\n])'/,greedy:!0},constructor:/\b[A-Z]\w*\b(?!\s*\.)/,label:{pattern:/\b[a-z]\w*(?=::)/,alias:"symbol"}}),delete o.languages.reason.function,function(e){e.languages.sass=e.languages.extend("css",{comment:{pattern:/^([ \t]*)\/[\/*].*(?:(?:\r?\n|\r)\1[ \t].+)*/m,lookbehind:!0,greedy:!0}}),e.languages.insertBefore("sass","atrule",{"atrule-line":{pattern:/^(?:[ \t]*)[@+=].+/m,greedy:!0,inside:{atrule:/(?:@[\w-]+|[+=])/}}}),delete e.languages.sass.atrule;var t=/\$[-\w]+|#\{\$[-\w]+\}/,n=[/[+*\/%]|[=!]=|<=?|>=?|\b(?:and|not|or)\b/,{pattern:/(\s)-(?=\s)/,lookbehind:!0}];e.languages.insertBefore("sass","property",{"variable-line":{pattern:/^[ \t]*\$.+/m,greedy:!0,inside:{punctuation:/:/,variable:t,operator:n}},"property-line":{pattern:/^[ \t]*(?:[^:\s]+ *:.*|:[^:\s].*)/m,greedy:!0,inside:{property:[/[^:\s]+(?=\s*:)/,{pattern:/(:)[^:\s]+/,lookbehind:!0}],punctuation:/:/,variable:t,operator:n,important:e.languages.sass.important}}}),delete e.languages.sass.property,delete e.languages.sass.important,e.languages.insertBefore("sass","punctuation",{selector:{pattern:/^([ \t]*)\S(?:,[^,\r\n]+|[^,\r\n]*)(?:,[^,\r\n]+)*(?:,(?:\r?\n|\r)\1[ \t]+\S(?:,[^,\r\n]+|[^,\r\n]*)(?:,[^,\r\n]+)*)*/m,lookbehind:!0,greedy:!0}})}(o),o.languages.scss=o.languages.extend("css",{comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0},atrule:{pattern:/@[\w-](?:\([^()]+\)|[^()\s]|\s+(?!\s))*?(?=\s+[{;])/,inside:{rule:/@[\w-]+/}},url:/(?:[-a-z]+-)?url(?=\()/i,selector:{pattern:/(?=\S)[^@;{}()]?(?:[^@;{}()\s]|\s+(?!\s)|#\{\$[-\w]+\})+(?=\s*\{(?:\}|\s|[^}][^:{}]*[:{][^}]))/,inside:{parent:{pattern:/&/,alias:"important"},placeholder:/%[-\w]+/,variable:/\$[-\w]+|#\{\$[-\w]+\}/}},property:{pattern:/(?:[-\w]|\$[-\w]|#\{\$[-\w]+\})+(?=\s*:)/,inside:{variable:/\$[-\w]+|#\{\$[-\w]+\}/}}}),o.languages.insertBefore("scss","atrule",{keyword:[/@(?:content|debug|each|else(?: if)?|extend|for|forward|function|if|import|include|mixin|return|use|warn|while)\b/i,{pattern:/( )(?:from|through)(?= )/,lookbehind:!0}]}),o.languages.insertBefore("scss","important",{variable:/\$[-\w]+|#\{\$[-\w]+\}/}),o.languages.insertBefore("scss","function",{"module-modifier":{pattern:/\b(?:as|hide|show|with)\b/i,alias:"keyword"},placeholder:{pattern:/%[-\w]+/,alias:"selector"},statement:{pattern:/\B!(?:default|optional)\b/i,alias:"keyword"},boolean:/\b(?:false|true)\b/,null:{pattern:/\bnull\b/,alias:"keyword"},operator:{pattern:/(\s)(?:[-+*\/%]|[=!]=|<=?|>=?|and|not|or)(?=\s)/,lookbehind:!0}}),o.languages.scss.atrule.inside.rest=o.languages.scss,function(e){var t={pattern:/(\b\d+)(?:%|[a-z]+)/,lookbehind:!0},n={pattern:/(^|[^\w.-])-?(?:\d+(?:\.\d+)?|\.\d+)/,lookbehind:!0},r={comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0},url:{pattern:/\burl\((["']?).*?\1\)/i,greedy:!0},string:{pattern:/("|')(?:(?!\1)[^\\\r\n]|\\(?:\r\n|[\s\S]))*\1/,greedy:!0},interpolation:null,func:null,important:/\B!(?:important|optional)\b/i,keyword:{pattern:/(^|\s+)(?:(?:else|for|if|return|unless)(?=\s|$)|@[\w-]+)/,lookbehind:!0},hexcode:/#[\da-f]{3,6}/i,color:[/\b(?:AliceBlue|AntiqueWhite|Aqua|Aquamarine|Azure|Beige|Bisque|Black|BlanchedAlmond|Blue|BlueViolet|Brown|BurlyWood|CadetBlue|Chartreuse|Chocolate|Coral|CornflowerBlue|Cornsilk|Crimson|Cyan|DarkBlue|DarkCyan|DarkGoldenRod|DarkGr[ae]y|DarkGreen|DarkKhaki|DarkMagenta|DarkOliveGreen|DarkOrange|DarkOrchid|DarkRed|DarkSalmon|DarkSeaGreen|DarkSlateBlue|DarkSlateGr[ae]y|DarkTurquoise|DarkViolet|DeepPink|DeepSkyBlue|DimGr[ae]y|DodgerBlue|FireBrick|FloralWhite|ForestGreen|Fuchsia|Gainsboro|GhostWhite|Gold|GoldenRod|Gr[ae]y|Green|GreenYellow|HoneyDew|HotPink|IndianRed|Indigo|Ivory|Khaki|Lavender|LavenderBlush|LawnGreen|LemonChiffon|LightBlue|LightCoral|LightCyan|LightGoldenRodYellow|LightGr[ae]y|LightGreen|LightPink|LightSalmon|LightSeaGreen|LightSkyBlue|LightSlateGr[ae]y|LightSteelBlue|LightYellow|Lime|LimeGreen|Linen|Magenta|Maroon|MediumAquaMarine|MediumBlue|MediumOrchid|MediumPurple|MediumSeaGreen|MediumSlateBlue|MediumSpringGreen|MediumTurquoise|MediumVioletRed|MidnightBlue|MintCream|MistyRose|Moccasin|NavajoWhite|Navy|OldLace|Olive|OliveDrab|Orange|OrangeRed|Orchid|PaleGoldenRod|PaleGreen|PaleTurquoise|PaleVioletRed|PapayaWhip|PeachPuff|Peru|Pink|Plum|PowderBlue|Purple|Red|RosyBrown|RoyalBlue|SaddleBrown|Salmon|SandyBrown|SeaGreen|SeaShell|Sienna|Silver|SkyBlue|SlateBlue|SlateGr[ae]y|Snow|SpringGreen|SteelBlue|Tan|Teal|Thistle|Tomato|Transparent|Turquoise|Violet|Wheat|White|WhiteSmoke|Yellow|YellowGreen)\b/i,{pattern:/\b(?:hsl|rgb)\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*\)\B|\b(?:hsl|rgb)a\(\s*\d{1,3}\s*,\s*\d{1,3}%?\s*,\s*\d{1,3}%?\s*,\s*(?:0|0?\.\d+|1)\s*\)\B/i,inside:{unit:t,number:n,function:/[\w-]+(?=\()/,punctuation:/[(),]/}}],entity:/\\[\da-f]{1,8}/i,unit:t,boolean:/\b(?:false|true)\b/,operator:[/~|[+!\/%<>?=]=?|[-:]=|\*[*=]?|\.{2,3}|&&|\|\||\B-\B|\b(?:and|in|is(?: a| defined| not|nt)?|not|or)\b/],number:n,punctuation:/[{}()\[\];:,]/};r.interpolation={pattern:/\{[^\r\n}:]+\}/,alias:"variable",inside:{delimiter:{pattern:/^\{|\}$/,alias:"punctuation"},rest:r}},r.func={pattern:/[\w-]+\([^)]*\).*/,inside:{function:/^[^(]+/,rest:r}},e.languages.stylus={"atrule-declaration":{pattern:/(^[ \t]*)@.+/m,lookbehind:!0,inside:{atrule:/^@[\w-]+/,rest:r}},"variable-declaration":{pattern:/(^[ \t]*)[\w$-]+\s*.?=[ \t]*(?:\{[^{}]*\}|\S.*|$)/m,lookbehind:!0,inside:{variable:/^\S+/,rest:r}},statement:{pattern:/(^[ \t]*)(?:else|for|if|return|unless)[ \t].+/m,lookbehind:!0,inside:{keyword:/^\S+/,rest:r}},"property-declaration":{pattern:/((?:^|\{)([ \t]*))(?:[\w-]|\{[^}\r\n]+\})+(?:\s*:\s*|[ \t]+)(?!\s)[^{\r\n]*(?:;|[^{\r\n,]$(?!(?:\r?\n|\r)(?:\{|\2[ \t])))/m,lookbehind:!0,inside:{property:{pattern:/^[^\s:]+/,inside:{interpolation:r.interpolation}},rest:r}},selector:{pattern:/(^[ \t]*)(?:(?=\S)(?:[^{}\r\n:()]|::?[\w-]+(?:\([^)\r\n]*\)|(?![\w-]))|\{[^}\r\n]+\})+)(?:(?:\r?\n|\r)(?:\1(?:(?=\S)(?:[^{}\r\n:()]|::?[\w-]+(?:\([^)\r\n]*\)|(?![\w-]))|\{[^}\r\n]+\})+)))*(?:,$|\{|(?=(?:\r?\n|\r)(?:\{|\1[ \t])))/m,lookbehind:!0,inside:{interpolation:r.interpolation,comment:r.comment,punctuation:/[{},]/}},func:r.func,string:r.string,comment:{pattern:/(^|[^\\])(?:\/\*[\s\S]*?\*\/|\/\/.*)/,lookbehind:!0,greedy:!0},interpolation:r.interpolation,punctuation:/[{}()\[\];:.]/}}(o),function(e){var t=e.util.clone(e.languages.typescript);e.languages.tsx=e.languages.extend("jsx",t),delete e.languages.tsx.parameter,delete e.languages.tsx["literal-property"];var n=e.languages.tsx.tag;n.pattern=RegExp(/(^|[^\w$]|(?=<\/))/.source+"(?:"+n.pattern.source+")",n.pattern.flags),n.lookbehind=!0}(o),o.languages.wasm={comment:[/\(;[\s\S]*?;\)/,{pattern:/;;.*/,greedy:!0}],string:{pattern:/"(?:\\[\s\S]|[^"\\])*"/,greedy:!0},keyword:[{pattern:/\b(?:align|offset)=/,inside:{operator:/=/}},{pattern:/\b(?:(?:f32|f64|i32|i64)(?:\.(?:abs|add|and|ceil|clz|const|convert_[su]\/i(?:32|64)|copysign|ctz|demote\/f64|div(?:_[su])?|eqz?|extend_[su]\/i32|floor|ge(?:_[su])?|gt(?:_[su])?|le(?:_[su])?|load(?:(?:8|16|32)_[su])?|lt(?:_[su])?|max|min|mul|neg?|nearest|or|popcnt|promote\/f32|reinterpret\/[fi](?:32|64)|rem_[su]|rot[lr]|shl|shr_[su]|sqrt|store(?:8|16|32)?|sub|trunc(?:_[su]\/f(?:32|64))?|wrap\/i64|xor))?|memory\.(?:grow|size))\b/,inside:{punctuation:/\./}},/\b(?:anyfunc|block|br(?:_if|_table)?|call(?:_indirect)?|data|drop|elem|else|end|export|func|get_(?:global|local)|global|if|import|local|loop|memory|module|mut|nop|offset|param|result|return|select|set_(?:global|local)|start|table|tee_local|then|type|unreachable)\b/],variable:/\$[\w!#$%&'*+\-./:<=>?@\\^`|~]+/,number:/[+-]?\b(?:\d(?:_?\d)*(?:\.\d(?:_?\d)*)?(?:[eE][+-]?\d(?:_?\d)*)?|0x[\da-fA-F](?:_?[\da-fA-F])*(?:\.[\da-fA-F](?:_?[\da-fA-D])*)?(?:[pP][+-]?\d(?:_?\d)*)?)\b|\binf\b|\bnan(?::0x[\da-fA-F](?:_?[\da-fA-D])*)?\b/,punctuation:/[()]/};const s=o},79016:()=>{!function(e){function t(e,t){return e.replace(/<<(\d+)>>/g,(function(e,n){return"(?:"+t[+n]+")"}))}function n(e,n,r){return RegExp(t(e,n),r||"")}function r(e,t){for(var n=0;n>/g,(function(){return"(?:"+e+")"}));return e.replace(/<>/g,"[^\\s\\S]")}var o="bool byte char decimal double dynamic float int long object sbyte short string uint ulong ushort var void",s="class enum interface record struct",a="add alias and ascending async await by descending from(?=\\s*(?:\\w|$)) get global group into init(?=\\s*;) join let nameof not notnull on or orderby partial remove select set unmanaged value when where with(?=\\s*{)",i="abstract as base break case catch checked const continue default delegate do else event explicit extern finally fixed for foreach goto if implicit in internal is lock namespace new null operator out override params private protected public readonly ref return sealed sizeof stackalloc static switch this throw try typeof unchecked unsafe using virtual volatile while yield";function l(e){return"\\b(?:"+e.trim().replace(/ /g,"|")+")\\b"}var c=l(s),d=RegExp(l(o+" "+s+" "+a+" "+i)),p=l(s+" "+a+" "+i),u=l(o+" "+s+" "+i),m=r(/<(?:[^<>;=+\-*/%&|^]|<>)*>/.source,2),f=r(/\((?:[^()]|<>)*\)/.source,2),h=/@?\b[A-Za-z_]\w*\b/.source,g=t(/<<0>>(?:\s*<<1>>)?/.source,[h,m]),b=t(/(?!<<0>>)<<1>>(?:\s*\.\s*<<1>>)*/.source,[p,g]),y=/\[\s*(?:,\s*)*\]/.source,v=t(/<<0>>(?:\s*(?:\?\s*)?<<1>>)*(?:\s*\?)?/.source,[b,y]),x=t(/[^,()<>[\];=+\-*/%&|^]|<<0>>|<<1>>|<<2>>/.source,[m,f,y]),S=t(/\(<<0>>+(?:,<<0>>+)+\)/.source,[x]),E=t(/(?:<<0>>|<<1>>)(?:\s*(?:\?\s*)?<<2>>)*(?:\s*\?)?/.source,[S,b,y]),A={keyword:d,punctuation:/[<>()?,.:[\]]/},L=/'(?:[^\r\n'\\]|\\.|\\[Uux][\da-fA-F]{1,8})'/.source,M=/"(?:\\.|[^\\"\r\n])*"/.source,k=/@"(?:""|\\[\s\S]|[^\\"])*"(?!")/.source;e.languages.csharp=e.languages.extend("clike",{string:[{pattern:n(/(^|[^$\\])<<0>>/.source,[k]),lookbehind:!0,greedy:!0},{pattern:n(/(^|[^@$\\])<<0>>/.source,[M]),lookbehind:!0,greedy:!0}],"class-name":[{pattern:n(/(\busing\s+static\s+)<<0>>(?=\s*;)/.source,[b]),lookbehind:!0,inside:A},{pattern:n(/(\busing\s+<<0>>\s*=\s*)<<1>>(?=\s*;)/.source,[h,E]),lookbehind:!0,inside:A},{pattern:n(/(\busing\s+)<<0>>(?=\s*=)/.source,[h]),lookbehind:!0},{pattern:n(/(\b<<0>>\s+)<<1>>/.source,[c,g]),lookbehind:!0,inside:A},{pattern:n(/(\bcatch\s*\(\s*)<<0>>/.source,[b]),lookbehind:!0,inside:A},{pattern:n(/(\bwhere\s+)<<0>>/.source,[h]),lookbehind:!0},{pattern:n(/(\b(?:is(?:\s+not)?|as)\s+)<<0>>/.source,[v]),lookbehind:!0,inside:A},{pattern:n(/\b<<0>>(?=\s+(?!<<1>>|with\s*\{)<<2>>(?:\s*[=,;:{)\]]|\s+(?:in|when)\b))/.source,[E,u,h]),inside:A}],keyword:d,number:/(?:\b0(?:x[\da-f_]*[\da-f]|b[01_]*[01])|(?:\B\.\d+(?:_+\d+)*|\b\d+(?:_+\d+)*(?:\.\d+(?:_+\d+)*)?)(?:e[-+]?\d+(?:_+\d+)*)?)(?:[dflmu]|lu|ul)?\b/i,operator:/>>=?|<<=?|[-=]>|([-+&|])\1|~|\?\?=?|[-+*/%&|^!=<>]=?/,punctuation:/\?\.?|::|[{}[\];(),.:]/}),e.languages.insertBefore("csharp","number",{range:{pattern:/\.\./,alias:"operator"}}),e.languages.insertBefore("csharp","punctuation",{"named-parameter":{pattern:n(/([(,]\s*)<<0>>(?=\s*:)/.source,[h]),lookbehind:!0,alias:"punctuation"}}),e.languages.insertBefore("csharp","class-name",{namespace:{pattern:n(/(\b(?:namespace|using)\s+)<<0>>(?:\s*\.\s*<<0>>)*(?=\s*[;{])/.source,[h]),lookbehind:!0,inside:{punctuation:/\./}},"type-expression":{pattern:n(/(\b(?:default|sizeof|typeof)\s*\(\s*(?!\s))(?:[^()\s]|\s(?!\s)|<<0>>)*(?=\s*\))/.source,[f]),lookbehind:!0,alias:"class-name",inside:A},"return-type":{pattern:n(/<<0>>(?=\s+(?:<<1>>\s*(?:=>|[({]|\.\s*this\s*\[)|this\s*\[))/.source,[E,b]),inside:A,alias:"class-name"},"constructor-invocation":{pattern:n(/(\bnew\s+)<<0>>(?=\s*[[({])/.source,[E]),lookbehind:!0,inside:A,alias:"class-name"},"generic-method":{pattern:n(/<<0>>\s*<<1>>(?=\s*\()/.source,[h,m]),inside:{function:n(/^<<0>>/.source,[h]),generic:{pattern:RegExp(m),alias:"class-name",inside:A}}},"type-list":{pattern:n(/\b((?:<<0>>\s+<<1>>|record\s+<<1>>\s*<<5>>|where\s+<<2>>)\s*:\s*)(?:<<3>>|<<4>>|<<1>>\s*<<5>>|<<6>>)(?:\s*,\s*(?:<<3>>|<<4>>|<<6>>))*(?=\s*(?:where|[{;]|=>|$))/.source,[c,g,h,E,d.source,f,/\bnew\s*\(\s*\)/.source]),lookbehind:!0,inside:{"record-arguments":{pattern:n(/(^(?!new\s*\()<<0>>\s*)<<1>>/.source,[g,f]),lookbehind:!0,greedy:!0,inside:e.languages.csharp},keyword:d,"class-name":{pattern:RegExp(E),greedy:!0,inside:A},punctuation:/[,()]/}},preprocessor:{pattern:/(^[\t ]*)#.*/m,lookbehind:!0,alias:"property",inside:{directive:{pattern:/(#)\b(?:define|elif|else|endif|endregion|error|if|line|nullable|pragma|region|undef|warning)\b/,lookbehind:!0,alias:"keyword"}}}});var w=M+"|"+L,_=t(/\/(?![*/])|\/\/[^\r\n]*[\r\n]|\/\*(?:[^*]|\*(?!\/))*\*\/|<<0>>/.source,[w]),I=r(t(/[^"'/()]|<<0>>|\(<>*\)/.source,[_]),2),C=/\b(?:assembly|event|field|method|module|param|property|return|type)\b/.source,T=t(/<<0>>(?:\s*\(<<1>>*\))?/.source,[b,I]);e.languages.insertBefore("csharp","class-name",{attribute:{pattern:n(/((?:^|[^\s\w>)?])\s*\[\s*)(?:<<0>>\s*:\s*)?<<1>>(?:\s*,\s*<<1>>)*(?=\s*\])/.source,[C,T]),lookbehind:!0,greedy:!0,inside:{target:{pattern:n(/^<<0>>(?=\s*:)/.source,[C]),alias:"keyword"},"attribute-arguments":{pattern:n(/\(<<0>>*\)/.source,[I]),inside:e.languages.csharp},"class-name":{pattern:RegExp(b),inside:{punctuation:/\./}},punctuation:/[:,]/}}});var Q=/:[^}\r\n]+/.source,R=r(t(/[^"'/()]|<<0>>|\(<>*\)/.source,[_]),2),D=t(/\{(?!\{)(?:(?![}:])<<0>>)*<<1>>?\}/.source,[R,Q]),O=r(t(/[^"'/()]|\/(?!\*)|\/\*(?:[^*]|\*(?!\/))*\*\/|<<0>>|\(<>*\)/.source,[w]),2),P=t(/\{(?!\{)(?:(?![}:])<<0>>)*<<1>>?\}/.source,[O,Q]);function F(t,r){return{interpolation:{pattern:n(/((?:^|[^{])(?:\{\{)*)<<0>>/.source,[t]),lookbehind:!0,inside:{"format-string":{pattern:n(/(^\{(?:(?![}:])<<0>>)*)<<1>>(?=\}$)/.source,[r,Q]),lookbehind:!0,inside:{punctuation:/^:/}},punctuation:/^\{|\}$/,expression:{pattern:/[\s\S]+/,alias:"language-csharp",inside:e.languages.csharp}}},string:/[\s\S]+/}}e.languages.insertBefore("csharp","string",{"interpolation-string":[{pattern:n(/(^|[^\\])(?:\$@|@\$)"(?:""|\\[\s\S]|\{\{|<<0>>|[^\\{"])*"/.source,[D]),lookbehind:!0,greedy:!0,inside:F(D,R)},{pattern:n(/(^|[^@\\])\$"(?:\\.|\{\{|<<0>>|[^\\"{])*"/.source,[P]),lookbehind:!0,greedy:!0,inside:F(P,O)}],char:{pattern:RegExp(L),greedy:!0}}),e.languages.dotnet=e.languages.cs=e.languages.csharp}(Prism)},86862:()=>{!function(e){var t=e.languages.powershell={comment:[{pattern:/(^|[^`])<#[\s\S]*?#>/,lookbehind:!0},{pattern:/(^|[^`])#.*/,lookbehind:!0}],string:[{pattern:/"(?:`[\s\S]|[^`"])*"/,greedy:!0,inside:null},{pattern:/'(?:[^']|'')*'/,greedy:!0}],namespace:/\[[a-z](?:\[(?:\[[^\]]*\]|[^\[\]])*\]|[^\[\]])*\]/i,boolean:/\$(?:false|true)\b/i,variable:/\$\w+\b/,function:[/\b(?:Add|Approve|Assert|Backup|Block|Checkpoint|Clear|Close|Compare|Complete|Compress|Confirm|Connect|Convert|ConvertFrom|ConvertTo|Copy|Debug|Deny|Disable|Disconnect|Dismount|Edit|Enable|Enter|Exit|Expand|Export|Find|ForEach|Format|Get|Grant|Group|Hide|Import|Initialize|Install|Invoke|Join|Limit|Lock|Measure|Merge|Move|New|Open|Optimize|Out|Ping|Pop|Protect|Publish|Push|Read|Receive|Redo|Register|Remove|Rename|Repair|Request|Reset|Resize|Resolve|Restart|Restore|Resume|Revoke|Save|Search|Select|Send|Set|Show|Skip|Sort|Split|Start|Step|Stop|Submit|Suspend|Switch|Sync|Tee|Test|Trace|Unblock|Undo|Uninstall|Unlock|Unprotect|Unpublish|Unregister|Update|Use|Wait|Watch|Where|Write)-[a-z]+\b/i,/\b(?:ac|cat|chdir|clc|cli|clp|clv|compare|copy|cp|cpi|cpp|cvpa|dbp|del|diff|dir|ebp|echo|epal|epcsv|epsn|erase|fc|fl|ft|fw|gal|gbp|gc|gci|gcs|gdr|gi|gl|gm|gp|gps|group|gsv|gu|gv|gwmi|iex|ii|ipal|ipcsv|ipsn|irm|iwmi|iwr|kill|lp|ls|measure|mi|mount|move|mp|mv|nal|ndr|ni|nv|ogv|popd|ps|pushd|pwd|rbp|rd|rdr|ren|ri|rm|rmdir|rni|rnp|rp|rv|rvpa|rwmi|sal|saps|sasv|sbp|sc|select|set|shcm|si|sl|sleep|sls|sort|sp|spps|spsv|start|sv|swmi|tee|trcm|type|write)\b/i],keyword:/\b(?:Begin|Break|Catch|Class|Continue|Data|Define|Do|DynamicParam|Else|ElseIf|End|Exit|Filter|Finally|For|ForEach|From|Function|If|InlineScript|Parallel|Param|Process|Return|Sequence|Switch|Throw|Trap|Try|Until|Using|Var|While|Workflow)\b/i,operator:{pattern:/(^|\W)(?:!|-(?:b?(?:and|x?or)|as|(?:Not)?(?:Contains|In|Like|Match)|eq|ge|gt|is(?:Not)?|Join|le|lt|ne|not|Replace|sh[lr])\b|-[-=]?|\+[+=]?|[*\/%]=?)/i,lookbehind:!0},punctuation:/[|{}[\];(),.]/};t.string[0].inside={function:{pattern:/(^|[^`])\$\((?:\$\([^\r\n()]*\)|(?!\$\()[^\r\n)])*\)/,lookbehind:!0,inside:t},boolean:t.boolean,variable:t.variable}}(Prism)},55979:(e,t,n)=>{var r={"./prism-csharp":79016,"./prism-powershell":86862};function o(e){var t=s(e);return n(t)}function s(e){if(!n.o(r,e)){var t=new Error("Cannot find module '"+e+"'");throw t.code="MODULE_NOT_FOUND",t}return r[e]}o.keys=function(){return Object.keys(r)},o.resolve=s,e.exports=o,o.id=55979},92703:(e,t,n)=>{"use strict";var r=n(50414);function o(){}function s(){}s.resetWarningCache=o,e.exports=function(){function e(e,t,n,o,s,a){if(a!==r){var i=new Error("Calling PropTypes validators directly is not supported by the `prop-types` package. Use PropTypes.checkPropTypes() to call them. Read more at http://fb.me/use-check-prop-types");throw i.name="Invariant Violation",i}}function t(){return e}e.isRequired=e;var n={array:e,bigint:e,bool:e,func:e,number:e,object:e,string:e,symbol:e,any:e,arrayOf:t,element:e,elementType:e,instanceOf:t,node:e,objectOf:t,oneOf:t,oneOfType:t,shape:t,exact:t,checkPropTypes:s,resetWarningCache:o};return n.PropTypes=n,n}},45697:(e,t,n)=>{e.exports=n(92703)()},50414:e=>{"use strict";e.exports="SECRET_DO_NOT_PASS_THIS_OR_YOU_WILL_BE_FIRED"},64448:(e,t,n)=>{"use strict";var r=n(67294),o=n(27418),s=n(63840);function a(e){for(var t="https://reactjs.org/docs/error-decoder.html?invariant="+e,n=1;n