-
Notifications
You must be signed in to change notification settings - Fork 1
/
Dockerfile
27 lines (20 loc) · 841 Bytes
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Use miniconda as base image
FROM continuumio/miniconda3
# Install jupyternotebook
RUN conda install -y jupyter
# Create new environment from requirements.yaml
COPY requirements.yaml .
RUN conda env create -f requirements.yaml
# Clone the repo "https://github.com/mijanr/ts_classification_mlflow_hydra_optuna" into the docker image
# First create a directory projects at the home directory
RUN mkdir /home/projects
WORKDIR /home/projects
# Clone the repo
RUN git clone https://github.com/mijanr/ts_classification_mlflow_hydra_optuna.git
# Activate the environment
RUN echo "source activate ts_classification_mlflow_hydra_optuna" > ~/.bashrc
ENV PATH /opt/conda/envs/ts_classification_mlflow_hydra_optuna/bin:$PATH
# Set the working directory
WORKDIR /home/projects/ts_classification_mlflow_hydra_optuna
# Expose the port
EXPOSE 8888