-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathui.py
308 lines (268 loc) · 11 KB
/
ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import dash
from dash.dependencies import Input, Output, State
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
import tabs as tb
import datetime
# imports backend
import server as sv
# Uses bootstrap stylesheet
external_stylesheets = [dbc.themes.BOOTSTRAP]
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
##Creates layout
app.layout = html.Div([
html.Div([html.Img(src='/static/images/databio_logo.svg',
style = {'display': 'inline', 'width': '50%', 'max-width': '8rem'}),
html.H1("Covid19 Analysis 🇨🇱 V0.1", style={'text-align': 'center', 'color':'white'}),
html.P(['made with ❤ by ', html.A('millacurafa', href='https://github.com/millacurafa', style={'color':'white'})],
style={'text-align': 'center', 'color':'white'}),
], className = 'navbar navbar-primary bg-dark'),
dcc.Tabs(id='tabs_chosen', value='tab-1', children=[
dcc.Tab(label='National', value='tab-1'),
dcc.Tab(label='Regional', value='tab-2'),
# dcc.Tab(label='SEIRD real data', value='tab-3'),
dcc.Tab(label='SEIRD model', value='tab-4'),
dcc.Tab(label='Docs', value='tab-5'),
]),
html.Div(id='tabs_content')
])
##Generates callbacks
@app.callback(
Output('tabs_content', 'children'),
Input('tabs_chosen', 'value')
)
def render_content(tab):
if tab == 'tab-1':
return html.Div(
tb.tab_1
)
elif tab == 'tab-2':
return html.Div(
tb.tab_2
)
# elif tab == 'tab-3':
# return html.Div(
# tb.tab_3
# )
elif tab == 'tab-4':
return html.Div(
tb.tab_4
)
elif tab == 'tab-5':
return html.Div(
tb.tab_5
)
@app.callback(
Output('time_series_one', 'figure'),
Input('submit_button_state_one', 'n_clicks'),
[
##For tab_1
State('national_dropdown', 'value'),
State('national_switches_input', 'value'),
State('national_datepicker', 'start_date'),
State('national_datepicker', 'end_date')
])
def update_figure(_, national_dropdown,national_switches_input, start_date, end_date):
dff = sv.df ##Creates a copy of the dataframe
[national_dropdown if national_dropdown != None else 'Casos totales']
dff = dff.loc[(dff.index >= start_date) & (dff.index <= end_date), national_dropdown]
n_switches = sv.np.sum(national_switches_input)
fig = sv.px.line(dff).update_layout(title= "National cases",
yaxis_title='Number of National cases',
xaxis_title='Date')
if n_switches != 0:
if n_switches==1:
dff = dff/(sv.N/1000)
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases per 1000 inhabitants',
xaxis_title='Date')
return fig
elif n_switches==2:
dff = sv.np.log10(dff)
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases (in log10 scale)',
xaxis_title='Date')
return fig
elif n_switches==3:
dff = sv.np.log10(dff/(sv.N/1000))
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases per 1000 inhabitants (in log10 scale)',
xaxis_title='Date')
return fig
elif n_switches==4:
dff = dff.rolling(14).mean()
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases (MA14)',
xaxis_title='Date')
return fig
elif n_switches==5:
dff = (dff/(sv.N/1000)).rolling(14).mean()
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases per 1000 inhabitants (MA14)',
xaxis_title='Date')
return fig
elif n_switches==6:
dff = sv.np.log10(dff.rolling(14).mean())
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases (log10(MA14))',
xaxis_title='Date')
return fig
elif n_switches==7:
dff = sv.np.log10((dff/(sv.N/1000)).rolling(14).mean())
fig = sv.px.line(dff)
fig.update_layout(title= "National cases",
yaxis_title='Number of National cases per 1000 inhabitants (log10(MA14))',
xaxis_title='Date')
return fig
else: return fig
@app.callback(
Output('time_series_two', 'figure'),
Input('submit_button_state_two', 'n_clicks'),
[# For tab_2
State('regional_dropdown', 'value'),
State('regional_cases', 'value'),
State('regional_switches_input', 'value'),
State('regional_datepicker', 'start_date'),
State('regional_datepicker', 'end_date')
])
def regional(_,regional_dropdown,regional_cases,regional_switches_input,start_date,end_date):
n_switches = sv.np.sum(regional_switches_input)
if (regional_cases == 'active'):
if (n_switches==1 or n_switches==3):
dff = sv.df_region_current_bypop['bypop']
else:
dff = sv.df_region_current
elif regional_cases == 'total':
if (n_switches==1 or n_switches==3):
dff = sv.df_region_current_bypop['bypop'].cumsum()
else:
dff = sv.df_region_current.cumsum()
elif regional_cases == 'deaths':
if (n_switches==1 or n_switches==3):
dff = sv.df_deaths_current_bypop['bypop']
else:
dff = sv.df_deaths_current
elif regional_cases == 'uci':
if (n_switches==1 or n_switches==3):
dff = sv.df_region_current_bypop['bypop']
else:
dff = sv.df_uci_current
elif regional_cases == 'pcr':
if (n_switches==1 or n_switches==3):
dff = sv.df_region_current_bypop['bypop']
else:
dff = sv.df_pcr_current
dff = dff.loc[(dff.index >= start_date) & (dff.index <= end_date),]
dff = dff.filter(regional_dropdown, axis=1)
fig = sv.px.line(dff
).update_layout(title= "Regional cases",
yaxis_title='Number of cases by region',
xaxis_title='Date')
if n_switches != 0:
if (n_switches==2 or n_switches==3):
dff = sv.np.log10(dff)
fig = sv.px.line(dff).update_layout(title= "Regional cases",
yaxis_title='Number of cases by region (in log10 scale)',
xaxis_title='Date')
return fig
else:
return fig
else: return fig
@app.callback(
Output('time_series_three', 'figure'),
Input('submit_button_state_three', 'n_clicks'),
[
##For tab_3
State('seird_dropdown', 'value'),
State('seird_datepicker', 'start_date'),
State('seird_datepicker', 'end_date')
])
def plotrealseird(_, seird_dropdown,start_date,end_date):
dff = sv.df_seird
[seird_dropdown if seird_dropdown != None else ['Susceptible','Exposed','Infectious','Recovered','Deaths']]
dff = dff.loc[(dff.index >= start_date) & (dff.index <= end_date),seird_dropdown]
fig = sv.px.line(dff
).update_layout(title='SEIRD model real data',
yaxis_title='SEIRD cases',
xaxis_title='Date')
return fig
# @app.callback(
# [
# Output('seird_city_dropdown', 'options'),
# #Output('seirdmo_population', 'value')
# ],
# [
# Input('seird_regional_dropdown','value'),
# #Input('seird_city_dropdown','value')
# ])
# def updatedropdown(seird_regional_dropdown):
# cities = sv.df_city_current[sv.df_city_current['Region']== seird_regional_dropdown].groupby('Comuna')[['Poblacion']].mean()
# OptionList = [{'label': city, 'value': city} for city in cities.index]
# OptionList.insert(0,{'label': 'Total', 'value': 'Total'})
# return OptionList
@app.callback(
Output('time_series_four', 'figure'),
#Output('seirdmo_days_today', 'children')
Input('submit_button_state_four', 'n_clicks'),
[
##For tab_4
State('seirdmo_daypicker', 'date'),
State('seirdmo_days_today', 'value'),
State('seirdmo_initial_cases', 'value'),
State('seirdmo_initial_deaths', 'value'),
State('seirdmo_initial_exposed', 'value'),
State('seirdmo_initial_recovered', 'value'),
State('seirdmo_population', 'value'),
State('seirdmo_icu_beds', 'value'),
State('seirdmo_p_I_to_C', 'value'),
State('seirdmo_p_C_to_D', 'value'),
State('seirdmo_r0_slider', 'value'),
])
def plotseirdgo(_,
date,
seirdmo_days_today,
seirdmo_initial_cases,
seirdmo_initial_deaths,
seirdmo_initial_exposed,
seirdmo_initial_recovered,
seirdmo_population,
seirdmo_icu_beds,
seirdmo_p_I_to_C,
seirdmo_p_C_to_D,
seirdmo_r0_slider):
# if date != '2020-01-01':
# delta = (datetime.datetime.today() - datetime.datetime.strptime(date,'%Y-%m-%d')).days
# else:
# delta = (datetime.datetime.today() - datetime.datetime(2020,1,1)).days
N = seirdmo_population #Chilean population; Source: World Bank
deaths_model = seirdmo_initial_deaths #deaths
recovered_model = seirdmo_initial_recovered #recovered
infectious_model = seirdmo_initial_cases #infectious
susceptible_model = N -1 #susceptible
exposed_model = seirdmo_initial_exposed # contracted the disease but are not yet infectious
D = 10 # Infectious lasts
gamma = 1/D
R0 = seirdmo_r0_slider # the total number of people an infected person infects
beta = R0*gamma # infected person infects beta people per day
alpha = seirdmo_p_C_to_D/100 # five percent death rate
rho = 1/14 # fourteen days from infection until death
delta = 1/7 # incubation period of seven days
S0, E0, I0, R0, D0 = susceptible_model, exposed_model, infectious_model, R0, deaths_model #Initial conditions
##Creates time
t = sv.np.linspace(0, seirdmo_days_today) # Grid of time points (in days)
y0 = S0, E0, I0, R0, D0 # Initial conditions vector
# Integrate the SIR equations over the time grid, t.
ret = sv.odeint(sv.derivate, y0, t, args=(N, beta, gamma, delta, alpha, rho))
S, E, I, R, D = ret.T
return sv.plotlyseirdgo(t, S, E, I, R, D)
server = app.server
app.config.suppress_callback_exceptions = True
if __name__ == '__main__':
app.run_server(debug=True)