-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathvaccine_avaliablity.py
163 lines (140 loc) · 4.68 KB
/
vaccine_avaliablity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import json
# import os
from datetime import date
import pandas as pd
import requests
import streamlit as st
today = date.today()
today_date = today.strftime("%d-%m-%Y") # dd/mm/YY
st.set_page_config(
page_title="Vaccine Avaliablity",
page_icon=":syringe:",
layout="wide",
initial_sidebar_state="collapsed",
)
st.markdown("# Slots availability for COVID Vaccine :syringe::syringe:")
"""
Source: [Github](https://github.com/misalraj/vaccine_availability_info) :star:
"""
df_states = pd.read_csv("data/states.csv")
states_list = df_states["state_name"].to_list()
st.text(" \n\n") # break line
left_column_1, center_column_1, right_column_1 = st.columns(3)
with left_column_1:
selected_state = st.selectbox(
"Select State",
options=sorted(states_list),
)
df_district_all = pd.read_csv("data/districts.csv")
df_district = df_district_all.loc[df_district_all["state_name"] == selected_state]
district_list = df_district["district_name"].tolist()
with center_column_1:
selected_district = st.selectbox(
"Select District",
options=sorted(district_list),
)
district_id = df_district_all.loc[
df_district_all["district_name"] == selected_district, "district_id"
].item()
try:
URL = "https://cdn-api.co-vin.in/api/v2/appointment/ \
sessions/public/calendarByDistrict?district_id={}&date={}".format(
district_id, today_date
)
res = requests.get(URL)
calender_df = pd.DataFrame(json.loads(res.text)["centers"])
district_pincode_list = calender_df.loc[
calender_df["district_name"] == selected_district, "pincode"
]
calender_df["from"] = pd.to_datetime(calender_df["from"]).dt.strftime("%H:%M")
calender_df["to"] = pd.to_datetime(calender_df["to"]).dt.strftime("%H:%M")
calender_df["Timing"] = calender_df["from"] + " - " + calender_df["to"]
calender_df.rename(
columns={
"name": "Name",
"pincode": "Pincode",
"fee_type": "Fee type",
"vaccine_fees": "Vaccine charge",
},
inplace=True,
)
new_df = calender_df.explode("sessions")
new_df["Min Age Limit"] = new_df.sessions.apply(lambda x: x["min_age_limit"])
new_df["Available Capacity"] = new_df.sessions.apply(
lambda x: x["available_capacity"]
)
new_df["Date"] = new_df.sessions.apply(lambda x: x["date"])
if "vaccine_fees" in new_df.columns:
new_df = new_df[
[
"Date",
"Available Capacity",
"Min Age Limit",
"Name",
"Pincode",
"Timing",
"Fee type",
"Vaccine charge",
]
]
else:
new_df = new_df[
[
"Date",
"Available Capacity",
"Min Age Limit",
"Name",
"Pincode",
"Timing",
"Fee type",
]
]
selected_pincode = None
with right_column_1:
min_age_limit = st.radio("Min age limit", [18, 45])
agree = st.checkbox("Filter by Pincode")
if agree:
selected_pincode = st.selectbox(
"Select Pincode",
options=sorted(set(district_pincode_list.tolist())),
)
calender_df_pin = new_df[new_df["Pincode"] == selected_pincode]
st.info(
"Results: "
+ "Pincode"
+ ": "
+ str(selected_pincode)
+ ", "
+ str(selected_district)
+ ", "
+ str(selected_state)
)
calender_df_age1 = None
if min_age_limit == 18:
calender_df_age1 = calender_df_pin[
calender_df_pin["Min Age Limit"] == min_age_limit
]
if calender_df_age1.empty:
st.table(calender_df_age1)
else:
st.table(new_df)
elif min_age_limit == 45:
calender_df_age1 = calender_df_pin[
calender_df_pin["Min Age Limit"] == min_age_limit
]
st.table(calender_df_age1)
else:
st.info("Results: " + str(selected_district) + ", " + str(selected_state))
calender_df_age2 = None
if min_age_limit == 18:
calender_df_age2 = new_df[new_df["Min Age Limit"] == min_age_limit]
if calender_df_age2.empty:
st.table(calender_df_age2)
else:
st.table(new_df)
elif min_age_limit == 45:
calender_df_age2 = new_df[new_df["Min Age Limit"] == min_age_limit]
st.table(calender_df_age2)
except Exception:
st.error("Unable to fetch data. Try after a few minutes")
# st.error(e)