-
Notifications
You must be signed in to change notification settings - Fork 0
/
kt.pyx
335 lines (280 loc) · 10.7 KB
/
kt.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from numpy cimport *
from numpy import empty, zeros, ones, corrcoef, tile, concatenate, fromiter, uint32, uint8, double, array, arange, dot, finfo, seterr, ndindex, r_, repeat, copy, loadtxt, outer, random, vstack, hstack, zeros_like, ones_like, empty_like, vectorize, transpose, pi, linspace, e, ceil, nan
import numpy as np
seterr(over='ignore', invalid='ignore', divide='ignore')
from scipy.special import gammainc, gamma, erf
import functools
cdef extern from "c/exponential.h":
double exponential()
void mt_init()
mt_init() # see final.h
cdef extern from "math.h":
double log( double x)
double sqrt( double x)
double exp( double x)
double pow(double x, double y)
def getUdUp(u=1e-8, **otherParams):
Tdf = 2*700
Tpf = 2*5e6
TdTp = otherParams.pop('TdTp', Tdf/Tpf)
Td = sqrt(TdTp*Tpf*Tdf)
Tp = sqrt(Tdf*Tpf/TdTp)
return dict(Ud=u*Td, Up=u*Tp, **otherParams)
class first:
Ud = 1e-8*700
Up = 1e-8*5e6
sd = 0.1
sp = 1e-3
N_0 = 1e3
t_max = 10000
verbose = False
def p(self, txt):
if self.verbose: print txt
def __init__(self, **params):
self.__dict__.update(params)
@property
def f(self): return self.Ud*self.sd/(1 + self.sd)
@property
def dN(self): return self.sd
@property
def vp(self): return self.sp*self.Up
@property
def N_eq(self):
assert self.vp > 0, 'vp: {x.vp:g}, Up: {x.Up:g}, sp: {x.sp:g}, N: {x.N_0}'.format(x = self )
assert self.f > 0, ' f: {x.f:g} , Up: {x.Up:g}, sp: {x.sp:g}, N: {x.N_0}'.format(x = self )
assert self.dN > 0, 'dN: {x.dN:g}, Up: {x.Up:g}, sp: {x.sp:g}, N: {x.N_0}'.format(x = self )
return self.vp/(self.f*log(1 + self.dN))
def __repr__(self):
return """Ud = {x.Ud:g}
Up = {x.Up:g}
sd = {x.sd:g}
sp = {x.sp:g}
N_0 = {x.N_0:g}
t_max = {x.t_max:g}
N_eq = {x.N_eq:g}
""".format(x=self)
def velocity(model, x): return x*model.N_eq*model.vp*(x - 1)
def potential(model, x): return model.N_eq*model.vp*x*x*(0.5 - x/3)
def pC(model, x=None):
D = 2/log(1+model.dN)
if x is None:
x = model.N_0/model.N_eq
return 1 - gammainc(D, D/x)
def clonalInterference(model):
""" CI -> d<d>/dt : sp = 0, Ud ~ sd"""
from scipy.optimize import fsolve
cdef double sd = model.sd
def f(V):
A = V/model.Ud; B = log(A);
return model.N - (exp(V/2/sd*((B-1)**2+1)-0.5*(log(sd**3/(A*B))- B if V>=sd else 0) ) if V>sd/B else 0.5*A/sd)
return fsolve(f, sd)
@functools.lru_cache(maxsize=None)
def fAnddN(double Up, double sd, double sp, double N):
from scipy.stats import poisson
cdef:
double L = Up/sp
int i
int i_max = int(ceil(log(1+sd)/log(1+sp)))
int k = (poisson.cdf(arange(L), L) < 0.5*pow(N,-0.5)).sum()
ndarray[int64_t, ndim=1] X = arange(i_max)
ndarray[double_t, ndim=1] W = (1+sd)*(1+sp)**-X
ndarray[double_t, ndim=1] f = poisson.pmf(X+k, L)/(1-poisson.cdf(k-1, L))
ndarray[double_t, ndim=1] fP = f*(W-1)/W
ndarray[double_t, ndim=1] dNp = empty(i_max)
Lambda = fP.sum()
assert Lambda < sd/(1+sd), 'wtf!'
dNp[i_max - 1] = i_max - 1
for i in range(i_max-2, -1, -1): dNp[i] = (i + sp*dNp[i+1])/(1 + sp)
V = (1 + sd)*(1 + sp)**-dNp
assert (V <= 1+sd).all()
return Lambda, fP.dot(V)/Lambda - 1
from scipy.integrate import simps
def moran(double Up, double sp, double N, int r1=150, int r2=600):
cdef double x0 = exp(-Up/sp), spp =sp/(e-1)
a, x1, x2 = N*spp/(2*x0), linspace(x0/r1, x0, r1), linspace(x0, 1, r2)
erfi = r_[erf(1j*sqrt(a)*(x1-x0-x1[0])).imag,0]
I, G1, G2 = sqrt(pi/(4*a))*exp(-a*x0**2)*(erfi[1:]-erfi[0]), np.exp(a*x1*(x1-2*x0)), np.exp(a*x2*(x2-2*x0))
Tclick = max(1/sp*(1-e*spp/Up), 0)
Tclick += N/2*(simps(r_[1,I/(x1*G1)],dx=x1[0])+I[-1]*simps(1./(x2*G2),dx=x2[1]-x2[0]))
return Up*1/Tclick
def moran(double Up, double sp, double N, int r1=150, int r2=600):
cdef double x0 = exp(-Up/sp), spp =sp/(e-1)
Tclick = exp(0.5*spp*N*x0)/spp
return Up*1/Tclick
#def moran(double Up, double sp, double N, double alpha=1/(e-1)):
# cdef:
# double No = N*exp(-Up/sp)
# double Nosa = No*sp*alpha
# return sqrt(Nosa*alpha*alpha/pi)*exp(-Nosa)
def wave(double Up, double sp, double N, double v_0=1e-12):
from scipy.optimize import brentq
x2 = sp*log(N)
if Up < x2:
No = N*exp(-Up/sp)
pi_p = sp/((1 + sp)**No - 1) #if sp > 5e-5 else 1/(No*(1+2*sp))
#y1 = Up*N*sp/((1 + sp)**N - 1)
#y2 = wave(x2, sp, N)*Up/x2
assert No*Up*pi_p > 0
return No*Up*pi_p #y2
cdef:
double iL = sp/Up
double Nd2spSqrtiL = N/2*sp*sqrt(iL)
double fiveSixthsiL = 5*iL/6
def f(double v):
cdef double A = log(e*Up/v), C = v/Up
return 1 - 0.5*C*(A*A + 1) - iL*log(Nd2spSqrtiL*sqrt(v*C*C/(Up - v))*A/(1 - C*A + fiveSixthsiL))
cdef double vp = brentq(f, v_0, Up - v_0)
assert vp > 0
return min(vp, Up)
@functools.lru_cache(maxsize=None)
def Vp(double Up, double sp, double N):
cdef double L = Up/sp
if L > 1:
return wave(Up, sp, N)
N_0 = N*exp(-L)
return moran(Up, sp, N) if sp*N_0 > 1 else (1-L)*moran(Up, sp, N) + L*wave(Up, sp, N)
class second(first):
@property
def f(self):
print('New f')
return fAnddN(self.Up, self.sd, self.sp, self.N_0)[0]*self.Ud
@property
def dN(self): return fAnddN(self.Up, self.sd, self.sp, self.N_0)[1]
@property
def vp(self):
print('New vp')
return self.sp*Vp(self.Up, self.sp, self.N_0)
@functools.lru_cache(maxsize=None)
def simplified_fanddN(double sd, double sp, double Up, double N_0):
from scipy.stats import poisson
cdef:
double Lambda = Up/sp
ndarray[int64_t, ndim=1] I = arange( int(sd/sp) + 1 )
int k = (poisson.cdf(arange(int(Lambda)), Lambda) < 0.5*pow(N_0, -0.5) ).sum()
ndarray[double_t, ndim=1] f = poisson.pmf(I + k, Lambda)
ndarray[double_t, ndim=1] W = sd - sp*I
return dot(f, W/(1+W)), dot(f, W)/f.sum()
class third(first):
@property
def f(self): return self.Ud*simplified_fanddN(self.sd, self.sp, self.Up, self.N_0)[0]
@property
def dN(self): return simplified_fanddN(self.sd, self.sp, self.Up, self.N_0)[1]
@property
def vp(self):
from scipy.stats import poisson
cdef:
double Up = self.Up
double sp = self.sp
double sd = self.sd
double Lambda = Up/sp
ndarray[int64_t, ndim=1] I = arange( int(sd/sp) + 1 )
int k = (poisson.cdf(arange(int(Lambda)), Lambda) < 0.5*pow(self.N_0, -0.5) ).sum()
double No = self.N_0*poisson.pmf(k, Lambda) #exp(-Lambda)
double pi_p = sp/((1 + sp)**No - 1) if sp > 5e-5 else 1/(No*(1+2*sp))
return Up*sp*No*pi_p if No > 1e-1 else Up*sp
def tC(model, x, n_low=0.35, n_high=7):
from scipy.integrate import quadrature
D = 2/model.dN
N_eq = model.N_eq
vp = model.vp
p = model.pC(x)
gD = gamma(D)
def I1(x):
p = model.pC(x)
de_mN = (D/x)**D*exp(-D/x)/gD
return (1 - p)*p/(de_mN*N_eq*N_eq)
def I2(x):
p = model.pC(x)
de_mN = (D/x)**D*exp(-D/x)/gD
return p*p/(de_mN*N_eq*N_eq)
if x < n_high:
C = D*N_eq/vp
if x < n_low:
return C*quadrature(I1, n_low, n_high)[0] + log(n_low/x)/vp + x/(D*vp)
else:
return C*(quadrature(I1, x, n_high)[0] + (1-p)/p*(gamma(D-1)*(1 - gammainc(D - 1, D/n_low))/(D*N_eq*gD) + quadrature(I2, n_low, x)[0])) + 1/(n_high*vp)
else:
return 1/(vp*x)
def hGillespie(model, long trials=10000000, double x_max=20):
"""Hybrid gillespie model"""
cdef:
double theta = 1 + model.dN
double tau_max = model.t_max*model.vp # tau = t*vp
double dimmensionless_if = model.vp/model.f/model.N_0 # In units of
double x, Q
long n_cancers = 0
long i
ndarray[double_t, ndim=1] Taus = empty(trials, dtype=double)
for i in range(trials):
x = 1
Taus[n_cancers] = 0
while x < x_max:
Q = 1 - exponential()*dimmensionless_if/x
x *= Q*theta
Taus[n_cancers] -= log(Q)
if Taus[n_cancers] > tau_max or x < 0:
break
else:
n_cancers += 1
return {'P_cancer':double(n_cancers)/trials, 'generations':Taus[0:n_cancers]/model.vp}
#def hGompGillespie(model, long trials=10000000, double y_max=20):
# Solution to waiting-time jump is transcendental equation, with Exponential Integral function in it!
# """hybrid gillespie using gomp-ex death rate"""
#
# cdef:
# double vp = model.vp
# double theta = 1 + model.dN
# double jumpRate = model.f*model.N_0/vp
# double em1dJump = (e - 1)/jumpRate
# double omega_d
# double sigma_d
# double eSigma_d
# double t
#
# for i in range(trials):
# y = 1
# sigma_d = 0
# omega_d = -sigma_d*vp
# t = 0
# eSigma_d = exp(sigma_d)
B2 = array([5.72640947, -4.84536097])
B3 = array([5.77629529, -4.94655988, 0.04817712])
B4 = array([10.82164987, -16.63749275, 8.31660758, -1.75101626])
B5 = array([10.78285714, -16.57518638, 8.32469893, -1.79888812, 0.01717027])
B6 = array([12.38219463, -22.35712125, 15.97711017, -6.31622209, 1.13227449, -0.07230064])
def empiricalPcancer10(y, f=lambda y, B: 1/(1+exp((B*pow(y, arange(len(B)))).sum() )), B=B6):
"""assumes sd=0.1 """
return f(y, B)
#Pcancer = {0.1: 0.415*N_eq,
#0.2:67,
#0.05: 0.94*N_eq =
#0.96*N_eq =
#0.98*N_eq =
#}
# while y < y_max:
# dt = log(em1dJump*omega_d*exponential() + 1)/omega_d
# y *= eTheta
# t = log(omega_d*em1/(jumpRate*eSigma_d)*exponential() + exp(omega_d*t))/omega_d
# sigma_d += theta
# eSigma_d = nan
# y *= eSigma
#def ndnp(double Ud=1e-8, double sd=0.1, double sp=0.001, double K=1e3, double Td=700, double Tp=5000000, double Genome_size = 149948690/4, long trials=50000000, double Nmax=2):
#
#random.poisson(T*u*(Genome_size-2*Tp))
# cdef double Ud = 2*u*Td, Up = 2*u*Tp
# out = lambdaG(Ud, Up, sd, sp, No)
# cdef double vp = sp*Vp(sp, Up, No), L = out[0], dN = out[1]+1, N, Q, T, m_hitchhikers = (sd - out[1])/sp
# cdef ndarray[uint32_t, ndim=2] Trial = empty((Iter,3),uint32)
# cdef uint32_t i, j = 0, d
# for i in range(Iter):
# N, T, d = No, 0, 0
# while N > 0 and T < Time:
# Q = 1 - exponential()*vp/(N*L)
# N *= Q*dN
# d += 1
# T -= log(Q)/vp
# if N > No*Top:
# j+=1
# break
# print j
# return Trial[:j,:]