-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathMakeCloud.py
executable file
·730 lines (672 loc) · 27.7 KB
/
MakeCloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
#!/usr/bin/env python
"""
MakeCloud: "Believe me, we've got some very turbulent clouds, the best clouds. You're gonna love it."
Usage: MakeCloud.py [options]
Options:
-h --help Show this screen.
--R=<pc> Outer radius of the cloud in pc [default: 10.0]
--M=<msun> Mass of the cloud in msun [default: 2e4]
--filename=<name> Name of the IC file to be generated
--N=<N> Number of gas particles [default: 2000000]
--density_exponent=<f> Power law exponent of the density profile [default: 0.0]
--spin=<f> Spin parameter: fraction of binding energy in solid-body rotation [default: 0.0]
--omega_exponent=<f> Powerlaw exponent of rotational frequency as a function of cylindrical radius [default: 0.0]
--turb_slope=<f> Slope of the turbulent power spectra [default: 2.0]
--turb_sol=<f> Fraction of turbulence in solenoidal modes [default: 0.5]
--alpha_turb=<f> Turbulent virial parameter (BM92 convention: 2Eturb/|Egrav|) [default: 2.]
--bturb=<f> Magnetic energy as a fraction of the binding energy [default: 0.1]
--bfixed=<f> Magnetic field in magnitude in code units, used instead of bturb if not set to zero [default: 0]
--minmode=<N> Minimum populated turbulent wavenumber for Gaussian initial velocity field, in units of pi/R [default: 2]
--turb_path=<name> Path to store turbulent velocity fields so that we only need to generate them once (defaults to ~/turb)
--glass_path=<name> Contains the the path of the glass file (defaults to your home directory)
--boxsize=<f> Simulation box size
--Mstar=<msun> Mass of the star/black hole, if any [default: 0.0]
--v_star=<vx,vy,vz> Velocity of the star [default: 0.0,0.0,0.0]
--x_star=<x,y,z> Position of the star, defaults to center of the box
--star_stage=<N> Evolutionary stage of the star/black hole [default: 7]
--derefinement Apply radial derefinement to ambient cells outside of 3* cloud radius
--no_diffuse_gas Remove diffuse ISM envelope fills the rest of the box with uniform density.
--phimode=<f> Relative amplitude of m=2 density perturbation (e.g. for Boss-Bodenheimer test) [default: 0.0]
--localdir Changes directory defaults assuming all files are used from local directory.
--B_unit=<gauss> Unit of magnetic field in gauss [default: 1e4]
--length_unit=<pc> Unit of length in pc [default: 1]
--mass_unit=<msun> Unit of mass in M_sun [default: 1]
--v_unit=<m/s> Unit of velocity in m/s [default: 1]
--turb_seed=<N> Random seed for turbulence initialization [default: 42]
--tmax=<N> Maximum time to run the simulation to, in units of the freefall time [default: 5]
--nsnap=<N> Number of snapshots per freefall time [default: 150]
--param_only Just makes the parameters file, not the IC
--fixed_ncrit=<f> Fixes ncrit to a specific value [default: 0.0]
--makebox Creates a second box IC of equivalent volume and mass to the cloud
--impact_dist=<b> Initial separation between cloud centers of mass in units of the cloud radius (0 is no cloud-cloud collision) [default: 0.0]
--impact_param=<b> Impact parameter of cloud-cloud collision in units of the cloud radius [default: 0.0]
--v_impact=<v> Impact velocity, in units of the cloud's RMS turbulent velocity [default: 1.0]
--impact_axis=<x> Axis along which collision occurs (z is along magnetic field lines) [default: x]
--makecylinder Creates a third, cylindrical IC of equivalent volume and mass to the cloud
--cyl_aspect_ratio=<f> Sets the aspect ratio of the cylinder, i.e. Length/Diameter [default: 10]
--Z=<solar> Metallicity of the cloud in Solar units (just for params file) [default: 1.0]
--ISRF=<solar> Interstellar radiation background of the cloud in Solar neighborhood units (just for params file) [default: 1.0]
"""
# Example: python MakeCloud.py --M=1000 --N=1e7 --R=1.0 --localdir --param_only
import os
import numpy as np
from scipy import fftpack, interpolate
from scipy.spatial.distance import cdist
import h5py
from docopt import docopt
def get_glass_coords(N_gas, glass_path):
x = np.load(glass_path)
Nx = len(x)
while len(x) * np.pi * 4 / 3 / 8 < N_gas:
print(
"Need %d particles, have %d. Tessellating 8 copies of the glass file to get required particle number"
% (N_gas * 8 / (4 * np.pi / 3), len(x))
)
x = np.concatenate(
[
x / 2
+ i * np.array([0.5, 0, 0])
+ j * np.array([0, 0.5, 0])
+ k * np.array([0, 0, 0.5])
for i in range(2)
for j in range(2)
for k in range(2)
]
)
Nx = len(x)
print("Glass loaded!")
return x
def TurbField(res=256, minmode=2, maxmode=64, slope=2.0, sol_weight=1.0, seed=42):
freqs = fftpack.fftfreq(res)
freq3d = np.array(np.meshgrid(freqs, freqs, freqs, indexing="ij"))
intfreq = np.around(freq3d * res)
kSqr = np.sum(np.abs(freq3d) ** 2, axis=0)
intkSqr = np.sum(np.abs(intfreq) ** 2, axis=0)
VK = []
# apply ~k^-2 exp(-k^2/kmax^2) filter to white noise to get x, y, and z components of velocity field
for i in range(3):
np.random.seed(seed + i)
rand_phase = fftpack.fftn(
np.random.normal(size=kSqr.shape)
) # fourier transform of white noise
vk = rand_phase * (float(minmode) / res) ** 2 / (np.power(kSqr, slope/2.0) + 1e-300)
vk[intkSqr == 0] = 0.0
vk[intkSqr < minmode**2] *= (
intkSqr[intkSqr < minmode**2] ** 2 / minmode**4
) # smoother filter than mode-freezing; should give less "ringing" artifacts
vk *= np.exp(-intkSqr / maxmode**2)
VK.append(vk)
VK = np.array(VK)
vk_new = np.zeros_like(VK)
# do projection operator to get the correct mix of compressive and solenoidal
for i in range(3):
for j in range(3):
if i == j:
vk_new[i] += sol_weight * VK[j]
vk_new[i] += (
(1 - 2 * sol_weight)
* freq3d[i]
* freq3d[j]
/ (kSqr + 1e-300)
* VK[j]
)
vk_new[:, kSqr == 0] = 0.0
VK = vk_new
vel = np.array(
[fftpack.ifftn(vk).real for vk in VK]
) # transform back to real space
vel -= np.average(vel, axis=(1, 2, 3))[
:, np.newaxis, np.newaxis, np.newaxis
]
vel = vel / np.sqrt(
np.sum(vel**2, axis=0).mean()
) # normalize so that RMS is 1
return np.array(vel)
arguments = docopt(__doc__)
R = float(arguments["--R"])
M_gas = float(arguments["--M"])
N_gas = int(float(arguments["--N"]) + 0.5)
M_star = float(arguments["--Mstar"])
v_star = np.array([float(v) for v in arguments["--v_star"].split(",")])
spin = float(arguments["--spin"])
omega_exponent = float(arguments["--omega_exponent"])
turbulence = float(arguments["--alpha_turb"]) / 2
seed = int(float(arguments["--turb_seed"]) + 0.5)
tmax = int(float(arguments["--tmax"]))
nsnap = int(float(arguments["--nsnap"]))
turb_slope = float(arguments["--turb_slope"])
turb_sol = float(arguments["--turb_sol"])
magnetic_field = float(arguments["--bturb"])
bfixed = float(arguments["--bfixed"])
minmode = int(arguments["--minmode"])
filename = arguments["--filename"]
diffuse_gas = not arguments["--no_diffuse_gas"]
localdir = arguments["--localdir"]
param_only = arguments["--param_only"]
B_unit = float(arguments["--B_unit"])
length_unit = float(arguments["--length_unit"])
mass_unit = float(arguments["--mass_unit"])
v_unit = float(arguments["--v_unit"])
t_unit = length_unit / v_unit
G = 4300.71 * v_unit**-2 * mass_unit / length_unit
makebox = arguments["--makebox"]
impact_param = float(arguments["--impact_param"])
impact_dist = float(arguments["--impact_dist"])
v_impact = float(arguments["--v_impact"])
impact_axis = arguments["--impact_axis"]
makecylinder = arguments["--makecylinder"]
cyl_aspect_ratio = float(arguments["--cyl_aspect_ratio"])
fixed_ncrit = float(arguments["--fixed_ncrit"])
density_exponent = float(arguments["--density_exponent"])
metallicity = float(arguments["--Z"])
ISRF = float(arguments["--ISRF"])
if arguments["--turb_path"]:
turb_path = arguments["--turb_path"]
else:
turb_path = os.path.expanduser("~") + "/turb"
if arguments["--glass_path"]:
glass_path = arguments["--glass_path"]
else:
glass_path = os.path.expanduser("~") + "/glass_orig.npy"
if not os.path.exists(glass_path):
import urllib.request
print("Downloading glass file...")
urllib.request.urlretrieve(
"http://www.tapir.caltech.edu/~mgrudich/glass_orig.npy",
glass_path,
# "https://data.obs.carnegiescience.edu/starforge/glass_orig.npy", glass_path
)
if localdir:
turb_path = "turb"
glass_path = "glass_256.npy"
if arguments["--boxsize"] is not None:
boxsize = float(arguments["--boxsize"])
else:
boxsize = 10 * R
if arguments["--x_star"]:
x_star = np.array([float(x) for x in arguments["--x_star"].split(",")])
else: # default to center of box
x_star = np.repeat(0.5 * boxsize, 3)
derefinement = arguments["--derefinement"]
res_effective = int(N_gas ** (1.0 / 3.0) + 0.5)
phimode = float(arguments["--phimode"])
filename = (
"M%3.2g_" % (M_gas)
+ ("Mstar%g_" % (M_star) if M_star > 0 else "")
+ ("rho_exp%g_" % (-density_exponent) if density_exponent < 0 else "")
+ "R%g_Z%g_S%g_A%g_B%g_I%g_Res%d_n%d_sol%g"
% (
R,
metallicity,
spin,
2 * turbulence,
magnetic_field,
ISRF,
res_effective,
minmode,
# turb_slope,
turb_sol,
)
+ ("_%d" % seed)
+ (
"_collision_%g_%g_%g_%s"
% (impact_dist, impact_param, v_impact, impact_axis)
if impact_dist > 0
else ""
)
+ ".hdf5"
)
filename = filename.replace("+", "").replace("e0", "e")
filename = "".join(filename.split())
delta_m = M_gas / N_gas
delta_m_solar = delta_m / mass_unit
rho_avg = 3 * M_gas / R**3 / (4 * np.pi)
if delta_m_solar < 0.1: # if we're doing something marginally IMF-resolving
softening = (
3.11e-5 # ~6.5 AU, minimum sink radius is 2.8 times that (~18 AU)
)
ncrit = 1e13 # ~100x the opacity limit
else: # something more FIRE-like, where we rely on a sub-grid prescription turning gas into star particles
softening = 0.1
ncrit = 100
if fixed_ncrit:
ncrit = fixed_ncrit
tff = (3 * np.pi / (32 * G * rho_avg)) ** 0.5
L = (4 * np.pi * R**3 / 3) ** (1.0 / 3) # volume-equivalent box size
vrms = (6 / 5 * G * M_gas / R) ** 0.5 * turbulence**0.5
if turbulence:
tcross = L / vrms
else:
tcross = tff
turbenergy = (
0.019111097819633344 * vrms**3 / L
) # ST_Energy sets the dissipation rate of SPECIFIC energy ~ v^2 / (L/v) ~ v^3/L
paramsfile = str(
open(
os.path.realpath(__file__).replace("MakeCloud.py", "params.txt"), "r"
).read()
)
jet_particle_mass = min(delta_m, max(1e-4, delta_m / 10.0))
MS_wind_particle_mass = (
jet_particle_mass / 10
) # MS winds have lower mdot than jets, so we should be able to better resolve them this way
replacements = {
"NAME": filename.replace(".hdf5", ""),
"DTSNAP": tff / nsnap,
"MAXTIMESTEP": tff / (nsnap),
"SOFTENING": softening,
"GASSOFT": 2.0e-8,
"TMAX": tff * tmax,
"RHOMAX": ncrit,
"BOXSIZE": boxsize,
"OUTFOLDER": "output",
"JET_PART_MASS": jet_particle_mass,
"MS_WIND_PART_MASS": MS_wind_particle_mass,
"BH_SEED_MASS": delta_m / 2.0,
"TURBDECAY": tcross / 2,
"TURBENERGY": turbenergy,
"TURBFREQ": tcross / 20,
"TURB_KMIN": int(100 * 2 * np.pi / L) / 100.0,
"TURB_KMAX": int(100 * 4 * np.pi / (L) + 1) / 100.0,
"TURB_SIGMA": (M_gas/2e4)**0.5 * (R/10)**-0.5 * 600 * turbulence**0.5,
"TURB_MINLAMBDA": int(100 * R / 2) / 100,
"TURB_MAXLAMBDA": int(100 * R * 2) / 100,
"TURB_COHERENCE_TIME": tcross / 2,
"UNIT_L": 3.085678e18 * length_unit,
"UNIT_M": 1.989e33 * mass_unit,
"UNIT_V": v_unit * 1e2,
"UNIT_B": B_unit,
"ZINIT": metallicity,
"ISRF": ISRF,
}
for k, r in replacements.items():
paramsfile = paramsfile.replace(
k, (r if isinstance(r, str) else "{:.2e}".format(r))
)
open("params_" + filename.replace(".hdf5", "") + ".txt", "w").write(paramsfile)
if makebox:
replacements_box = replacements.copy()
replacements_box["NAME"] = filename.replace(".hdf5", "_BOX")
replacements_box["BOXSIZE"] = L
replacements_box["TURB_MINLAMBDA"] = int(100 * L / 2) / 100
replacements_box["TURB_MAXLAMBDA"] = int(100 * L * 2) / 100
paramsfile = str(
open(
os.path.realpath(__file__).replace("MakeCloud.py", "params.txt"),
"r",
).read()
)
for k in replacements_box.keys():
paramsfile = paramsfile.replace(k, str(replacements_box[k]))
open("params_" + filename.replace(".hdf5", "") + "_BOX.txt", "w").write(
paramsfile
)
if makecylinder:
# Get cylinder params
R_cyl = R * np.sqrt(
np.pi / (4 * cyl_aspect_ratio)
) # surface density equivalent cylinder
L_cyl = R_cyl * 2 * cyl_aspect_ratio
vrms_cyl = (
2 * G * M_gas / L_cyl
) ** 0.5 * turbulence**0.5 # the potential is different for a cylinder than for a sphere, so we need to rescale vrms to get the right alpha, using E_grav_cyl = -GM**2/L
vrms_cyl *= 0.71 # additional scaling found numerically to make the stirring run reproduce the right alpha and filament length (similarly determined numerical factor added to GIZMO)
tcross_cyl = 2 * R_cyl / vrms_cyl
boxsize_cyl = (
L_cyl * 1.5 + R_cyl * 5
) # the box should fit the cylinder and be many times bigger than its width
print(
"Cylinder params: L=%g R=%g boxsize=%g vrms=%g"
% (L_cyl, R_cyl, boxsize_cyl, vrms_cyl)
)
replacements_cyl = replacements.copy()
replacements_cyl["NAME"] = filename.replace(".hdf5", "_CYL")
replacements_cyl["BOXSIZE"] = boxsize_cyl
# New driving params
replacements_cyl["TURB_MINLAMBDA"] = int(100 * R_cyl) / 100
replacements_cyl["TURB_MAXLAMBDA"] = int(100 * R_cyl * 4) / 100
replacements_cyl["TURB_SIGMA"] = vrms_cyl
replacements_cyl["TURB_COHERENCE_TIME"] = tcross_cyl / 2
# Legacy driving params, probably needs tuning
replacements_cyl["TURBDECAY"] = tcross_cyl / 2
replacements_cyl["TURBENERGY"] = 0.019111097819633344 * vrms_cyl**3 / R_cyl
replacements_cyl["TURBFREQ"] = tcross_cyl / 20
replacements_cyl["TURB_KMIN"] = int(100 * 2 * np.pi / R_cyl) / 100.0
replacements_cyl["TURB_KMAX"] = int(100 * 4 * np.pi / (R_cyl) + 1) / 100.0
paramsfile = str(
open(
os.path.realpath(__file__).replace("MakeCloud.py", "params.txt"),
"r",
).read()
)
for k in replacements_cyl.keys():
paramsfile = paramsfile.replace(k, str(replacements_cyl[k]))
open("params_" + filename.replace(".hdf5", "") + "_CYL.txt", "w").write(
paramsfile
)
if param_only:
print("Parameters only run, exiting...")
exit()
dm = M_gas / N_gas
mgas = np.repeat(dm, N_gas)
x = get_glass_coords(N_gas, glass_path)
Nx = len(x)
x = 2 * (x - 0.5)
print("Computing radii...")
r = cdist(x, [np.zeros(3)])[:, 0]
print("Done! Sorting coordinates...")
x = x[r.argsort()][:N_gas]
print("Done! Rescaling...")
x *= (float(Nx) / N_gas * 4 * np.pi / 3 / 8) ** (1.0 / 3) * R
print("Done! Recomupting radii...")
r = cdist(x, [np.zeros(3)])[:, 0]
x, r = x / r.max(), r / r.max()
print("Doing density profile...")
rnew = r ** (3.0 / (3 + density_exponent)) * R
x = x * (rnew / r)[:, None]
r = np.sum(x**2, axis=1) ** 0.5
r_order = r.argsort()
x, r = np.take(x, r_order, axis=0), r[r_order]
if not os.path.exists(turb_path):
os.makedirs(turb_path)
fname = turb_path + "/vturb%d_beta%g_sol%g_seed%d.npy" % (minmode, turb_slope, turb_sol, seed)
if not os.path.isfile(fname):
vt = TurbField(minmode=minmode, slope = turb_slope, sol_weight=turb_sol, seed=seed)
nmin, nmax = vt.shape[-1] // 4, 3 * vt.shape[-1] // 4
vt = vt[
:, nmin:nmax, nmin:nmax, nmin:nmax
] # we take the central cube of size L/2 so that opposide sides of the cloud are not correlated
np.save(fname, vt)
else:
vt = np.load(fname)
xgrid = np.linspace(-R, R, vt.shape[-1])
v = []
for i in range(3):
v.append(interpolate.interpn((xgrid, xgrid, xgrid), vt[i, :, :, :], x))
v = np.array(v).T
print("Coordinates obtained!")
Mr = mgas.cumsum()
ugrav = G * np.sum(Mr / r * mgas)
v -= np.average(v, axis=0)
Eturb = 0.5 * M_gas / N_gas * np.sum(v**2)
v *= np.sqrt(turbulence * ugrav / Eturb)
E_rot_target = spin * ugrav
Rcyl = np.sqrt(x[:, 0] ** 2 + x[:, 1] ** 2)
omega = Rcyl**omega_exponent
vrot = np.cross(np.c_[np.zeros_like(omega), np.zeros_like(omega), omega], x)
Erot_actual = np.sum(0.5 * mgas[:, None] * vrot**2)
vrot *= np.sqrt(E_rot_target / Erot_actual)
v += vrot
B = np.c_[np.zeros(N_gas), np.zeros(N_gas), np.ones(N_gas)]
vA_unit = (
3.429e8
* B_unit
* (M_gas) ** -0.5
* R**1.5
* np.sqrt(4 * np.pi / 3)
/ v_unit
) # alfven speed for unit magnetic field
uB = (
0.5 * M_gas * vA_unit**2
) # magnetic energy we would have for unit magnetic field
if bfixed > 0:
B = B * bfixed
else:
B = B * np.sqrt(
magnetic_field * ugrav / uB
) # renormalize to desired magnetic energy
v = v - np.average(v, axis=0)
x = x - np.average(x, axis=0)
r, phi = np.sum(x**2, axis=1) ** 0.5, np.arctan2(x[:, 1], x[:, 0])
theta = np.arccos(x[:, 2] / r)
phi += phimode * np.sin(2 * phi) / 2
x = (
r[:, np.newaxis]
* np.c_[
np.cos(phi) * np.sin(theta), np.sin(phi) * np.sin(theta), np.cos(theta)
]
)
if makecylinder:
def ind_in_cylinder(x, L_cyl, R_cyl):
return (np.abs(x[:, 0]) < L_cyl / 2) & (
np.sum(x[:, 1:] ** 2, axis=1) < R_cyl**2
)
# Just get a roughly homogeneous cylinder along the x axis, we will stir it anyway
N_cyl = 0
while (
N_cyl <= N_gas
): # should be very unlikely that we need to repeat, but let's check to be sure
x_cyl = np.random.rand(2 * N_gas, 3) * 2 - 1
x_cyl[:, 0] *= L_cyl / 2
x_cyl[:, 1] *= R_cyl
x_cyl[:, 2] *= R_cyl
x_cyl = x_cyl[ind_in_cylinder(x_cyl, L_cyl, R_cyl)]
N_cyl = len(x_cyl)
# print("N_cyl: %g N_gas: %g"%(N_cyl,N_gas))
x_cyl = x_cyl[:N_gas] # keep only the right amount of gas
# Let's add some initial velocity to make the driving phase shorter, let's start with a rotational component
v_cyl = np.cross([1, 0, 0], x_cyl, axis=-1) / R_cyl
# tangential with magnitude increasing linearly
v_cyl *= vrms_cyl
u = np.ones_like(mgas) * 0.101 / 2.0 # /2 needed because it is molecular
if impact_dist > 0:
x = np.concatenate([x, x])
impact_dir = {
"x": np.array([1.0, 0, 0]),
"y": np.array([0, 1, 0]),
"z": np.array([0, 0, 1]),
}[impact_axis]
impact_param_dir = {
"x": np.array([0, 1, 0]),
"y": np.array([0, 0, 1]),
"z": np.array([1, 0, 0]),
}[impact_axis]
x[:N_gas] += impact_dist * R * impact_dir
x[N_gas:] -= impact_dist * R * impact_dir
x[:N_gas] += 0.5 * impact_param * R * impact_param_dir
x[N_gas:] -= 0.5 * impact_param * R * impact_param_dir
v = np.concatenate([v, v])
vrms = np.sum(v**2, axis=1).mean() ** 0.5
v[:N_gas] -= v_impact * vrms * impact_dir
v[N_gas:] += v_impact * vrms * impact_dir
B = np.concatenate([B, B])
u = np.concatenate([u, u])
mgas = np.concatenate([mgas, mgas])
u = (
np.ones_like(mgas) * (200 / v_unit) ** 2
) # start with specific internal energy of (200m/s)^2, this is overwritten unless starting with restart flag 2###### #0.101/2.0 #/2 needed because it is molecular
if diffuse_gas:
# assuming 10K vs 10^4K gas: factor of ~10^3 density contrast
rho_warm = M_gas * 3 / (4 * np.pi * R**3) / 1000
M_warm = (
boxsize**3 - (4 * np.pi * R**3 / 3)
) * rho_warm # mass of diffuse box-filling medium
N_warm = int(M_warm / (M_gas / N_gas))
if derefinement:
x0 = get_glass_coords(N_gas, glass_path)
Nx = len(x0)
x0 = 2 * (x0 - 0.5)
r0 = (x0 * x0).sum(1) ** 0.5
x0, r0 = x0[r0.argsort()], r0[r0.argsort()]
# first lay down the stuff within 3*R
N_warm = int(
4 * np.pi * rho_warm * (3 * R) ** 3 / 3 / dm
) # number of cells within 3R
x_warm = (
x0[:N_warm] * 3 * R / r0[N_warm - 1]
) # uniform density of cells within 3R
x0 = x0[
N_warm:
] # now we take the ones outside the initial sphere and map them to a n(R) ~ R^-3 profile so that we get constant number of cells per log radius interval
r0 = r0[N_warm:]
rnew = 3 * R * np.exp(np.arange(len(x0)) / N_warm / 3)
x_warm = np.concatenate([x_warm, (rnew / r0)[:, None] * x0], axis=0)
x_warm = x_warm[np.max(np.abs(x_warm), axis=1) < boxsize / 2]
N_warm = len(x_warm)
R_warm = (x_warm * x_warm).sum(1) ** 0.5
mgas = np.concatenate(
[mgas, np.clip(dm * (R_warm / (3 * R)) ** 3, dm, np.inf)]
)
else:
x_warm = boxsize * np.random.rand(N_warm, 3) - boxsize / 2
if impact_dist == 0:
x_warm = x_warm[np.sum(x_warm**2, axis=1) > R**2]
N_warm = len(x_warm)
mgas = np.concatenate(
[mgas, np.repeat(mgas.sum() / len(mgas), N_warm)]
)
x = np.concatenate([x, x_warm])
v = np.concatenate([v, np.zeros((N_warm, 3))])
Bmag = np.average(np.sum(B**2, axis=1)) ** 0.5
B = np.concatenate(
[B, np.repeat(Bmag, N_warm)[:, np.newaxis] * np.array([0, 0, 1])]
)
u = np.concatenate([u, np.repeat(101.0, N_warm)])
if makecylinder:
# The magnetic field is paralell to the cylinder (true at low densities, so probably fine for IC)
B_cyl = np.concatenate(
[B, np.repeat(Bmag, N_warm)[:, np.newaxis] * np.array([1, 0, 0])]
)
# Add diffuse medium
M_warm_cyl = (boxsize_cyl**3 - (4 * np.pi * R**3 / 3)) * rho_warm
N_warm_cyl = int(M_warm_cyl / (M_gas / N_gas))
x_warm = (
boxsize_cyl * np.random.rand(N_warm_cyl, 3) - boxsize_cyl / 2
) # will be recentered later
x_warm = x_warm[
~ind_in_cylinder(x_warm, L_cyl, R_cyl)
] # keep only warm gas outside the cylinder
# print("N_warm_cyl: %g N_warm_cyl_kept %g "%(N_warm_cyl,len(x_warm)))
N_warm_cyl = len(x_warm)
x_cyl = np.concatenate([x_cyl, x_warm])
v_cyl = np.concatenate([v_cyl, np.zeros((N_warm, 3))])
else:
N_warm = 0
rho = np.repeat(3 * M_gas / (4 * np.pi * R**3), len(mgas))
if diffuse_gas:
rho[-N_warm:] /= 1000
h = (32 * mgas / rho) ** (1.0 / 3)
x += boxsize / 2 # cloud is always centered at (boxsize/2,boxsize/2,boxsize/2)
if makecylinder:
x_cyl += boxsize_cyl / 2
print("Writing snapshot...")
F = h5py.File(filename, "w")
F.create_group("PartType0")
F.create_group("Header")
F["Header"].attrs["NumPart_ThisFile"] = [
len(mgas),
0,
0,
0,
0,
(1 if M_star > 0 else 0),
]
F["Header"].attrs["NumPart_Total"] = [
len(mgas),
0,
0,
0,
0,
(1 if M_star > 0 else 0),
]
F["Header"].attrs["BoxSize"] = boxsize
F["Header"].attrs["Time"] = 0.0
F["PartType0"].create_dataset("Masses", data=mgas)
F["PartType0"].create_dataset("Coordinates", data=x)
F["PartType0"].create_dataset("Velocities", data=v)
F["PartType0"].create_dataset("ParticleIDs", data=1 + np.arange(len(mgas)))
F["PartType0"].create_dataset("InternalEnergy", data=u)
if M_star > 0:
F.create_group("PartType5")
# Let's add the sink at the center
F["PartType5"].create_dataset("Masses", data=np.array([M_star]))
F["PartType5"].create_dataset(
"Coordinates", data=[x_star]
) # at the center
F["PartType5"].create_dataset("Velocities", data=[v_star]) # at rest
F["PartType5"].create_dataset(
"ParticleIDs", data=np.array([F["PartType0/ParticleIDs"][:].max() + 1])
)
# Advanced properties for sinks
F["PartType5"].create_dataset(
"BH_Mass", data=M_star
) # all the mass in the sink/protostar/star
F["PartType5"].create_dataset(
"BH_Mass_AlphaDisk", data=np.array([0.0])
) # starts with no disk
F["PartType5"].create_dataset(
"BH_Mdot", data=np.array([0.0])
) # starts with no mdot
F["PartType5"].create_dataset(
"BH_Specific_AngMom", data=np.array([0.0])
) # starts with no angular momentum
F["PartType5"].create_dataset(
"SinkRadius", data=np.array([softening])
) # Sinkradius set to softening
F["PartType5"].create_dataset("StellarFormationTime", data=np.array([0.0]))
F["PartType5"].create_dataset("ProtoStellarAge", data=np.array([0.0]))
F["PartType5"].create_dataset(
"ProtoStellarStage", data=np.array([5], dtype=np.int32), dtype=np.int32
)
# Stellar properties
# if (central_star or central_SN):
# if central_star:
# print("Assuming central sink is a ZAMS star")
# starts as ZAMS star
# else:
# print("Assuming central sink is a ZAMS star about to go supernova")
# F["PartType5"].create_dataset("ProtoStellarStage", data=np.array([6],dtype=np.int32), dtype=np.int32) #starts as ZAMS star going SN
# Set guess for ZAMS stellar radius, will be overwritten
if (M_star) > 1.0:
R_ZAMS = (M_star) ** 0.57
else:
R_ZAMS = (M_star) ** 0.8
F["PartType5"].create_dataset(
"ProtoStellarRadius_inSolar", data=np.array([R_ZAMS])
) # Sinkradius set to softening
F["PartType5"].create_dataset(
"StarLuminosity_Solar", data=np.array([0.0])
) # dummy
F["PartType5"].create_dataset("Mass_D", data=np.array([0.0])) # No D left
if magnetic_field > 0.0:
F["PartType0"].create_dataset("MagneticField", data=B)
F.close()
if makebox:
F = h5py.File(filename.replace(".hdf5", "_BOX.hdf5"), "w")
F.create_group("PartType0")
F.create_group("Header")
F["Header"].attrs["NumPart_ThisFile"] = [len(mgas), 0, 0, 0, 0, 0]
F["Header"].attrs["NumPart_Total"] = [len(mgas), 0, 0, 0, 0, 0]
F["Header"].attrs["MassTable"] = [M_gas / len(mgas), 0, 0, 0, 0, 0]
F["Header"].attrs["BoxSize"] = (4 * np.pi * R**3 / 3) ** (1.0 / 3)
F["Header"].attrs["Time"] = 0.0
F["PartType0"].create_dataset("Masses", data=mgas[: len(mgas)])
F["PartType0"].create_dataset(
"Coordinates",
data=np.random.rand(len(mgas), 3) * F["Header"].attrs["BoxSize"],
)
F["PartType0"].create_dataset("Velocities", data=np.zeros((len(mgas), 3)))
F["PartType0"].create_dataset("ParticleIDs", data=1 + np.arange(len(mgas)))
F["PartType0"].create_dataset("InternalEnergy", data=u)
if magnetic_field > 0.0:
F["PartType0"].create_dataset("MagneticField", data=B[: len(mgas)])
F.close()
if makecylinder:
F = h5py.File(filename.replace(".hdf5", "_CYL.hdf5"), "w")
F.create_group("PartType0")
F.create_group("Header")
F["Header"].attrs["NumPart_ThisFile"] = [N_gas + N_warm_cyl, 0, 0, 0, 0, 0]
F["Header"].attrs["NumPart_Total"] = [N_gas + N_warm_cyl, 0, 0, 0, 0, 0]
F["Header"].attrs["MassTable"] = [M_gas / N_gas, 0, 0, 0, 0, 0]
F["Header"].attrs["BoxSize"] = boxsize_cyl
F["Header"].attrs["Time"] = 0.0
F["PartType0"].create_dataset("Masses", data=mgas)
F["PartType0"].create_dataset("Coordinates", data=x_cyl)
F["PartType0"].create_dataset("Velocities", data=v_cyl)
F["PartType0"].create_dataset(
"ParticleIDs", data=1 + np.arange(N_gas + N_warm_cyl)
)
F["PartType0"].create_dataset("InternalEnergy", data=u)
if magnetic_field > 0.0:
F["PartType0"].create_dataset("MagneticField", data=B_cyl)
F.close()