-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathsoftmax.h
285 lines (264 loc) · 14.9 KB
/
softmax.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <cmath>
#include <cute/tensor.hpp>
#include <cutlass/numeric_types.h>
#include "philox.cuh"
#include "utils.h"
namespace flash {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void thread_reduce_(Tensor<Engine0, Layout0> const &tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(summary) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); mi++) {
summary(mi) = zero_init ? tensor(mi, 0) : op(summary(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
summary(mi) = op(summary(mi), tensor(mi, ni));
}
}
}
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void quad_allreduce_(Tensor<Engine0, Layout0> &dst, Tensor<Engine1, Layout1> &src, Operator &op) {
CUTE_STATIC_ASSERT_V(size(dst) == size(src));
#pragma unroll
for (int i = 0; i < size(dst); i++){
dst(i) = Allreduce<4>::run(src(i), op);
}
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1, typename Operator>
__device__ inline void reduce_(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &summary, Operator &op) {
thread_reduce_<zero_init>(tensor, summary, op);
quad_allreduce_(summary, summary, op);
}
template<bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ inline void reduce_max(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &max){
MaxOp<float> max_op;
reduce_<zero_init>(tensor, max, max_op);
}
template<typename Engine0, typename Layout0, typename Engine1, typename Layout1>
__device__ inline void reduce_sum(Tensor<Engine0, Layout0> const& tensor, Tensor<Engine1, Layout1> &sum){
SumOp<float> sum_op;
reduce_(tensor, sum, sum_op);
}
// Apply the exp to all the elements.
template <bool Scale_max=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void scale_apply_exp2(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &max, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
// If max is -inf, then all elements must have been -inf (possibly due to masking).
// We don't want (-inf - (-inf)) since that would give NaN.
// If we don't have float around M_LOG2E the multiplication is done in fp64.
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * (Scale_max ? scale : float(M_LOG2E));
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
// max * log_2(e)) This allows the compiler to use the ffma
// instruction instead of fadd and fmul separately.
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
}
}
}
// Apply the exp to all the elements.
template <bool zero_init=true, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void max_scale_exp2_sum(Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> &max, Tensor<Engine1, Layout1> &sum, const float scale) {
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(max) == size<0>(tensor));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
MaxOp<float> max_op;
max(mi) = zero_init ? tensor(mi, 0) : max_op(max(mi), tensor(mi, 0));
#pragma unroll
for (int ni = 1; ni < size<1>(tensor); ni++) {
max(mi) = max_op(max(mi), tensor(mi, ni));
}
max(mi) = Allreduce<4>::run(max(mi), max_op);
// If max is -inf, then all elements must have been -inf (possibly due to masking).
// We don't want (-inf - (-inf)) since that would give NaN.
const float max_scaled = max(mi) == -INFINITY ? 0.f : max(mi) * scale;
sum(mi) = 0;
#pragma unroll
for (int ni = 0; ni < size<1>(tensor); ++ni) {
// Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
// max * log_2(e)) This allows the compiler to use the ffma
// instruction instead of fadd and fmul separately.
tensor(mi, ni) = exp2f(tensor(mi, ni) * scale - max_scaled);
sum(mi) += tensor(mi, ni);
}
SumOp<float> sum_op;
sum(mi) = Allreduce<4>::run(sum(mi), sum_op);
}
}
template <typename Engine, typename Layout>
inline __device__ void apply_mask(Tensor<Engine, Layout> &tensor, const int max_seqlen_k,
const int col_idx_offset_ = 0) {
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout::rank == 2, "Only support 2D Tensor");
const int lane_id = threadIdx.x % 32;
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
if (col_idx >= max_seqlen_k) {
// Without the "make_coord" we get wrong results
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
tensor(mi, make_coord(j, nj)) = -INFINITY;
}
}
}
}
}
template <bool HasWSLeft=true, typename Engine, typename Layout>
inline __device__ void apply_mask_local(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
const int max_seqlen_k, const int row_idx_offset_,
const int max_seqlen_q, const int warp_row_stride,
const int window_size_left, const int window_size_right) {
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout::rank == 2, "Only support 2D Tensor");
const int lane_id = threadIdx.x % 32;
// const int row_idx_offset = row_idx_offset_ + lane_id / 4;
const int row_idx_offset = row_idx_offset_;
const int col_idx_offset = col_idx_offset_ + (lane_id % 4) * 2;
#pragma unroll
for (int mi = 0; mi < size<0, 1>(tensor); ++mi) {
const int row_idx_base = row_idx_offset + mi * warp_row_stride;
#pragma unroll
for (int i = 0; i < size<0, 0>(tensor); ++i) {
const int row_idx = row_idx_base + i * 8;
const int col_idx_limit_left = std::max(0, row_idx + max_seqlen_k - max_seqlen_q - window_size_left);
const int col_idx_limit_right = std::min(max_seqlen_k, row_idx + 1 + max_seqlen_k - max_seqlen_q + window_size_right);
#pragma unroll
for (int nj = 0; nj < size<1, 1>(tensor); ++nj) {
const int col_idx_base = col_idx_offset + nj * 8;
#pragma unroll
for (int j = 0; j < size<1, 0>(tensor); ++j) {
const int col_idx = col_idx_base + j;
if (col_idx >= col_idx_limit_right || (HasWSLeft && col_idx < col_idx_limit_left)) {
tensor(make_coord(i, mi), make_coord(j, nj)) = -INFINITY;
}
}
}
// if (cute::thread0()) {
// printf("mi = %d, i = %d, row_idx = %d, max_seqlen_k = %d\n", mi, i, row_idx, max_seqlen_k);
// print(tensor(make_coord(i, mi), _));
// // print(tensor(_, j + nj * size<1, 0>(tensor)));
// }
}
}
}
template <typename Engine, typename Layout>
inline __device__ void apply_mask_causal(Tensor<Engine, Layout> &tensor, const int col_idx_offset_,
const int max_seqlen_k, const int row_idx_offset_,
const int max_seqlen_q, const int warp_row_stride) {
// Causal masking is equivalent to local masking with window_size_left = infinity and window_size_right = 0
apply_mask_local</*HasWSLeft=*/false>(tensor, col_idx_offset_, max_seqlen_k, row_idx_offset_,
max_seqlen_q, warp_row_stride, -1, 0);
}
template <typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void apply_mask_causal_w_idx(
Tensor<Engine0, Layout0> &tensor, Tensor<Engine1, Layout1> const &idx_rowcol,
const int col_idx_offset_, const int max_seqlen_k, const int row_idx_offset_)
{
// tensor has shape (ncol=(2, MMA_M), nrow=(2, MMA_N))
static_assert(Layout0::rank == 2, "Only support 2D Tensor");
static_assert(Layout1::rank == 2, "Only support 2D Tensor");
CUTE_STATIC_ASSERT_V(size<0>(tensor) == size<0>(idx_rowcol));
CUTE_STATIC_ASSERT_V(size<1>(tensor) == size<1>(idx_rowcol));
#pragma unroll
for (int mi = 0; mi < size<0>(tensor); ++mi) {
const int col_idx_limit = std::min(max_seqlen_k, 1 + row_idx_offset_ + get<0>(idx_rowcol(mi, 0)));
#pragma unroll
for (int ni = 0; ni < size<1, 1>(tensor); ++ni) {
if (col_idx_offset_ + get<1>(idx_rowcol(0, ni)) >= col_idx_limit) {
tensor(mi, ni) = -INFINITY;
}
}
// if (cute::thread0()) {
// printf("ni = %d, j = %d, col_idx = %d, max_seqlen_k = %d\n", ni, j, col_idx, max_seqlen_k);
// print(tensor(_, make_coord(j, ni)));
// // print(tensor(_, j + ni * size<1, 0>(tensor)));
// }
}
}
template <bool encode_dropout_in_sign_bit=false, typename Engine, typename Layout>
inline __device__ void apply_dropout(Tensor<Engine, Layout> &tensor, uint8_t p_dropout_in_uint8_t,
unsigned long long seed, unsigned long long offset,
int block_row_start, int block_col_start,
int block_row_stride) {
// tensor has shape (8, MMA_M, MMA_N / 2)
using T = typename Engine::value_type;
auto encode_dropout = [](bool keep, T val) {
return keep ? val : (encode_dropout_in_sign_bit ? -val : T(0));
};
static_assert(decltype(size<2>(tensor))::value % 2 == 0);
const uint16_t p_dropout_8bit_in_uint16_t = uint16_t(p_dropout_in_uint8_t);
const uint32_t p_dropout_8bit_in_uint32_t = (uint32_t(p_dropout_8bit_in_uint16_t) << 16) | uint32_t(p_dropout_8bit_in_uint16_t);
// if (cute::thread0()) { printf("threshold2 = 0x%x\n", p_dropout_8bit_in_uint32_t); }
#pragma unroll
for (int m = 0; m < size<1>(tensor); ++m, block_row_start += block_row_stride) {
uint2 rowcol = make_uint2(block_row_start, block_col_start);
#pragma unroll
for (int n = 0; n < size<2>(tensor) / 2; ++n, ++rowcol.y) {
// if (cute::thread(32, 0)) { printf("m = %d, n = %d, row = %d, col = %d\n", m, n, int(rowcol.x), int(rowcol.y));}
uint4 random_uint4 = flash::philox(seed, reinterpret_cast<unsigned long long&>(rowcol), offset);
// if (cute::thread0()) { printf("philox = %u, %d, %d, %d\n", random_uint4.x, random_uint4.y, random_uint4.z, random_uint4.w);}
uint8_t (&rnd_8)[16] = reinterpret_cast<uint8_t (&)[16]>(random_uint4);
// Special implementation for 16-bit types: we duplicate the threshold to the
// low and high 16 bits of a 32-bit value, then use the f16x2 comparison instruction
// to get a mask. The low 16 bits of the mask will be either 0xffff or 0x0000,
// and the high 16 bits will be either 0xffff or 0x0000, depending on whether
// the random value is less than the threshold.
// We then do a bit-wise AND between the mask and the original value (in 32-bit).
// We're exploiting the fact that floating point comparison is equivalent to integer
// comparison, since we're comparing unsigned integers whose top 8-bits are zero.
if (!encode_dropout_in_sign_bit
&& (std::is_same<T, cutlass::half_t>::value || std::is_same<T, cutlass::bfloat16_t>::value)) {
uint16_t rnd_16[16];
#pragma unroll
for (int i = 0; i < 16; i++) { rnd_16[i] = uint16_t(rnd_8[i]); }
uint32_t (&rnd_32)[8] = reinterpret_cast<uint32_t (&)[8]>(rnd_16);
#pragma unroll
for (int j = 0; j < 2; j++) {
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
// if (cute::thread0()) { printf("random = 0x%x, 0x%x, 0x%x, 0x%x\n", rnd_32[j * 4 + 0], rnd_32[j * 4 + 1], rnd_32[j * 4 + 2], rnd_32[j * 4 + 3]); }
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
#pragma unroll
for (int i = 0; i < 4; i++) {
uint32_t mask;
asm volatile("set.le.u32.f16x2 %0, %1, %2;\n" : "=r"(mask) : "r"(rnd_32[j * 4 + i]), "r"(p_dropout_8bit_in_uint32_t));
tensor_uint32(i) &= mask;
}
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
}
} else {
#pragma unroll
for (int j = 0; j < 2; j++) {
#pragma unroll
for (int i = 0; i < 8; i++) {
tensor(i, m, n * 2 + j) = encode_dropout(rnd_8[j * 8 + i] <= p_dropout_in_uint8_t, tensor(i, m, n * 2 + j));
}
Tensor tensor_uint32 = recast<uint32_t>(tensor(_, m, n * 2 + j));
// if (cute::thread0()) { printf("tensor_uint32 = 0x%x, 0x%x, 0x%x, 0x%x\n", tensor_uint32(0), tensor_uint32(1), tensor_uint32(2), tensor_uint32(3)); }
}
}
// // if ((threadIdx.x == 0) && (blockIdx.x == 0) && (blockIdx.y == 0)) {
// // printf("n = %d, ph Philox: %u, %u, %u, %u\n", n, rnd_8.x, rnd_8.y, rnd_8.z, rnd_8.w);
// // }
}
}
}
} // namespace flash