This repository has been archived by the owner on Jul 25, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathiou.py
269 lines (231 loc) · 9.75 KB
/
iou.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# ref: https://github.com/traveller59/second.pytorch/blob/master/second/core/non_max_suppression/nms_gpu.py
import math
import numba
import numpy as np
from numba import cuda
__all__ = ['rotate_iou_gpu_eval']
@numba.jit(nopython=True)
def div_up(m, n):
return m // n + (m % n > 0)
@cuda.jit(device=True, inline=True)
def rbbox_to_corners(corners, rbbox):
# generate clockwise corners and rotate it clockwise
angle = rbbox[4]
a_cos = math.cos(angle)
a_sin = math.sin(angle)
center_x = rbbox[0]
center_y = rbbox[1]
x_d = rbbox[2]
y_d = rbbox[3]
corners_x = cuda.local.array((4,), dtype=numba.float32)
corners_y = cuda.local.array((4,), dtype=numba.float32)
corners_x[0] = -x_d / 2
corners_x[1] = -x_d / 2
corners_x[2] = x_d / 2
corners_x[3] = x_d / 2
corners_y[0] = -y_d / 2
corners_y[1] = y_d / 2
corners_y[2] = y_d / 2
corners_y[3] = -y_d / 2
for i in range(4):
corners[2 * i] = a_cos * corners_x[i] + a_sin * corners_y[i] + center_x
corners[2 * i + 1] = -a_sin * corners_x[i] + a_cos * corners_y[i] + center_y
@cuda.jit(device=True, inline=True)
def point_in_quadrilateral(pt_x, pt_y, corners):
ab0 = corners[2] - corners[0]
ab1 = corners[3] - corners[1]
ad0 = corners[6] - corners[0]
ad1 = corners[7] - corners[1]
ap0 = pt_x - corners[0]
ap1 = pt_y - corners[1]
ab_ab = ab0 * ab0 + ab1 * ab1
ab_ap = ab0 * ap0 + ab1 * ap1
ad_ad = ad0 * ad0 + ad1 * ad1
ad_ap = ad0 * ap0 + ad1 * ap1
eps = -1e-6
return ab_ab - ab_ap >= eps and ab_ap >= eps and ad_ad - ad_ap >= eps and ad_ap >= eps
@cuda.jit(device=True, inline=True)
def line_segment_intersection(pts1, pts2, i, j, temp_pts):
a = cuda.local.array((2,), dtype=numba.float32)
b = cuda.local.array((2,), dtype=numba.float32)
c = cuda.local.array((2,), dtype=numba.float32)
d = cuda.local.array((2,), dtype=numba.float32)
a[0] = pts1[2 * i]
a[1] = pts1[2 * i + 1]
b[0] = pts1[2 * ((i + 1) % 4)]
b[1] = pts1[2 * ((i + 1) % 4) + 1]
c[0] = pts2[2 * j]
c[1] = pts2[2 * j + 1]
d[0] = pts2[2 * ((j + 1) % 4)]
d[1] = pts2[2 * ((j + 1) % 4) + 1]
ba_0 = b[0] - a[0]
ba_1 = b[1] - a[1]
da_0 = d[0] - a[0]
ca_0 = c[0] - a[0]
da_1 = d[1] - a[1]
ca_1 = c[1] - a[1]
acd = da_1 * ca_0 > ca_1 * da_0
bcd = (d[1] - b[1]) * (c[0] - b[0]) > (c[1] - b[1]) * (d[0] - b[0])
if acd != bcd:
abc = ca_1 * ba_0 > ba_1 * ca_0
abd = da_1 * ba_0 > ba_1 * da_0
if abc != abd:
dc0 = d[0] - c[0]
dc1 = d[1] - c[1]
ab_ba = a[0] * b[1] - b[0] * a[1]
cd_dc = c[0] * d[1] - d[0] * c[1]
dh = ba_1 * dc0 - ba_0 * dc1
dx = ab_ba * dc0 - ba_0 * cd_dc
dy = ab_ba * dc1 - ba_1 * cd_dc
temp_pts[0] = dx / dh
temp_pts[1] = dy / dh
return True
return False
@cuda.jit(device=True, inline=True)
def quadrilateral_intersection(pts1, pts2, int_pts):
num_of_inter = 0
for i in range(4):
if point_in_quadrilateral(pts1[2 * i], pts1[2 * i + 1], pts2):
int_pts[num_of_inter * 2] = pts1[2 * i]
int_pts[num_of_inter * 2 + 1] = pts1[2 * i + 1]
num_of_inter += 1
if point_in_quadrilateral(pts2[2 * i], pts2[2 * i + 1], pts1):
int_pts[num_of_inter * 2] = pts2[2 * i]
int_pts[num_of_inter * 2 + 1] = pts2[2 * i + 1]
num_of_inter += 1
temp_pts = cuda.local.array((2,), dtype=numba.float32)
for i in range(4):
for j in range(4):
has_pts = line_segment_intersection(pts1, pts2, i, j, temp_pts)
if has_pts:
int_pts[num_of_inter * 2] = temp_pts[0]
int_pts[num_of_inter * 2 + 1] = temp_pts[1]
num_of_inter += 1
return num_of_inter
@cuda.jit(device=True, inline=True)
def sort_vertex_in_convex_polygon(int_pts, num_of_inter):
if num_of_inter > 0:
center = cuda.local.array((2,), dtype=numba.float32)
center[:] = 0.0
for i in range(num_of_inter):
center[0] += int_pts[2 * i]
center[1] += int_pts[2 * i + 1]
center[0] /= num_of_inter
center[1] /= num_of_inter
v = cuda.local.array((2,), dtype=numba.float32)
vs = cuda.local.array((16,), dtype=numba.float32)
for i in range(num_of_inter):
v[0] = int_pts[2 * i] - center[0]
v[1] = int_pts[2 * i + 1] - center[1]
d = math.sqrt(v[0] * v[0] + v[1] * v[1])
v[0] = v[0] / d
v[1] = v[1] / d
if v[1] < 0:
v[0] = -2 - v[0]
vs[i] = v[0]
for i in range(1, num_of_inter):
if vs[i - 1] > vs[i]:
temp = vs[i]
tx = int_pts[2 * i]
ty = int_pts[2 * i + 1]
j = i
while j > 0 and vs[j - 1] > temp:
vs[j] = vs[j - 1]
int_pts[j * 2] = int_pts[j * 2 - 2]
int_pts[j * 2 + 1] = int_pts[j * 2 - 1]
j -= 1
vs[j] = temp
int_pts[j * 2] = tx
int_pts[j * 2 + 1] = ty
@cuda.jit(device=True, inline=True)
def triangle_area(a, b, c):
return ((a[0] - c[0]) * (b[1] - c[1]) - (a[1] - c[1]) * (b[0] - c[0])) / 2.0
@cuda.jit(device=True, inline=True)
def area(int_pts, num_of_inter):
area_val = 0.0
for i in range(num_of_inter - 2):
area_val += abs(triangle_area(int_pts[:2], int_pts[2 * i + 2:2 * i + 4], int_pts[2 * i + 4:2 * i + 6]))
return area_val
@cuda.jit(device=True, inline=True)
def inter(rbbox1, rbbox2):
corners1 = cuda.local.array((8,), dtype=numba.float32)
corners2 = cuda.local.array((8,), dtype=numba.float32)
intersection_corners = cuda.local.array((16,), dtype=numba.float32)
rbbox_to_corners(corners1, rbbox1)
rbbox_to_corners(corners2, rbbox2)
num_intersection = quadrilateral_intersection(corners1, corners2, intersection_corners)
sort_vertex_in_convex_polygon(intersection_corners, num_intersection)
return area(intersection_corners, num_intersection)
@cuda.jit('(float32[:], float32[:], int32)', device=True, inline=True)
def dev_rotate_iou_eval(rbox1, rbox2, criterion=-1):
area1 = rbox1[2] * rbox1[3]
area2 = rbox2[2] * rbox2[3]
area_inter = inter(rbox1, rbox2)
if criterion == -1:
return area_inter / (area1 + area2 - area_inter)
elif criterion == 0:
return area_inter / area1
elif criterion == 1:
return area_inter / area2
else:
return area_inter
@cuda.jit('(int64, int64, float32[:], float32[:], float32[:], int32)', fastmath=False)
def rotate_iou_kernel_eval(N, K, dev_boxes, dev_query_boxes, dev_iou, criterion=-1):
threads_per_block = 8 * 8
row_start = cuda.blockIdx.x
col_start = cuda.blockIdx.y
tx = cuda.threadIdx.x
row_size = min(N - row_start * threads_per_block, threads_per_block)
col_size = min(K - col_start * threads_per_block, threads_per_block)
block_boxes = cuda.shared.array(shape=(64 * 5,), dtype=numba.float32)
block_qboxes = cuda.shared.array(shape=(64 * 5,), dtype=numba.float32)
dev_query_box_idx = threads_per_block * col_start + tx
dev_box_idx = threads_per_block * row_start + tx
if tx < col_size:
block_qboxes[tx * 5 + 0] = dev_query_boxes[dev_query_box_idx * 5 + 0]
block_qboxes[tx * 5 + 1] = dev_query_boxes[dev_query_box_idx * 5 + 1]
block_qboxes[tx * 5 + 2] = dev_query_boxes[dev_query_box_idx * 5 + 2]
block_qboxes[tx * 5 + 3] = dev_query_boxes[dev_query_box_idx * 5 + 3]
block_qboxes[tx * 5 + 4] = dev_query_boxes[dev_query_box_idx * 5 + 4]
if tx < row_size:
block_boxes[tx * 5 + 0] = dev_boxes[dev_box_idx * 5 + 0]
block_boxes[tx * 5 + 1] = dev_boxes[dev_box_idx * 5 + 1]
block_boxes[tx * 5 + 2] = dev_boxes[dev_box_idx * 5 + 2]
block_boxes[tx * 5 + 3] = dev_boxes[dev_box_idx * 5 + 3]
block_boxes[tx * 5 + 4] = dev_boxes[dev_box_idx * 5 + 4]
cuda.syncthreads()
if tx < row_size:
for i in range(col_size):
offset = row_start * threads_per_block * K + col_start * threads_per_block + tx * K + i
dev_iou[offset] = dev_rotate_iou_eval(
block_qboxes[i * 5:i * 5 + 5], block_boxes[tx * 5:tx * 5 + 5], criterion
)
def rotate_iou_gpu_eval(boxes, query_boxes, criterion=-1, device_id=0):
"""
rotated box iou running in gpu. 8x faster than cpu version (take 5ms in one example with numba.cuda code).
convert from [this project](https://github.com/hongzhenwang/RRPN-revise/tree/master/lib/rotation).
:param boxes: rbboxes, format: centers, dims, angles(clockwise when positive), FloatTensor[N, 5]
:param query_boxes: FloatTensor[K, 5]
:param criterion: optional, default: -1
:param device_id: int, optional, default: 0
:return:
"""
boxes = boxes.astype(np.float32)
query_boxes = query_boxes.astype(np.float32)
N = boxes.shape[0]
K = query_boxes.shape[0]
iou = np.zeros((N, K), dtype=np.float32)
if N == 0 or K == 0:
return iou
threads_per_block = 8 * 8
cuda.select_device(device_id)
blocks_per_grid = (div_up(N, threads_per_block), div_up(K, threads_per_block))
stream = cuda.stream()
with stream.auto_synchronize():
boxes_dev = cuda.to_device(boxes.reshape([-1]), stream)
query_boxes_dev = cuda.to_device(query_boxes.reshape([-1]), stream)
iou_dev = cuda.to_device(iou.reshape([-1]), stream)
rotate_iou_kernel_eval[blocks_per_grid, threads_per_block, stream](N, K, boxes_dev, query_boxes_dev,
iou_dev, criterion)
iou_dev.copy_to_host(iou.reshape([-1]), stream=stream)
return iou.astype(boxes.dtype)