-
Notifications
You must be signed in to change notification settings - Fork 116
/
dcservoUNO.ino
254 lines (224 loc) · 9.25 KB
/
dcservoUNO.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/* This one is not using any PinChangeInterrupt library */
/*
This program uses an Arduino UNO for a closed-loop control of a DC-motor.
Motor motion is detected by a quadrature encoder.
Two inputs named STEP and DIR allow changing the target position.
Serial port prints current position and target position every second.
Serial input can be used to feed a new location for the servo (no CR LF).
Pins used:
Digital inputs 2 & 8 are connected to the two encoder signals (AB).
Digital input 3 is the STEP input.
Analog input A0 is the DIR input.
Digital input 4 is the HOME output. asserted if encoder0Pos is smaller than one.
Digital outputs 9 & 10 control the PWM outputs for the motor (I am using half L298 here).
Please note PID gains kp, ki, kd need to be tuned to each different setup.
*/
#include <EEPROM.h>
#include <PID_v1.h>
#define encoder0PinA 2 // PD2;
#define encoder0PinB 8 // PC0;
#define M1 9
#define M2 10 // motor's PWM outputs
#define ENDSTOP 4
#define STEP 3
byte pos[1000]; int p=0;
double kp=3,ki=0,kd=0.0;
double input=0, output=0, setpoint=0;
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
volatile long encoder0Pos = 0;
boolean isHome=true;
boolean auto1=false, auto2=false,counting=false;
long previousMillis = 0; // will store last time LED was updated
long target1=0; // destination location at any moment
//for motor control ramps 1.4
bool newStep = false;
bool oldStep = false;
bool dir = false;
byte skip=0;
// Install Pin change interrupt for a pin, can be called multiple times
void pciSetup(byte pin)
{
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
void setup() {
pinMode(encoder0PinA, INPUT_PULLUP);
pinMode(encoder0PinB, INPUT_PULLUP);
pinMode(ENDSTOP, OUTPUT);
pinMode(STEP, INPUT_PULLUP);
pciSetup(encoder0PinB);
attachInterrupt(0, encoderInt, CHANGE); // encoder pin on interrupt 0 - pin 2
attachInterrupt(1, countStep , RISING); // step input on interrupt 1 - pin 3
TCCR1B = TCCR1B & 0b11111000 | 1; // set 31Kh PWM
Serial.begin (115200);
help();
recoverPIDfromEEPROM();
//Setup the pid
myPID.SetMode(AUTOMATIC);
myPID.SetSampleTime(1);
myPID.SetOutputLimits(-255,255);
homing(); // comment if you don't want homming on reset
help(); // display help
}
/* enables to detect obstacles such as hard stops or soft rubber stops
* without the use of a limit switch since it looks at the growing error
* when such an event occurs.
* an output pin is asserted after stop is detected for 2 seconds
*
*
*/
void homing(){
long tstamp;
long error=0;
int scanning_steps=20; // how fast you want to scan for home
int max_error;
float homing_power=1.00; // power multiplicator for homing. suggested between 0.1 for 10% and 1 for 100%
max_error=(scanning_steps*10+1);
digitalWrite(ENDSTOP,0); // Turn external pin low
Serial.println("homing ...");
while( error>-max_error){ // loop while error is less than max_error an obstacle or rubber stopper will make the error increase at each interval
if(millis()-tstamp>7) // decreasetarget at desired time interval (6 default)
{
setpoint-=scanning_steps; //decrease target
tstamp=millis(); //stamp the time
Serial.print("setpoint "); Serial.print(setpoint);
Serial.print(" encoder "); Serial.print(input);
Serial.print(" error "); Serial.println(error);
}
input = encoder0Pos;
error=setpoint-input;
while(!myPID.Compute()); // wait till PID is actually computed
pwmOut(output*homing_power);
}
encoder0Pos=-50; // detected limit is now -70 to (if a soft limit is set like rubber motor would always try to push if zer0)
target1=0; // target is now the new zero
}
void loop(){
input = encoder0Pos;
setpoint=target1;
while(!myPID.Compute())
{endstop();} // wait till PID is actually computed in the mean time assert the endstop pins
if(Serial.available()) process_line(); // it may induce a glitch to move motion, so use it sparingly
if(input==setpoint)pwmOut(0); else pwmOut(output);
if(auto1) if(millis() % 1000 == 0) target1=random(9000); // that was for self test with no input from main controller
if(auto2) if(millis() % 1000 == 0) printPos();
//if(counting && abs(input-target1)<15) counting=false;
if(counting && (skip++ % 5)==0 ) {pos[p]=encoder0Pos; if(p<999) p++; else counting=false;}
endstop(); // output status of endstop
}
void pwmOut(int out) {
if(out<0) { analogWrite(M1,0); analogWrite(M2,abs(out)); }
else { analogWrite(M2,0); analogWrite(M1,abs(out)); }
}
const int QEM [16] = {0,-1,1,2,1,0,2,-1,-1,2,0,1,2,1,-1,0}; // Quadrature Encoder Matrix
static unsigned char New, Old;
ISR (PCINT0_vect) { // handle pin change interrupt for D8
Old = New << 2;
New = (PINB & 1 )+ ((PIND & 4) >> 1); //
encoder0Pos+= QEM [Old + New];
}
void encoderInt() { // handle pin change interrupt for D2
Old = New << 2;
New = (PINB & 1 )+ ((PIND & 4) >> 1); //
encoder0Pos+= QEM [Old + New];
}
void countStep(){ if (PINC&B0000001) target1--;else target1++; } // pin A0 represents direction
void process_line() {
char cmd = Serial.read();
if(cmd>'Z') cmd-=32;
switch(cmd) {
case 'P': kp=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case 'D': kd=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case 'I': ki=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case '?': printPos(); break;
case 'X': target1=Serial.parseInt(); p=0; counting=true; for(int i=0; i<300; i++) pos[i]=0; break;
case 'T': auto1 = !auto1; break;
case 'A': auto2 = !auto2; break;
case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.println(kd); break;
case 'H': help(); break;
case 'W': writetoEEPROM(); break;
case 'K': eedump(); break;
case 'R': recoverPIDfromEEPROM() ; break;
case 'S': for(int i=0; i<p; i++) Serial.println(pos[i]); break;
case 'L': homing(); break;
}
while(Serial.read()!=10); // dump extra characters till LF is seen (you can use CRLF or just LF)
}
void printPos() {
Serial.print(F("Position=")); Serial.print(encoder0Pos); Serial.print(F(" PID_output="));
Serial.print(output); Serial.print(F(" Target=")); Serial.print(setpoint);
if(!isHome) Serial.print(" NOT"); Serial.println(" home");
}
void help() {
Serial.println(F("\nPID DC motor controller and stepper interface emulator"));
Serial.println(F("by misan"));
Serial.println(F("Available serial commands: (lines end with CRLF or LF)"));
Serial.println(F("P123.34 sets proportional term to 123.34"));
Serial.println(F("I123.34 sets integral term to 123.34"));
Serial.println(F("D123.34 sets derivative term to 123.34"));
Serial.println(F("? prints out current encoder, output and setpoint values"));
Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses"));
Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that"));
Serial.println(F("Q will print out the current values of P, I and D parameters"));
Serial.println(F("W will store current values of P, I and D parameters into EEPROM"));
Serial.println(F("H will print this help message again"));
Serial.println(F("A will toggle on/off showing regulator status every second"));
Serial.println(F("L will execute homing\n"));
}
void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off
eeput(kp,0);
eeput(ki,4);
eeput(kd,8);
double cks=0;
for(int i=0; i<12; i++) cks+=EEPROM.read(i);
eeput(cks,12);
Serial.println("\nPID values stored to EEPROM");
//Serial.println(cks);
}
void recoverPIDfromEEPROM() {
double cks=0;
double cksEE;
for(int i=0; i<12; i++) cks+=EEPROM.read(i);
cksEE=eeget(12);
//Serial.println(cks);
if(cks==cksEE) {
Serial.println(F("*** Found PID values on EEPROM"));
kp=eeget(0);
ki=eeget(4);
kd=eeget(8);
myPID.SetTunings(kp,ki,kd);
}
else Serial.println(F("*** Bad checksum"));
}
void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
char * addr = (char * ) &value;
for(int i=dir; i<dir+4; i++) EEPROM.write(i,addr[i-dir]);
}
double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
double value;
char * addr = (char * ) &value;
for(int i=dir; i<dir+4; i++) addr[i-dir]=EEPROM.read(i);
return value;
}
void eedump() {
for(int i=0; i<16; i++) { Serial.print(EEPROM.read(i),HEX); Serial.print(" "); }Serial.println();
}
void endstop (){
// endstop detection. it is interlocked. under normal operation it would not
// send a digital write, just on transition smaller than 2;
// this would not significantly affect normal operation.
if(encoder0Pos<2)
{
if(encoder0Pos<=0&&!isHome)
{
isHome=true;
digitalWrite(ENDSTOP,isHome);
}
else if(encoder0Pos>0&&isHome)
{
isHome=false;
digitalWrite(ENDSTOP,isHome);
}
}
}