-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathsearch.py
154 lines (132 loc) · 5.16 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import ntpath
import os
import pickle
import random
import sys
import time
import warnings
import numpy as np
import torch
import tqdm
from torch.backends import cudnn
from configs import encode_config
from data import create_dataloader
from metric import create_metric_models
from metric import get_fid, get_cityscapes_mIoU, get_coco_scores
from models import create_model
from models.spade_model import SPADEModel
from options.search_options import SearchOptions
def set_seed(seed):
cudnn.benchmark = False # if benchmark=True, deterministic will be False
cudnn.deterministic = True
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def check(opt):
assert opt.serial_batches
assert opt.no_flip
assert opt.load_size == opt.crop_size
assert opt.config_set is not None
if len(opt.gpu_ids) > 1:
warnings.warn('The code only supports single GPU. Only gpu [%d] will be used.' % opt.gpu_ids[0])
if opt.phase == 'train':
warnings.warn('You are using training set for evaluation.')
warnings.filterwarnings("ignore")
def restore_results(opt):
if opt.restore_pkl_path is not None:
with open(opt.restore_pkl_path, 'rb') as f:
results = pickle.load(f)
else:
results = []
eval_configs = set()
for result in results:
assert isinstance(result, dict)
if result['macs'] > opt.budget:
eval_configs.add(result['config_str'])
elif result.get('fid', 0) != 0 or result.get('mIoU', 1e9) != 1e9:
eval_configs.add(result['config_str'])
return results, eval_configs
def save(opt, results):
os.makedirs(os.path.dirname(opt.output_path), exist_ok=True)
with open(opt.output_path, 'wb') as f:
pickle.dump(results, f)
def get_config_split(opt):
if 'resnet' in opt.netG:
from configs.resnet_configs import get_configs
elif 'spade' in opt.netG:
from configs.spade_configs import get_configs
else:
raise NotImplementedError
configs = list(get_configs(config_name=opt.config_set).all_configs())
random.shuffle(configs)
configs = np.array_split(np.array(configs), opt.num_splits)[opt.split]
return configs
if __name__ == '__main__':
opt = SearchOptions().parse()
print(' '.join(sys.argv), flush=True)
check(opt)
set_seed(opt.seed)
configs = get_config_split(opt)
dataloader = create_dataloader(opt)
model = create_model(opt)
model.setup(opt)
device = model.device
inception_model, drn_model, deeplabv2_model = create_metric_models(opt, device)
npz = np.load(opt.real_stat_path)
results, eval_configs = restore_results(opt)
last_save_time = time.time()
for data_i in dataloader:
model.set_input(data_i)
break
configs_tqdm = tqdm.tqdm(configs, desc='Configs ', position=0)
for config in configs_tqdm:
config_str = encode_config(config)
if config_str in eval_configs:
continue
macs, _ = model.profile(config, verbose=False)
result = {'config_str': config_str, 'macs': macs}
qualified = (macs <= opt.budget)
fakes, names = [], []
if qualified:
if isinstance(model, SPADEModel):
model.calibrate(config)
for i, data_i in enumerate(dataloader):
model.set_input(data_i)
model.test(config)
fakes.append(model.fake_B.cpu())
for path in model.get_image_paths():
short_path = ntpath.basename(path)
name = os.path.splitext(short_path)[0]
names.append(name)
if inception_model is not None:
if qualified:
result['fid'] = get_fid(fakes, inception_model, npz, device, opt.batch_size,
tqdm_position=1)
else:
result['fid'] = 1e9
if drn_model is not None:
if qualified:
result['mIoU'] = get_cityscapes_mIoU(fakes, names, drn_model, device, data_dir=opt.cityscapes_path,
batch_size=opt.batch_size, num_workers=opt.num_threads,
tqdm_position=1)
else:
result['mIoU'] = 0
if deeplabv2_model is not None:
if qualified:
torch.cuda.empty_cache()
result['accu'], result['mIoU'] = get_coco_scores(fakes, names, deeplabv2_model, device, opt.dataroot, 1,
num_workers=0, tqdm_position=1)
else:
result['accu'], result['mIoU'] = 0, 0
results.append(result)
eval_configs.add(config_str)
configs_tqdm.write(str(result))
current_time = time.time()
if current_time - last_save_time > opt.save_freq * 60:
last_save_time = current_time
save(opt, results)
configs_tqdm.write('Save the latest results at [%s].' % (opt.output_path))
save(opt, results)
print('Successfully finish searching!!!', flush=True)