-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymtable.c
849 lines (713 loc) · 23.9 KB
/
symtable.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
/***************************
* PROJECT:
* IFJ20 - Compiler for imperative programming language IFJ20
*
* UNIVERSITY:
* Faculty of Information Technology, Brno University of Technology
*
* FILE:
* symtable.c
*
* DESCRIPTION:
* Implementation of symbol table using binary search tree.
* The functions are implemented in this order:
* - variable stack
* - variable BST
* - function list
* - function BST
* - printing functions
*
* AUTHOR:
* Žovinec Martin <[email protected]>
*/
#include "symtable.h"
#include "error.h"
// TODO returnTypes in functions (2/2)
// TODO addFunCall, addFunDec and funActualize don't need returnOrder
/**********************************************/
/*************** Variable stack ***************/
/**
* @brief Pops the top values on the stack, so it now has the previous values on top.
*
* @param varTree pointer to the variable BST
*/
void stackPop(varNode* varTree){
if ((*varTree)->varStack != NULL){
varStackElement temp = (*varTree)->varStack;
(*varTree)->varStack = (*varTree)->varStack->previousElement;
free(temp);
}
}
/**
* @brief Pushes the variable stack so the top now has new values and points to the previous element.
*
* @param varTree pointer to the variable BST
* @param type type of the variable
* @param scope scope of the variable
*/
void stackPush(varNode* varTree, int type, int scope){
varStackElement newElement = (varStackElement) malloc(sizeof(struct varStackElement));
newElement->type = type;
newElement->scope = scope;
newElement->previousElement = (*varTree)->varStack;
(*varTree)->varStack = newElement;
}
/**
* @brief Frees the whole stack.
*
* @param varTree pointer to the variable BST
*/
void stackDelete(varNode *varTree){
while ((*varTree)->varStack != NULL){
stackPop(varTree);
}
}
/********************************************************/
/*************** Variable tree operations ***************/
/**
* @brief Initializes the variable BST by setting its pointer to NULL.
*
* @param RootPtr pointer to the variable BST
*/
void BSTInit (varNode *RootPtr) {
*RootPtr = NULL;
}
/**
* @brief Finds if given variable was declared.
*
* @param RootPtr pointer to the variable BST
* @param Key name of the searched variable
*
* @return Bool value true if variable is in the BST, false otherwise
*/
bool isDeclared (varNode RootPtr, string Key) {
if(BSTSearch(RootPtr, Key) == NULL)
return false;
return true;
}
/**
* @brief Finds the variable and returns its type.
*
* @param RootPtr pointer to the variable BST
* @param Key name of the searched variable
*
* @return int value of the variables type
*/
int getType(varNode RootPtr, string Key){
RootPtr = BSTSearch (RootPtr, Key);
if(!RootPtr){
fprintf(stderr,"ERROR 666: Trying to get type of a non-existent function [%s]\n", Key.str);
exit(666);
}
return RootPtr->varStack->type;
}
/**
* @brief Finds the variable in the BST.
*
* @param RootPtr pointer to the variable binary BST
* @param Key name of the searched variable
*
* @return structure varNode of the searched variable
*/
varNode BSTSearch(varNode RootPtr, string Key){
// the variable was not found, returns pointer to where it should have been
if(!RootPtr)
return NULL;
else if ( strCmpString(&Key, &(RootPtr->name)) < 0)
return BSTSearch (RootPtr->LPtr, Key); // the variable is in the left branch
else if ( strCmpString(&Key, &(RootPtr->name)) > 0)
return BSTSearch (RootPtr->RPtr, Key); // the variable is in the right branch
// the variable was found, returns pointer to it
return RootPtr;
}
/**
* @brief Adds a variable to the variable BST, prints error if the variable is already declared in the same scope.
*
* @param RootPtr pointer to the variable BST
* @param Key name of the new variable
* @param Type type of the new variable
* @param Scope current scope in the parser
*/
void BSTInsert (varNode *RootPtr, string Key, int Type, int scope) {
// if the RootPtr is NULL then we have found the place where the new Node should be inserted
if( !*RootPtr ) {
(*RootPtr) = (varNode)malloc(sizeof(struct varNode));
if(RootPtr == NULL)
return;
(*RootPtr)->varStack = NULL;
stackPush(RootPtr,Type,scope);
strInit(&(*RootPtr)->name);
strCopyString(&((*RootPtr)->name),&Key);
(*RootPtr)->LPtr = (*RootPtr)->RPtr = NULL;
return;
}
if ( strCmpString(&Key, &((*RootPtr)->name)) < 0) {
// the variable is in the left subtree
BSTInsert ( &((*RootPtr)->LPtr), Key, Type, scope);
return;
}
if ( strCmpString(&Key, &((*RootPtr)->name)) > 0) {
// the variable is in the right subtree
BSTInsert ( &((*RootPtr)->RPtr), Key, Type, scope);
return;
}
// Overwriting of the values, if the var exists
if(scope > (*RootPtr)->varStack->scope)
stackPush(RootPtr,Type,scope);
else{
fprintf(stderr,"ERROR 3: Redefinition of a variable in the same scope [%s]\n", Key.str);
exit(3);
}
}
/**
* @brief Frees the whole variable BST
*
* @param RootPtr pointer to the variable BST
*/
void BSTDispose (varNode *RootPtr) {
if( *RootPtr != NULL){
BSTDispose(&((*RootPtr)->LPtr));
BSTDispose(&((*RootPtr)->RPtr));
stackDelete(RootPtr);
strFree(&((*RootPtr)->name));
free(*RootPtr);
*RootPtr = NULL;
}
}
/**
* @brief Copies and frees the rightmost node from the left branch, then with the copied content overwrites the contents of the node we want to delete.
*
* @param PtrReplaced node we want to replace
* @param leftBranch left branch node where we will search for the rightmost node to replace PtrReplaced with
*/
void ReplaceByRightmost (varNode PtrReplaced, varNode *leftBranch){
if(!*leftBranch)
return;
if(( *leftBranch)->RPtr)
ReplaceByRightmost(PtrReplaced, &((*leftBranch)->RPtr ));
else{
varNode delete_me = (*leftBranch);
strClear(&(PtrReplaced->name));
stackDelete(&PtrReplaced);
strCopyString(&(PtrReplaced->name),&(delete_me->name));
PtrReplaced->varStack = delete_me ->varStack;
(*leftBranch) = (*leftBranch)->LPtr;
strFree(&(delete_me->name));
free(delete_me);
}
}
/**
* @brief Deletes the variable Key from the BSTD.
*
* @param RootPtr pointer to the variable BST
* @param Key name of the variable we want to delete
*/
void BSTDelete (varNode *RootPtr, string Key){
if(!*RootPtr){
return;
}
if (strCmpString(&Key, &((*RootPtr)->name)) < 0){
BSTDelete( &((*RootPtr)->LPtr), Key);
}else if (strCmpString(&Key, &((*RootPtr)->name)) > 0){
BSTDelete( &((*RootPtr)->RPtr), Key);
}else if ((*RootPtr)->LPtr && (*RootPtr)->RPtr)
ReplaceByRightmost((*RootPtr), &((*RootPtr )->LPtr));
else{
varNode delete_me = (*RootPtr);
if((*RootPtr)->LPtr)
*RootPtr = (*RootPtr)->LPtr;
else
*RootPtr = (*RootPtr)->RPtr;
stackDelete(&delete_me);
strFree(&(delete_me->name));
free(delete_me);
}
}
/**
* @brief Searches the whole tree, pops any node Stacks which have scope value higher than newScope, if there is no value left, then it deletes the node.
*
* @param RootPtr pointer to the variable BST
* @param newScope new lower scope which we compare with the old scope
*/
void BSTScopeDelete(varNode *RootPtr, int newScope){
if(!*RootPtr)
return;
BSTScopeDelete(&((*RootPtr)->LPtr), newScope);
BSTScopeDelete(&((*RootPtr)->RPtr), newScope);
while ((*RootPtr)->varStack != NULL && (*RootPtr)->varStack->scope > newScope ){
stackPop(RootPtr);
}
if ((*RootPtr)->varStack == NULL){
BSTDelete(RootPtr, (*RootPtr)->name);
}
}
/********************************************************/
/*************** Function tree operations ***************/
/**
* @brief Initializes the function BST by setting its pointer to NULL.
*
* @param RootPtr pointer to the function BST
*/
void funInit (funNode *RootPtr) {
*RootPtr = NULL;
}
/**
* @brief Searches the function BST for function for key.
*
* @param RootPtr pointer to the function BST
* @param name name of the function we are looking for
*
* @return funNode with searched name or NULL if it is not in the BST
*/
funNode *funSearch (funNode *RootPtr, string Key) {
if(!*RootPtr) // the function was not found, we can its NULL pointer for adding next node, because it points to the same place in memory as the previous node
return RootPtr;
else if (strCmpString(&Key, &((*RootPtr)->name)) < 0) // the function should be in the left branch
return funSearch(&((*RootPtr)->LPtr), Key);
else if (strCmpString(&Key, &((*RootPtr)->name)) > 0) // the function should be in the right branch
return funSearch(&((*RootPtr)->RPtr), Key);
return RootPtr; // the function was found
}
/**
* @brief Adds the function to the function BST and inicializes all of its elements.
*
* @param RootPtr pointer to the function BST
* @param name name of the function we are looking for
*/
void addFunToTree(funNode *RootPtr, string Key){
RootPtr = funSearch(RootPtr, Key);
if(!*RootPtr){
(*RootPtr) = (funNode)malloc(sizeof(struct funNode));
if(RootPtr == NULL)
return;
// ugly inicialization, trying to do this in a separate function always results in a segfault no matter how hard i try
(*RootPtr)->parameters = malloc(sizeof(struct funList));
(*RootPtr)->parameters->First = NULL;
(*RootPtr)->parameters->elementCount = 0;
(*RootPtr)->returnCodes = malloc(sizeof(struct funList));
(*RootPtr)->returnCodes->First = NULL;
(*RootPtr)->returnCodes->elementCount = 0;
strInit(&((*RootPtr))->name);
strCopyString(&((*RootPtr)->name),&Key);
(*RootPtr)->LPtr = (*RootPtr)->RPtr = NULL;
return;
}
}
/**
* @brief Checks function for errors and then changes its Declaration or Call bool values.
*
* @param RootPtr pointer to the function BST
* @param name name of the function to actualize
* @param Declaration true if the function was declared, used for checking if the function isn't declared twice
* @param Call true if the fuction was called, used in isFunCallDec() to check if the function wasn't called without being declared
* @param paramCount number of function parameters, used for checking if the function isn't called or declared with different amount of parameters in other instances
*/
void funActualize (funNode *RootPtr, string Key, bool Declaration, bool Call, int paramCount){
RootPtr = funSearch(RootPtr, Key);
if (!strCmpConstStr(&Key, "main") && paramCount != 0){
fprintf(stderr,"ERROR 3: Function main can't have any parameters or return codes.\n");
exit(3);
}
if(!*RootPtr){
fprintf(stderr,"ERROR 666: Function was not found for actualization purposes [%s]\n", Key.str);
exit(666);
}
if(Declaration == true && ((*RootPtr)->isDeclared == true)){
fprintf(stderr,"ERROR 3: Redefinition of function [%s]\n", Key.str);
exit(3);
}
if((*RootPtr)->parameters->elementCount != paramCount){
fprintf(stderr,"ERROR 6: Function has wrong amount of parameters [%s]\n", Key.str);
exit(6);
}
if(Declaration == true && !((*RootPtr)->isDeclared == true)){
(*RootPtr)->isDeclared = true;
}
if (Call == true && !((*RootPtr)->isCalled ==true)) {
(*RootPtr)->isCalled = true;
}
}
/**
* @brief Recursively frees the whole function BST and the elements of each node.
*
* @param RootPtr pointer to the function BST
*/
void funDisposeTree (funNode *RootPtr) {
if( *RootPtr != NULL){
funDisposeTree(&((*RootPtr)->LPtr));
funDisposeTree(&((*RootPtr)->RPtr));
strFree(&((*RootPtr)->name));
funListDelete((*RootPtr)->parameters);
funListDelete((*RootPtr)->returnCodes);
free(*RootPtr);
*RootPtr = NULL;
}
}
/**
* @brief Changes the bool value Call of the function to true, checks the variable tree if there is no variable with the same name as the functions.
*
* @param RootPtr pointer to the function BST
* @param Key name of the searched function
* @param varTree variable tree for error checking
* @param paramCount number of function parameters, used by funActualize() for error chcecking
* @param returnCount number of function return types, used by funActualize() for error chcecking
*/
void addFunCall(funNode *RootPtr, string Key, varNode varTree, int paramCount){
if(BSTSearch (varTree, Key)){
fprintf(stderr,"Error 3: Function is also a variable in the same scope! [%s]\n", Key.str);
exit(3);
}
funActualize(RootPtr, Key, false, true, paramCount);
}
/**
* @brief Changes the bool value Declaration of the function to true.
*
* @param RootPtr pointer to the function BST
* @param Key name of the searched function
* @param paramCount number of function parameters, used by funActualize() for error chcecking
* @param returnCount number of function return types, used by funActualize() for error chcecking
*/
void addFunDec(funNode *RootPtr, string Key, int paramCount){
funActualize(RootPtr, Key, true, false, paramCount);
}
/**
* @brief Adds a parameter to the function Key in the BST. If the function was already declared or called, checks the parameter for errors instead.
*
* @param RootPtr pointer to the function BST
* @param Key name of the searched function
* @param parameterType type of the parameter
* @param parameterOrder order of the parameter, used for error checking
*/
void addParam(funNode *RootPtr, string Key, int parameterType, int parameterOrder){
RootPtr = funSearch(RootPtr, Key);
if((*RootPtr)->isCalled == false && (*RootPtr)->isDeclared == false ){
funListAdd((*RootPtr)->parameters, parameterType, parameterOrder);
}else{
checkListElement((*RootPtr)->parameters,parameterType,parameterOrder);
}
}
/**
* @brief Adds a return type to the function Key in the BST. If the function was already declared or called, checks the return type for errors instead.
*
* @param RootPtr pointer to the function BST
* @param Key name of the searched function
* @param returnType type of the return
* @param returnOrder order of the return, used for error checking
*/
void addReturn(funNode *RootPtr, string Key, int returnType, int returnOrder){
RootPtr = funSearch(RootPtr, Key);
if((*RootPtr)->isCalled == false && (*RootPtr)->isDeclared == false ){
funListAdd((*RootPtr)->returnCodes, returnType, returnOrder);
}else{
checkListElement((*RootPtr)->returnCodes, returnType, returnOrder);
}
}
/**
* @brief Checks if parser had loaded correct amount of return types in a return.
*
* @param RootPtr pointer to the function BST
* @param name name of the function to actualize
* @param returnCount number of function return types
*/
void funReturnCheck(funNode *RootPtr, string Key, int returnCount){
RootPtr = funSearch(RootPtr, Key);
if((*RootPtr)->returnCodes->elementCount != returnCount){
fprintf(stderr,"ERROR 6: Function has wrong amount of return types [%s]\n", Key.str);
exit(6);
}
}
/**
* @brief Recursively goes through the whole function BST and checks if each function was not Called without declaration.
*
* @param RootPtr pointer to the function BST
*/
void isFunCallDec(funNode RootPtr){
if(RootPtr != NULL){
isFunCallDec(RootPtr->LPtr);
isFunCallDec(RootPtr->RPtr);
if (RootPtr->isCalled && !RootPtr->isDeclared ){
fprintf(stderr,"Error - the function %s is called but not declared!\n", RootPtr->name.str);
exit(3);
}
}
}
/**
* @brief Adds a list of returns to a function if the function was not called or declared, or compares a list of returns with functions list of returns.
*
*
* @param list pointer to a list of return types
* @param RootPtr pointer to the function BST
* @param Key name of the function
* @param returnCount number of function return types
*/
void funListCompareReturn (funList *list, funNode *RootPtr, string Key, int returnCount){
RootPtr = funSearch(RootPtr, Key);
funListElement newReturns = list->First;
if ((*RootPtr)->isCalled == false && (*RootPtr)->isDeclared == false){ // function has no parameters yet
(*RootPtr)->returnCodes->First = newReturns;
(*RootPtr)->returnCodes->elementCount = list->elementCount;
}else{ // function has parameters that have to be checked
funListElement funReturns = (*RootPtr)->returnCodes->First;
if (returnCount != (*RootPtr)->returnCodes->elementCount ){
fprintf(stderr,"ERROR 6: Function has wrong amount of return types [%s]\n", Key.str);
exit(6);
}
// comparison of function list return types and new return list element types
while (newReturns != NULL && funReturns != NULL){
if (funReturns->type == EMPTY){
funReturns->type = newReturns->type;
}else if ( newReturns->type != funReturns->type && newReturns->type != EMPTY){
fprintf(stderr,"Error 6: Wrong return/parameter type of a function\n");
exit(6);
}
newReturns = newReturns->NextPtr;
funReturns = funReturns->NextPtr;
}
}
}
/********************************************************/
/*************** Function list operations ***************/
/**
* @brief Initializes the parameter/return list.
*
* @param list pointer to the function list
*/
void funListInit (funList *list) {
list = malloc(sizeof(struct funList));
list->First = NULL;
list->elementCount = 0;
}
/**
* @brief Appends a new funListElement at the end of the list.
*
* @param list pointer to the function list
* @param type type of the element
* @param order order of the element
*/
void funListAdd (funList *list, int type, int order){
funListElement temp = list->First;
if (list->First != NULL){
while (temp->NextPtr != NULL){
temp = temp->NextPtr;
}
}
funListElement listElement = (funListElement) malloc(sizeof(struct funListElement) );
if( listElement == NULL ){
return;
}
listElement->type = type;
listElement->order = order;
listElement->NextPtr = NULL;
list->elementCount++;
if (list->First == NULL){
list->First = listElement;
} else{
temp->NextPtr = listElement;
}
}
/**
* @brief Searches the list structure until it finds the element at the position order.
*
* @param list pointer to the function list
* @param order order of the element
*
* @return found element of the list or NULL if it is not found
*/
funListElement funListSearch (funList *list, int order){
if( list->First == NULL){
return NULL;
}
funListElement temp = list->First;
for (int elementNum = 1; temp != NULL; elementNum++){
if (elementNum == order){
return temp;
}
temp = temp->NextPtr;
}
return NULL;
}
/**
* @brief Frees the whole function list structure.
*
* @param list pointer to the function list
*/
void funListDelete(funList *list){
funListElement temp = list->First;
while (temp != NULL){
temp = temp->NextPtr;
free(list->First);
list->First = temp;
}
}
/**
* @brief Checks if the given element has a given type.
*
* @param list pointer to the function list
* @param type type to compare with elements type
* @param order position of the element we want to check in the list
*/
void checkListElement(funList *list, int type, int order){
funListElement tempListElement;
tempListElement = funListSearch (list, order);
if (tempListElement == NULL){
return;
}
if (tempListElement->type != type && type != EMPTY){
fprintf(stderr,"Error 6: Wrong return/parameter type of a function\n");
exit(6);
}
}
/**
* @brief Compare types of elements of two lists.
*
* @param list1 first list to be compared
* @param list2 second list to be compared
*/
void compareLists (funList *list1, funList *list2){
if ( list1->elementCount != list2->elementCount){
printf("%d, %d\n",list1->elementCount ,list2->elementCount);
fprintf(stderr,"ERROR 7: Assigment has wrong ammount of returns\n");
exit(7);
}
funListElement element1 = list1->First;
funListElement element2 = list2->First;
while (element1 != NULL && element2 != NULL){
if ( element1->type != element2->type && element1->type != EMPTY){
fprintf(stderr,"Error 7: Wrong return/parameter type of an assigment\n");
exit(7);
}
element1 = element1->NextPtr;
element2 = element2->NextPtr;
}
}
/*********************************************************************/
/*************** Functions for printing datastructures ***************/
/**
* @brief Debugging function which transfers type constants to strings for printing.
*
* @param typeNum type to convert
*
* @return converted type as a string
*/
char* printType(int typeNum){
if (typeNum == T_INT){
return "int";
}else if (typeNum == T_FLOAT){
return "float";
}else if (typeNum == T_STRING){
return "string";
}else if (typeNum == EMPTY){
return "empty";
}else{
return "Unknown type";
}
}
/**
* @brief Magical function for printing binary trees. Taken from IAL testing file c401-test.c . Used only for debugging purposes. Slightly modified.
*
*/
void printVarTree2(varNode TempTree, char* sufix, char fromdir){
if (TempTree != NULL){
char* suf2 = (char*) malloc(strlen(sufix) + 4);
strcpy(suf2, sufix);
if (fromdir == 'L'){
suf2 = strcat(suf2, " |");
printf("%s\n", suf2);
}else
suf2 = strcat(suf2, " ");
printVarTree2(TempTree->RPtr, suf2, 'R');
printf("%s +-[%s,%s,S%d]\n", sufix, TempTree->name.str, printType(TempTree->varStack->type),TempTree->varStack->scope);
strcpy(suf2, sufix);
if (fromdir == 'R')
suf2 = strcat(suf2, " |");
else
suf2 = strcat(suf2, " ");
printVarTree2(TempTree->LPtr, suf2, 'L');
if (fromdir == 'R') printf("%s\n", suf2);
free(suf2);
}
}
/**
* @brief Magical function for printing binary trees. Taken from IAL testing file c401-test.c . Used only for debugging purposes. Slightly modified.
*
* @param TempTree variable BST which is to be printed
*/
void printVarTree(varNode TempTree){
printf("Struktura binarniho stromu:\n");
printf("\n");
if (TempTree != NULL)
printVarTree2(TempTree, "", 'X');
else
printf("strom je prazdny\n");
printf("\n");
printf("=================================================\n");
}
/**
* @brief Magical function for printing lists. Taken from IAL testing file c206-test.c . Used only for debugging purposes. Slightly modified.
*
* @param TL list which is to be printed
*/
void printFunList(funList TL){
funList TempList=TL;
int CurrListLength = 0;
printf("\t -----------------\n");
if(TempList.First == NULL ){
printf("\t list je prazdny\n");
}
while ((TempList.First!=NULL) && (CurrListLength<MAX_LIST_LENGHT)) {
printf("\t |%s, order %d|\n", printType(TempList.First->type),TempList.First->order);
TempList.First=TempList.First->NextPtr;
CurrListLength++;
}
if (CurrListLength>=MAX_LIST_LENGHT){
printf("List exceeded maximum length!\n");
}
printf("\t -----------------\n");
}
/**
* @brief Magical function for printing function BST. Taken from IAL testing file c401-test.c . Used only for debugging purposes. Slightly modified.
*
* @param TempTree function BST which is to be printed
*/
void printFunTree(funNode TempTree){
printf("Struktura binarniho stromu:\n");
printf("\n");
if (TempTree != NULL)
printFunTree2(TempTree, "", 'X');
else
printf("strom je prazdny\n");
printf("\n");
printf("=================================================\n");
}
/**
* @brief Magical function for printing function BST. Taken from IAL testing file c401-test.c . Used only for debugging purposes. Slightly modified.
*/
void printFunTree2(funNode TempTree, char* sufix, char fromdir){
funListElement tempElement;
if (TempTree != NULL){
char* suf2 = (char*) malloc(strlen(sufix) + 4);
strcpy(suf2, sufix);
if (fromdir == 'L'){
suf2 = strcat(suf2, " |");
printf("%s\n", suf2);
}else
suf2 = strcat(suf2, " ");
printFunTree2(TempTree->RPtr, suf2, 'R');
printf("%s +-[%s,D%d,C%d", sufix, TempTree->name.str,TempTree->isDeclared,TempTree->isCalled);
for ( int i = 1; (tempElement = funListSearch(TempTree->parameters, i)) != NULL; i++){
printf(",P %s",printType(tempElement->type));
}
for ( int i = 1; (tempElement = funListSearch(TempTree->returnCodes, i)) != NULL; i++){
printf(",R %s",printType(tempElement->type));
}
printf("]\n");
strcpy(suf2, sufix);
if (fromdir == 'R')
suf2 = strcat(suf2, " |");
else
suf2 = strcat(suf2, " ");
printFunTree2(TempTree->LPtr, suf2, 'L');
if (fromdir == 'R') printf("%s\n", suf2);
free(suf2);
}
}