-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_wgan.py
256 lines (198 loc) · 9.4 KB
/
train_wgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
"""
The code borrowed from https://github.com/anibali/wgan-cifar10
"""
import os
import argparse
import torch
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch import optim
import torchvision.utils
from torchvision.transforms import transforms
from adashift.optimizers import AdaShift
from wgan.inception_score import inception_score
from wgan.logger import Logger
from wgan.model import Generator, Discriminator
from wgan import lipschitz, progress
def get_device():
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def calculate_disc_gradients(discriminator, generator, real_var, lipschitz_constraint):
'''Calculate gradients and loss for the discriminator.'''
# Enable gradient calculations for discriminator parameters
for param in discriminator.parameters():
param.requires_grad = True
# Set discriminator parameter gradients to zero
discriminator.zero_grad()
lipschitz_constraint.prepare_discriminator()
real_out = discriminator(real_var).mean()
real_out.backward(torch.tensor(-1., device=get_device()))
# Sample Gaussian noise input for the generator
noise = torch.randn(real_var.size(0), 128).type_as(real_var.data)
noise = Variable(noise, volatile=True)
gen_out = generator(noise)
fake_var = Variable(gen_out.data)
fake_out = discriminator(fake_var).mean()
fake_out.backward(torch.tensor(1., device=get_device()))
loss_penalty = lipschitz_constraint.calculate_loss_penalty(real_var.data, fake_var.data)
disc_loss = fake_out - real_out + loss_penalty
return disc_loss
def calculate_gen_gradients(discriminator, generator, batch_size):
'''Calculate gradients and loss for the generator.'''
# Disable gradient calculations for discriminator parameters
for param in discriminator.parameters():
param.requires_grad = False
# Set generator parameter gradients to zero
generator.zero_grad()
# Sample Gaussian noise input for the generator
noise = torch.randn(batch_size, 128).cuda()
noise = Variable(noise)
fake_var = generator(noise)
fake_out = discriminator(fake_var).mean()
fake_out.backward(torch.tensor(-1., device=get_device()))
gen_loss = -fake_out
return gen_loss
def loop_data_loader(data_loader):
'''Create an infinitely looping generator for a data loader.'''
while True:
for batch,l in data_loader:
yield batch, l
def compute_inception_score(generator, nimages=int(30e3),
generator_batch_size=128, inception_batch_size=8):
images = []
cpu = torch.device("cpu")
with torch.no_grad():
for i in range(0, nimages, generator_batch_size):
progress.bar(i, nimages, 'Generating images for inception score')
nsamples = (generator_batch_size
- max(i + generator_batch_size - nimages, 0))
noise = torch.randn(nsamples, 128).cuda()
noise = Variable(noise)
newimages = generator(noise)
images.append(generator(noise).to(cpu))
images = torch.cat(images)
return inception_score(images, batch_size=inception_batch_size,
resize=True, splits=10)
def parse_args():
'''Parse command-line arguments.'''
parser = argparse.ArgumentParser(description='WGAN model trainer.')
parser.add_argument('--epochs', type=int, default=1000, metavar='N',
help='number of epochs to train (default=1000)')
parser.add_argument('--gen-iters', type=int, default=100, metavar='N',
help='generator iterations per epoch (default=100)')
parser.add_argument('--disc-iters', type=int, default=5, metavar='N',
help='discriminator iterations per generator iteration (default=5)')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size (default=64)')
parser.add_argument('--disc-lr', type=float, default=2e-4, metavar='LR',
help='discriminator learning rate (default=2e-4)')
parser.add_argument('--gen-lr', type=float, default=2e-4, metavar='LR',
help='generator learning rate (default=2e-4)')
parser.add_argument('--unimproved', default=False, action='store_true',
help='disable gradient penalty and use weight clipping instead')
parser.add_argument('--optimizer',
choices=["adam", "adashift", "amsgrad"],
help='optimizer for discriminator')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='log (default=64)')
args = parser.parse_args()
return args
def main():
'''Main entrypoint function for training.'''
# Parse command-line arguments
args = parse_args()
fmt = {'disc_loss':'.5e', 'gen_loss':'.5e' }
logger_name = "wgan-train_"+args.optimizer
logger = Logger(logger_name, fmt=fmt)
logger_disc = Logger(logger_name+"_discriminator", fmt=fmt)
logger_gen = Logger(logger_name+"_generator", fmt=fmt)
# Create directory for saving outputs
os.makedirs('out', exist_ok=True)
# Initialise CIFAR-10 data loader
# train_loader = DataLoader(torchvision.datasets.CIFAR10('./data/cifar-10'),
# args.batch_size, num_workers = 4, pin_memory = True, drop_last = True)
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data/cifar-10', train=True,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size,
shuffle=True, num_workers=2)
inf_train_data = loop_data_loader(train_loader)
# Build neural network models and copy them onto the GPU
generator = Generator().cuda()
discriminator = Discriminator().cuda()
# Select which Lipschitz constraint to use
if args.unimproved:
lipschitz_constraint = lipschitz.WeightClipping(discriminator)
else:
lipschitz_constraint = lipschitz.GradientPenalty(discriminator)
# Initialise the parameter optimisers
optim_gen = optim.Adam(generator.parameters(), lr=2e-4, betas=(0, 0.999))
if args.optimizer == "adashift":
optim_disc = AdaShift(discriminator.parameters(), lr=2e-4, betas=(0, 0.999))
elif args.optimizer == "amsgrad":
optim_disc = optim.Adam(discriminator.parameters(), lr=2e-4, betas=(0, 0.999), amsgrad=True)
else:
assert args.optimizer == "adam"
optim_disc = optim.Adam(discriminator.parameters(), lr=2e-4, betas=(0, 0.999))
i,j = 0, 0
# Run the main training loop
for epoch in range(args.epochs):
avg_disc_loss = 0
avg_gen_loss = 0
for gen_iter in range(args.gen_iters):
# Train the discriminator (aka critic)
for _ in range(args.disc_iters):
inputs, labels = next(inf_train_data)
inputs.requires_grad = True
real_var = inputs.cuda()
disc_loss = calculate_disc_gradients(
discriminator, generator, real_var, lipschitz_constraint)
avg_disc_loss += disc_loss.item()
optim_disc.step()
if i % args.log_interval == 0:
logger_disc.add_scalar(i, 'disc_loss', disc_loss.item())
i += 1
# Train the generator
gen_loss = calculate_gen_gradients(discriminator, generator, args.batch_size)
avg_gen_loss += gen_loss.item()
optim_gen.step()
if j % args.log_interval == 0:
logger_gen.add_scalar(j, 'gen_loss', gen_loss.item())
j += 1
# # Save generated images
# torchvision.utils.save_image((generator.last_output.data.cpu() + 1) / 2,
# 'out/samples.png', nrow=8, range=(-1, 1))
# Advance the progress bar
progress.bar(gen_iter + 1, args.gen_iters,
prefix='Epoch {:4d}'.format(epoch), length=30)
# Calculate mean losses
avg_disc_loss /= args.gen_iters * args.disc_iters
avg_gen_loss /= args.gen_iters
logger.add_scalar(epoch, 'gen_loss', avg_gen_loss)
logger.add_scalar(epoch, 'disc_loss', avg_disc_loss)
inception_score = compute_inception_score(generator, generator_batch_size=args.batch_size)
logger.add_scalar(epoch, "inception_score_mean", inception_score[0])
logger.add_scalar(epoch, "inception_score_std", inception_score[1])
logger_disc.save()
logger_gen.save()
logger.save()
# Print loss metrics for the last batch of the epoch
print(f"\nepoch {epoch}:"
f" disc_loss={disc_loss:8.4f}"
f" gen_loss={gen_loss:8.4f}"
f" inception_score={inception_score[0]:8.4f}")
# Save the discriminator weights and optimiser state
torch.save({
'epoch': epoch + 1,
'model_state': discriminator.state_dict(),
'optim_state': optim_disc.state_dict(),
}, os.path.join('out',args.optimizer + '_discriminator.pth'))
# Save the generator weights and optimiser state
torch.save({
'epoch': epoch + 1,
'model_state': generator.state_dict(),
'optim_state': optim_gen.state_dict(),
}, os.path.join('out', args.optimizer+'_generator.pth'))
if __name__ == '__main__':
main()