forked from Amar0628/MQL5-Python-Backtesting
-
Notifications
You must be signed in to change notification settings - Fork 27
/
sma_ema.py
92 lines (65 loc) · 3.22 KB
/
sma_ema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pandas as pd
import trading_strategies.visualise as v
# @author: vita
# This strategy uses a 5 day simple movinng average (SMA) for sell and buy signals and a
# 144 period and 169 period exponential moving average (EMA) to determine trend direction
class SimpleMAExponentialMA:
def __init__(self, file_path):
self.df = pd.DataFrame(file_path, columns=("time", "open", "high", "low", "close", "tick_volume","pos"))
self.close = self.df['close'] # retrieves the most recent closing price
def calculate_144ema(self):
self.df['144ema'] = self.df['close'].ewm(span=144, min_periods=144, adjust=False).mean()
def calculate_169ema(self):
self.df['169ema'] = self.df['close'].ewm(span=169, min_periods=169, adjust=False).mean()
def calculate_5sma(self):
self.df['5sma'] = self.df['close'].rolling(window=5).mean()
def determine_signal(self, dframe):
action = 0 # hold
close = dframe['close']
ema_144 = dframe['144ema']
ema_169 = dframe['169ema']
sma_5 = dframe['5sma']
# SELL CRITERIA: if closing price is below SMA and 169-period EMA is above 144-period EMA
if (close.iloc[-1] < sma_5.iloc[-1]) and (ema_169.iloc[-1] > ema_144.iloc[-1]):
action = -1
# BUY CRITERIA: closing price is above SMA and 144-period EMA is above 169-period EMA
elif (close.iloc[-1] > sma_5.iloc[-1]) and (ema_144.iloc[-1] > ema_169.iloc[-1]):
action = 1
return action, ema_144.iloc[-1] - ema_169.iloc[-1],
def run_sma_ema(self):
self.calculate_144ema()
self.calculate_169ema()
self.calculate_5sma()
signal = self.determine_signal(self.df)
return signal, self.df
''' The following methods are for plotting '''
def find_all_signals(self, plot_df):
# assign initial value of hold
plot_df['signal'] = 0
start = -1 * len(plot_df)
end = start + 169
# loop through data to determine all signals
while end < 0:
curr_window = plot_df[start:end]
action = self.determine_signal(curr_window)[0]
plot_df.loc[plot_df.index[end - 1], 'signal'] = action
end += 1
start += 1
action = self.determine_signal(plot_df[-169:])[0]
plot_df.loc[plot_df.index[-1], 'signal'] = action
def plot_graph(self):
# create shallow copy for plotting so as to not accidentally impact original df
plot_df = self.df.copy(deep=False)
self.find_all_signals(plot_df)
# initialise visualisation object for plotting
visualisation = v.Visualise(plot_df)
# determining one buy signal example for plotting
visualisation.determine_buy_marker()
# determining one sell signal example for plotting
visualisation.determine_sell_marker()
# add subplots
visualisation.add_subplot(plot_df['144ema'], color='turquoise', width=0.75)
visualisation.add_subplot(plot_df['169ema'], color='violet', width=0.75)
visualisation.add_subplot(plot_df['5sma'], color='orange', width=0.75)
# create final plot with title
visualisation.plot_graph("Simple and Exponential Moving Averages Strategy")