forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
executable file
·128 lines (113 loc) · 5.08 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from io import open
# Always prefer setuptools over distutils
from setuptools import setup, find_packages
try:
import builtins
except ImportError:
import __builtin__ as builtins
# https://packaging.python.org/guides/single-sourcing-package-version/
# http://blog.ionelmc.ro/2014/05/25/python-packaging/
PATH_ROOT = os.path.dirname(__file__)
builtins.__LIGHTNING_SETUP__ = True
import pytorch_lightning # noqa: E402
def load_requirements(path_dir=PATH_ROOT, file_name='base.txt', comment_char='#'):
with open(os.path.join(path_dir, 'requirements', file_name), 'r') as file:
lines = [ln.strip() for ln in file.readlines()]
reqs = []
for ln in lines:
# filer all comments
if comment_char in ln:
ln = ln[:ln.index(comment_char)].strip()
# skip directly installed dependencies
if ln.startswith('http'):
continue
if ln: # if requirement is not empty
reqs.append(ln)
return reqs
def load_long_description():
# https://github.com/PyTorchLightning/pytorch-lightning/raw/master/docs/source/_images/lightning_module/pt_to_pl.png
url = os.path.join(pytorch_lightning.__homepage__, 'raw', pytorch_lightning.__version__, 'docs')
text = open('README.md', encoding='utf-8').read()
# replace relative repository path to absolute link to the release
text = text.replace('](docs', f']({url}')
# SVG images are not readable on PyPI, so replace them with PNG
text = text.replace('.svg', '.png')
return text
# https://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-extras
# Define package extras. These are only installed if you specify them.
# From remote, use like `pip install pytorch-lightning[dev, docs]`
# From local copy of repo, use like `pip install ".[dev, docs]"`
extras = {
'docs': load_requirements(file_name='docs.txt'),
'examples': load_requirements(file_name='examples.txt'),
'extra': load_requirements(file_name='extra.txt'),
'test': load_requirements(file_name='test.txt')
}
extras['dev'] = extras['extra'] + extras['test']
extras['all'] = extras['dev'] + extras['examples'] + extras['docs']
# https://packaging.python.org/discussions/install-requires-vs-requirements /
# keep the meta-data here for simplicity in reading this file... it's not obvious
# what happens and to non-engineers they won't know to look in init ...
# the goal of the project is simplicity for researchers, don't want to add too much
# engineer specific practices
setup(
name='pytorch-lightning',
version=pytorch_lightning.__version__,
description=pytorch_lightning.__docs__,
author=pytorch_lightning.__author__,
author_email=pytorch_lightning.__author_email__,
url=pytorch_lightning.__homepage__,
download_url='https://github.com/PyTorchLightning/pytorch-lightning',
license=pytorch_lightning.__license__,
packages=find_packages(exclude=['tests', 'tests/*', 'benchmarks']),
long_description=load_long_description(),
long_description_content_type='text/markdown',
include_package_data=True,
zip_safe=False,
keywords=['deep learning', 'pytorch', 'AI'],
python_requires='>=3.6',
setup_requires=[],
install_requires=load_requirements(),
extras_require=extras,
project_urls={
"Bug Tracker": "https://github.com/PyTorchLightning/pytorch-lightning/issues",
"Documentation": "https://pytorch-lightning.rtfd.io/en/latest/",
"Source Code": "https://github.com/PyTorchLightning/pytorch-lightning",
},
classifiers=[
'Environment :: Console',
'Natural Language :: English',
# How mature is this project? Common values are
# 3 - Alpha, 4 - Beta, 5 - Production/Stable
'Development Status :: 4 - Beta',
# Indicate who your project is intended for
'Intended Audience :: Developers',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Image Recognition',
'Topic :: Scientific/Engineering :: Information Analysis',
# Pick your license as you wish
'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
],
)