-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdebug.py
101 lines (76 loc) · 3.06 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
fixed_seed = 1
import random
import numpy as np
random.seed(fixed_seed)
np.random.seed(fixed_seed)
import os
import logging
import argparse
import pandas as pd
from helpers.utils import init_logger
from helpers.data import get_scaler
from models.estimators import SDebug
from models.data import IHDP
def get_parser():
parser = argparse.ArgumentParser()
# General
parser.add_argument('--data_path', type=str)
parser.add_argument('--iters', type=int, default=-1)
parser.add_argument('--skip_iter', type=int, default=0)
parser.add_argument('-o', type=str, dest='output_path', default='./')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--scaler', type=str, choices=['minmax', 'std'], default='std')
# Estimation
# Consider adding: XL, DR, DML, IPSW
parser.add_argument('--em', dest='estimation_model', type=str, choices=['sl', 'tl', 'cf'], default='sl')
parser.add_argument('--bm', dest='base_model', type=str, choices=['l1', 'l2', 'tr', 'dt', 'rf', 'et', 'kr', 'cb', 'lgbm'], default='l1')
return parser
def get_model(opt):
if opt.estimation_model == 'sl':
return SDebug(opt)
else:
raise ValueError("Unrecognised 'get_model' key.")
def get_dataset(name, path, iters):
result = None
if name == 'ihdp':
result = IHDP(path, iters)
else:
raise ValueError('Unknown dataset type selected.')
return result
def scale_xxy(X_train, X_test, opt, cont_vars):
scaler_x = get_scaler(opt.scaler)
# Scale only continuous features.
X_train[:, cont_vars] = scaler_x.fit_transform(X_train[:, cont_vars])
X_test[:, cont_vars] = scaler_x.transform(X_test[:, cont_vars])
return X_train, X_test
if __name__ == "__main__":
parser = get_parser()
options = parser.parse_args()
# Check if output folder exists and create if necessary.
if not os.path.isdir(options.output_path):
os.mkdir(options.output_path)
# Initialise the logger (writes simultaneously to a file and the console).
init_logger(options)
logging.debug(options)
n_iters = options.iters
skipped = 0
dataset = get_dataset('ihdp', options.data_path, n_iters)
model = get_model(options)
df_test = None
# Data iterations
for i in range(n_iters):
if skipped < options.skip_iter:
skipped += 1
continue
train, test = dataset._get_train_test(i)
(X_tr, t_tr, y_tr), (y_cf_tr, mu0_tr, mu1_tr) = train
(X_test, t_test, y_test), (y_cf_test, mu0_test, mu1_test) = test
cate_test = mu1_test - mu0_test
# No CV iterations here.
# Scale train/test.
X_tr_scaled, X_test_scaled = scale_xxy(X_tr, X_test, options, dataset.contfeats)
# Fit on the *entire* training set, predict on test set.
df_iter = model.run((X_tr_scaled, t_tr, y_tr), (X_test_scaled, t_test, y_test), i+1, cate_test)
df_test = pd.concat([df_test, df_iter], ignore_index=True)
df_test.to_csv(os.path.join(options.output_path, 'test_metrics.csv'), index=False)
print(df_test)