-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathutil.py
55 lines (44 loc) · 1.97 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import theano, cPickle, h5py, lasagne, random, csv, gzip
import numpy as np
import theano.tensor as T
# convert csv into format readable by rmn code
def load_data(span_path, metadata_path):
x = csv.DictReader(gzip.open(span_path, 'rb'))
wmap, cmap, bmap = cPickle.load(open(metadata_path, 'rb'))
max_len = -1
revwmap = dict((v,k) for (k,v) in wmap.iteritems())
revbmap = dict((v,k) for (k,v) in enumerate(bmap))
revcmap = dict((v,k) for (k,v) in cmap.iteritems())
span_dict = {}
for row in x:
text = row['Words'].split()
if len(text) > max_len:
max_len = len(text)
key = '___'.join([row['Book'], row['Char 1'], row['Char 2']])
if key not in span_dict:
span_dict[key] = []
span_dict[key].append([wmap[w] for w in text])
span_data = []
for key in span_dict:
book, c1, c2 = key.split('___')
book = np.array([revbmap[book], ]).astype('int32')
chars = np.array([revcmap[c1], revcmap[c2]]).astype('int32')
# convert spans to numpy matrices
spans = span_dict[key]
s = np.zeros((len(spans), max_len)).astype('int32')
m = np.zeros((len(spans), max_len)).astype('float32')
for i in range(len(spans)):
curr_span = spans[i]
s[i][:len(curr_span)] = curr_span
m[i][:len(curr_span)] = 1.
span_data.append([book, chars, s, m])
return span_data, max_len, wmap, cmap, bmap
def generate_negative_samples(num_traj, span_size, negs, span_data):
inds = np.random.randint(0, num_traj, negs)
neg_words = np.zeros((negs, span_size)).astype('int32')
neg_masks = np.zeros((negs, span_size)).astype('float32')
for index, i in enumerate(inds):
rand_ind = np.random.randint(0, len(span_data[i][2]))
neg_words[index] = span_data[i][2][rand_ind]
neg_masks[index] = span_data[i][3][rand_ind]
return neg_words, neg_masks