-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
50 lines (41 loc) · 1.38 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
import os
import pickle
from keras.models import load_model, model_from_json
from keras.metrics import categorical_accuracy
import capturer
import analyzer
def loading():
with open('learning/model.json') as f:
loaded = f.read()
model = model_from_json(loaded)
model.load_weights('learning/model.h5')
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[categorical_accuracy])
return model
def main():
flags = parse_flags()
if flags.analysis:
with open(flags.analysis, 'rb') as f:
data = pickle.load(f)
a = analyzer.Analyzer(data)
a.plot()
elif flags.file and os.path.exists(flags.file):
model = load_model('learning/model.1.h5')
c = capturer.Capturer(flags.file, model=model)
c.mainloop()
else:
model = load_model('learning/model.1.h5')
# model = loading()
c = capturer.Capturer(0, model=model)
c.mainloop()
def parse_flags():
parser = argparse.ArgumentParser(
description='Emotion recognizer',
epilog='Interactively recognizes emotions'
)
group = parser.add_mutually_exclusive_group()
group.add_argument('-f', '--file', help='Video file for recognition')
group.add_argument('-a', '--analysis', help='Analyze passed training history')
return parser.parse_args()
if __name__ == "__main__":
main()