-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_rmn.py
209 lines (177 loc) · 7.41 KB
/
train_rmn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import theano, cPickle, h5py, lasagne, random, csv, gzip, time
import numpy as np
import theano.tensor as T
from layers import *
from util import *
# assemble the network
def build_rmn(d_word, d_char, d_book, d_hidden, len_voc,
num_descs, num_chars, num_books, span_size, We,
freeze_words=True, eps=1e-5, lr=0.01, negs=10):
# input theano vars
in_spans = T.imatrix(name='spans')
in_neg = T.imatrix(name='neg_spans')
in_chars = T.ivector(name='chars')
in_book = T.ivector(name='books')
in_currmasks = T.matrix(name='curr_masks')
in_dropmasks = T.matrix(name='drop_masks')
in_negmasks = T.matrix(name='neg_masks')
# define network
l_inspans = lasagne.layers.InputLayer(shape=(None, span_size),
input_var=in_spans)
l_inneg = lasagne.layers.InputLayer(shape=(negs, span_size),
input_var=in_neg)
l_inchars = lasagne.layers.InputLayer(shape=(2, ),
input_var=in_chars)
l_inbook = lasagne.layers.InputLayer(shape=(1, ),
input_var=in_book)
l_currmask = lasagne.layers.InputLayer(shape=(None, span_size),
input_var=in_currmasks)
l_dropmask = lasagne.layers.InputLayer(shape=(None, span_size),
input_var=in_dropmasks)
l_negmask = lasagne.layers.InputLayer(shape=(negs, span_size),
input_var=in_negmasks)
# negative examples should use same embedding matrix
l_emb = MyEmbeddingLayer(l_inspans, len_voc,
d_word, W=We, name='word_emb')
l_negemb = MyEmbeddingLayer(l_inneg, len_voc,
d_word, W=l_emb.W, name='word_emb_copy1')
# freeze embeddings
if freeze_words:
l_emb.params[l_emb.W].remove('trainable')
l_negemb.params[l_negemb.W].remove('trainable')
l_chars = lasagne.layers.EmbeddingLayer(\
l_inchars, num_chars, d_char, name='char_emb')
l_books = lasagne.layers.EmbeddingLayer(\
l_inbook, num_books, d_book, name='book_emb')
# average each span's embeddings
l_currsum = AverageLayer([l_emb, l_currmask], d_word)
l_dropsum = AverageLayer([l_emb, l_dropmask], d_word)
l_negsum = AverageLayer([l_negemb, l_negmask], d_word)
# pass all embeddings thru feed-forward layer
l_mix = MixingLayer([l_dropsum, l_chars, l_books],
d_word, d_char, d_book)
# compute recurrent weights over dictionary
l_rels = RecurrentRelationshipLayer(\
l_mix, d_word, d_hidden, num_descs)
# multiply weights with dictionary matrix
l_recon = ReconLayer(l_rels, d_word, num_descs)
# compute loss
currsums = lasagne.layers.get_output(l_currsum)
negsums = lasagne.layers.get_output(l_negsum)
recon = lasagne.layers.get_output(l_recon)
currsums /= currsums.norm(2, axis=1)[:, None]
recon /= recon.norm(2, axis=1)[:, None]
negsums /= negsums.norm(2, axis=1)[:, None]
correct = T.sum(recon * currsums, axis=1)
negs = T.dot(recon, negsums.T)
loss = T.sum(T.maximum(0.,
T.sum(1. - correct[:, None] + negs, axis=1)))
# enforce orthogonality constraint
norm_R = l_recon.R / l_recon.R.norm(2, axis=1)[:, None]
ortho_penalty = eps * T.sum((T.dot(norm_R, norm_R.T) - \
T.eye(norm_R.shape[0])) ** 2)
loss += ortho_penalty
all_params = lasagne.layers.get_all_params(l_recon, trainable=True)
updates = lasagne.updates.adam(loss, all_params, learning_rate=lr)
traj_fn = theano.function([in_chars, in_book,
in_spans, in_dropmasks],
lasagne.layers.get_output(l_rels))
train_fn = theano.function([in_chars, in_book,
in_spans, in_currmasks, in_dropmasks,
in_neg, in_negmasks],
[loss, ortho_penalty], updates=updates)
return train_fn, traj_fn, l_recon
if __name__ == '__main__':
print 'loading data...'
span_data, span_size, wmap, cmap, bmap = \
load_data('data/relationships.csv.gz', 'data/metadata.pkl')
We = cPickle.load(open('data/glove.We', 'rb')).astype('float32')
norm_We = We / np.linalg.norm(We, axis=1)[:, None]
We = np.nan_to_num(norm_We)
descriptor_log = 'models/descriptors.log'
trajectory_log = 'models/trajectories.log'
# embedding/hidden dimensionality
d_word = We.shape[1]
d_char = 50
d_book = 50
d_hidden = 50
# number of descriptors
num_descs = 30
# number of negative samples per relationship
num_negs = 50
# word dropout probability
p_drop = 0.75
n_epochs = 15
lr = 0.001
eps = 1e-6
num_chars = len(cmap)
num_books = len(bmap)
num_traj = len(span_data)
len_voc = len(wmap)
revmap = {}
for w in wmap:
revmap[wmap[w]] = w
print d_word, span_size, num_descs, len_voc,\
num_chars, num_books, num_traj
print 'compiling...'
train_fn, traj_fn, final_layer = build_rmn(
d_word, d_char, d_book, d_hidden, len_voc, num_descs, num_chars,
num_books, span_size, We, eps=eps,
freeze_words=True, lr=lr, negs=num_negs)
print 'done compiling, now training...'
# training loop
min_cost = float('inf')
for epoch in range(n_epochs):
cost = 0.
random.shuffle(span_data)
start_time = time.time()
for book, chars, curr, cm, in span_data:
ns, nm = generate_negative_samples(\
num_traj, span_size, num_negs, span_data)
# word dropout
drop_mask = (np.random.rand(*(cm.shape)) < (1 - p_drop)).astype('float32')
drop_mask *= cm
ex_cost, ex_ortho = train_fn(chars, book, curr, cm, drop_mask,
ns, nm)
cost += ex_cost
end_time = time.time()
# save params if cost went down
if cost < min_cost:
min_cost = cost
params = lasagne.layers.get_all_params(final_layer)
p_values = [p.get_value() for p in params]
p_dict = dict(zip([str(p) for p in params], p_values))
cPickle.dump(p_dict, open('models/rmn_params.pkl', 'wb'),
protocol=cPickle.HIGHEST_PROTOCOL)
# compute nearest neighbors of descriptors
R = p_dict['R']
log = open(descriptor_log, 'w')
for ind in range(len(R)):
desc = R[ind] / np.linalg.norm(R[ind])
sims = We.dot(desc.T)
ordered_words = np.argsort(sims)[::-1]
desc_list = [ revmap[w] for w in ordered_words[:10]]
log.write(' '.join(desc_list) + '\n')
print 'descriptor %d:' % ind
print desc_list
log.flush()
log.close()
# save relationship trajectories
print 'writing trajectories...'
tlog = open(trajectory_log, 'wb')
traj_writer = csv.writer(tlog)
traj_writer.writerow(['Book', 'Char 1', 'Char 2', 'Span ID'] + \
['Topic ' + str(i) for i in range(num_descs)])
for book, chars, curr, cm in span_data:
c1, c2 = [cmap[c] for c in chars]
bname = bmap[book]
# feed unmasked inputs to get trajectories
traj = traj_fn(chars, book, curr, cm)
for ind in range(len(traj)):
step = traj[ind]
traj_writer.writerow([bname, c1, c2, ind] + \
list(step) )
tlog.flush()
tlog.close()
print 'done with epoch: ', epoch, ' cost =',\
cost / len(span_data), 'time: ', end_time-start_time