-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbuild_ss_norm.Rd
105 lines (97 loc) · 4.23 KB
/
build_ss_norm.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/build_ss_norm.R
\name{build_ss_norm}
\alias{build_ss_norm}
\title{Build a single-stage multi-arm clinical trial for a normally distributed
primary outcome}
\usage{
build_ss_norm(
n = rep(98, 3),
alpha = 0.025,
beta = 0.1,
delta1 = 0.5,
delta0 = 0,
sigma = rep(1, K + 1),
correction = "dunnett",
power = "marginal",
summary = F
)
}
\arguments{
\item{n}{A \code{\link{numeric}} vector indicating the chosen value for
\ifelse{html}{\out{<b><i>n</i></b>}}{\eqn{\bold{n}}}, the sample size in each
arm. Defaults to \code{rep(61, 3)}.}
\item{alpha}{A \code{\link{numeric}} indicating the chosen value for
\ifelse{html}{\out{<i>α</i>}}{\eqn{\alpha}}, the significance level.
Defaults to \code{0.05}.}
\item{beta}{A \code{\link{numeric}} indicating the chosen value for
\ifelse{html}{\out{<i>β</i>}}{\eqn{\beta}}, used in the definition of
the desired power. Defaults to \code{0.2}.}
\item{delta1}{A \code{\link{numeric}} indicating the chosen value for
\ifelse{html}{\out{<i>δ</i><sub>1</sub>}}{\eqn{\delta_1}}, the
'interesting' treatment effect. Defaults to \code{0.5}.}
\item{delta0}{A \code{\link{numeric}} indicating the chosen value for
\ifelse{html}{\out{<i>δ</i><sub>0</sub>}}{\eqn{\delta_0}}, the
'uninteresting' treatment effect. Defaults to \code{0}.}
\item{sigma}{A \code{\link{numeric}} vector indicating the chosen value for
\ifelse{html}{\out{<b><i>σ</i></b>}}{\eqn{\bold{\sigma}}}, the vector
of the standard deviations of the responses in each arm. Defaults to
\code{rep(1, K + 1)}.}
\item{correction}{A \code{\link{character}} string indicating the chosen
multiple comparison correction. Can be any of \code{"benjamini_hochberg"},
\code{"benjamini_yekutieli"}, \code{"bonferroni"}, \code{"dunnett"},
\code{"hochberg"}, \code{"holm_bonferroni"}, \code{"holm_sidak"},
\code{"none"}, \code{"sidak"}, and \code{"step_down_dunnett"}. Defaults to
\code{"dunnett"}.}
\item{power}{A \code{\link{character}} string indicating the chosen type of
power to design the trial for. Can be one of \code{"conjunctive"},
\code{"disjunctive"}, and \code{"marginal"}. Defaults to \code{"marginal"}.}
\item{summary}{A \code{\link{logical}} variable indicating whether a summary
of the function's progress should be printed to the console. Defaults to
\code{F}.}
}
\value{
A \code{\link{list}} of class \code{"multiarm_des_ss_norm"}
containing the following elements
\itemize{
\item A \code{\link{tibble}} in the slot \code{$opchar} summarising the
operating characteristics of the chosen design.
\item A \code{\link{numeric}} in the slot \code{$N} specifying
\ifelse{html}{\out{<i>N</i>}}{\eqn{N}}, the trial's total required sample
size.
\item A \code{\link{numeric}} in the slot \code{$gamma} specifying the
critical threshold for \emph{p}-values,
\ifelse{html}{\out{<i>γ</i></b>}}{\eqn{\gamma}}, below which null
hypotheses would be rejected. Will be \code{\link{NA}} if \code{correction}
is not a single-step testing procedure.
\item A \code{\link{numeric}} vector in the slot \code{$gammaO} specifying
the critical thresholds for ordered \emph{p}-values,
\ifelse{html}{\out{<b><i>γ</i></b>}}{\eqn{\bold{\gamma}}}, to use with
the chosen step-wise testing procedure. Will be \code{\link{NA}} if
\code{correction} is not a step-wise testing procedure.
\item A \code{\link{matrix}} in the slot \code{$CovZ} specifying the
covariance matrix,
\ifelse{html}{\out{Cov(<b><i>Z</i></b>)}}{\eqn{Cov(\bold{Z})}}, of the
standardised test statistics.
\item A \code{\link{numeric}} vector in the slot \code{$ratio} specifying the
vector of allocation ratios,
\ifelse{html}{\out{<b><i>r</i></b>}}{\eqn{\bold{r}}}.
\item Each of the input variables.
}
}
\description{
\code{build_ss_norm()} builds a single-stage multi-arm clinical trial design
object assuming the primary outcome variable is normally distributed, like
those returned by \code{\link{des_ss_norm}}.
}
\examples{
# The design for the default parameters
des <- build_ss_norm()
# Modifying the number of experimental treatments and the sample size in each
# arm
des_K_n <- build_ss_norm(n = rep(100, 4))
}
\seealso{
\code{\link{des_ss_norm}}, \code{\link{opchar_ss_norm}},
\code{\link{plot.multiarm_des_ss_norm}}, \code{\link{sim_ss_norm}}.
}