forked from thu-ml/tianshou
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathatari_ppo_hl.py
123 lines (113 loc) · 3.91 KB
/
atari_ppo_hl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python3
import os
from collections.abc import Sequence
from sensai.util import logging
from sensai.util.logging import datetime_tag
from examples.atari.atari_network import (
ActorFactoryAtariDQN,
IntermediateModuleFactoryAtariDQNFeatures,
)
from examples.atari.atari_wrapper import AtariEnvFactory, AtariEpochStopCallback
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.experiment import (
ExperimentConfig,
PPOExperimentBuilder,
)
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
from tianshou.highlevel.params.policy_params import PPOParams
from tianshou.highlevel.params.policy_wrapper import (
PolicyWrapperFactoryIntrinsicCuriosity,
)
def main(
experiment_config: ExperimentConfig,
task: str = "PongNoFrameskip-v4",
scale_obs: bool = True,
buffer_size: int = 100000,
lr: float = 2.5e-4,
gamma: float = 0.99,
epoch: int = 100,
step_per_epoch: int = 100000,
step_per_collect: int = 1000,
repeat_per_collect: int = 4,
batch_size: int = 256,
hidden_sizes: Sequence[int] = (512,),
training_num: int = 10,
test_num: int = 10,
rew_norm: bool = False,
vf_coef: float = 0.25,
ent_coef: float = 0.01,
gae_lambda: float = 0.95,
lr_decay: bool = True,
max_grad_norm: float = 0.5,
eps_clip: float = 0.1,
dual_clip: float | None = None,
value_clip: bool = True,
norm_adv: bool = True,
recompute_adv: bool = False,
frames_stack: int = 4,
save_buffer_name: str | None = None, # TODO add support in high-level API?
icm_lr_scale: float = 0.0,
icm_reward_scale: float = 0.01,
icm_forward_loss_weight: float = 0.2,
) -> None:
log_name = os.path.join(task, "ppo", str(experiment_config.seed), datetime_tag())
sampling_config = SamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
batch_size=batch_size,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
step_per_collect=step_per_collect,
repeat_per_collect=repeat_per_collect,
replay_buffer_stack_num=frames_stack,
replay_buffer_ignore_obs_next=True,
replay_buffer_save_only_last_obs=True,
)
env_factory = AtariEnvFactory(
task,
sampling_config.train_seed,
sampling_config.test_seed,
frames_stack,
scale=scale_obs,
)
builder = (
PPOExperimentBuilder(env_factory, experiment_config, sampling_config)
.with_ppo_params(
PPOParams(
discount_factor=gamma,
gae_lambda=gae_lambda,
reward_normalization=rew_norm,
ent_coef=ent_coef,
vf_coef=vf_coef,
max_grad_norm=max_grad_norm,
value_clip=value_clip,
advantage_normalization=norm_adv,
eps_clip=eps_clip,
dual_clip=dual_clip,
recompute_advantage=recompute_adv,
lr=lr,
lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
if lr_decay
else None,
),
)
.with_actor_factory(ActorFactoryAtariDQN(scale_obs=scale_obs, features_only=True))
.with_critic_factory_use_actor()
.with_epoch_stop_callback(AtariEpochStopCallback(task))
)
if icm_lr_scale > 0:
builder.with_policy_wrapper_factory(
PolicyWrapperFactoryIntrinsicCuriosity(
feature_net_factory=IntermediateModuleFactoryAtariDQNFeatures(),
hidden_sizes=hidden_sizes,
lr=lr,
lr_scale=icm_lr_scale,
reward_scale=icm_reward_scale,
forward_loss_weight=icm_forward_loss_weight,
),
)
experiment = builder.build()
experiment.run(run_name=log_name)
if __name__ == "__main__":
logging.run_cli(main)