-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
executable file
·134 lines (114 loc) · 5.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import argparse
import pickle
import modelnet_data
import pointhop
import numpy as np
import data_utils
import os
import time
import sklearn
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser()
parser.add_argument('--initial_point', type=int, default=1024, help='Point Number [256/512/1024/2048]')
parser.add_argument('--validation', default=False, help='Split train data or not')
parser.add_argument('--feature_selection', default=0.95, help='Percentage of feature selection try 0.95')
parser.add_argument('--ensemble', default=True, help='Ensemble or not')
parser.add_argument('--rotation_angle', default=np.pi/4, help='Rotate angle')
parser.add_argument('--rotation_freq', default=8, help='Rotate time')
parser.add_argument('--log_dir', default='log', help='Log dir [default: log]')
parser.add_argument('--num_point', default=[1024, 128, 128, 64], help='Point Number after down sampling')
parser.add_argument('--num_sample', default=[64, 64, 64, 64], help='KNN query number')
parser.add_argument('--threshold', default=0.0001, help='threshold')
FLAGS = parser.parse_args()
initial_point = FLAGS.initial_point
VALID = FLAGS.validation
FE = FLAGS.feature_selection
ENSEMBLE = FLAGS.ensemble
angle_rotation = FLAGS.rotation_angle
freq_rotation = FLAGS.rotation_freq
num_point = FLAGS.num_point
num_sample = FLAGS.num_sample
threshold = FLAGS.threshold
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')
LOG_FOUT.write(str(FLAGS) + '\n')
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def main():
time_start = time.time()
# load data
train_data, train_label = modelnet_data.data_load(num_point=initial_point, data_dir=os.path.join(BASE_DIR, 'modelnet40_ply_hdf5_2048'), train=True)
test_data, test_label = modelnet_data.data_load(num_point=initial_point, data_dir=os.path.join(BASE_DIR, 'modelnet40_ply_hdf5_2048'), train=False)
# validation set
if VALID:
train_data, train_label, valid_data, valid_label = modelnet_data.data_separate(train_data, train_label)
else:
valid_data = test_data
valid_label = test_label
print(train_data.shape, train_label.shape, valid_data.shape, valid_label.shape)
if ENSEMBLE:
angle = np.repeat(angle_rotation, freq_rotation)
else:
angle = [0]
params_total = {}
feat_train = []
feat_valid = []
for i in range(len(angle)):
log_string('------------Train {} --------------'.format(i))
params, leaf_node, leaf_node_energy = pointhop.pointhop_train(True, train_data, n_newpoint=num_point,
n_sample=num_sample, threshold=threshold)
feature_train = pointhop.extract(leaf_node)
feature_train = np.concatenate(feature_train, axis=-1)
if FE is not None:
entropy = pointhop.CE(feature_train, train_label, 40)
ind = np.argsort(entropy)
fe_ind = ind[:int(len(ind)*FE)]
feature_train = feature_train[:, fe_ind]
params_total['fe_ind:', i] = fe_ind
weight = pointhop.llsr_train(feature_train, train_label)
feature_train, pred_train = pointhop.llsr_pred(feature_train, weight)
feat_train.append(feature_train)
acc_train = sklearn.metrics.accuracy_score(train_label, pred_train)
log_string('train accuracy: {}'.format(acc_train))
params_total['params:', i] = params
params_total['weight:', i] = weight
train_data = data_utils.data_augment(train_data, angle[i])
if VALID:
log_string('------------Validation {} --------------'.format(i))
leaf_node_test = pointhop.pointhop_pred(False, valid_data, pca_params=params, n_newpoint=num_point,
n_sample=num_sample)
feature_valid = pointhop.extract(leaf_node_test)
feature_valid = np.concatenate(feature_valid, axis=-1)
if FE is not None:
feature_valid = feature_valid[:, fe_ind]
feature_valid, pred_valid = pointhop.llsr_pred(feature_valid, weight)
acc_valid = sklearn.metrics.accuracy_score(valid_label, pred_valid)
acc = pointhop.average_acc(valid_label, pred_valid)
feat_valid.append(feature_valid)
log_string('val: {} , val mean: {}'.format(acc_valid, np.mean(acc)))
log_string('per-class: {}'.format(acc))
valid_data = data_utils.data_augment(valid_data, angle[i])
if ENSEMBLE:
feat_train = np.concatenate(feat_train, axis=-1)
weight = pointhop.llsr_train(feat_train, train_label)
feat_train, pred_train = pointhop.llsr_pred(feat_train, weight)
acc_train = sklearn.metrics.accuracy_score(train_label, pred_train)
params_total['weight ensemble'] = weight
log_string('ensemble train accuracy: {}'.format(acc_train))
if VALID:
feat_valid = np.concatenate(feat_valid, axis=-1)
feat_valid, pred_valid = pointhop.llsr_pred(feat_valid, weight)
acc_valid = sklearn.metrics.accuracy_score(valid_label, pred_valid)
acc = pointhop.average_acc(valid_label, pred_valid)
log_string('ensemble val: {}, ensemble val mean: {}'.format(acc_valid, np.mean(acc)))
log_string('ensemble per-class: {}'.format(acc))
time_end = time.time()
log_string('totally time cost is {} minutes'.format((time_end - time_start)//60))
with open(os.path.join(LOG_DIR, 'params.pkl'), 'wb') as f:
pickle.dump(params_total, f)
if __name__ == '__main__':
main()