-
Notifications
You must be signed in to change notification settings - Fork 0
/
TypHeapLimits.thy
99 lines (91 loc) · 3.59 KB
/
TypHeapLimits.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory TypHeapLimits
imports "CLib.TypHeapLib"
begin
definition
states_all_but_typs_eq :: "char list set \<Rightarrow> heap_raw_state \<Rightarrow> heap_raw_state \<Rightarrow> bool"
where
"states_all_but_typs_eq names hrs hrs'
= (hrs_htd hrs = hrs_htd hrs'
\<and> (\<forall>x. hrs_mem hrs x = hrs_mem hrs' x
\<or> (\<exists>p td. x \<in> {p ..+ size_td td} \<and> td_names td \<subseteq> names
\<and> typ_name td \<noteq> pad_typ_name
\<and> valid_footprint (hrs_htd hrs) p td)))"
lemma heap_list_eq_from_region_eq:
"\<forall>x \<in> {p ..+ n}. hp x = hp' x
\<Longrightarrow> heap_list hp n p = heap_list hp' n p"
apply (induct n arbitrary: p)
apply simp
apply (simp add: intvl_def)
apply (frule_tac x=p in spec, drule mp, rule_tac x=0 in exI,
simp+)
apply (erule meta_allE, erule meta_mp)
apply clarsimp
apply (drule spec, erule mp)
apply (rule_tac x="Suc k" in exI)
apply simp
done
lemma states_all_but_typs_eq_clift:
"\<lbrakk> states_all_but_typs_eq names hrs hrs';
\<forall>x \<in> td_names (typ_info_t TYPE('a)). x \<notin> names;
typ_name (typ_info_t TYPE('a)) \<noteq> pad_typ_name \<rbrakk>
\<Longrightarrow> (clift hrs :: (_ \<rightharpoonup> ('a :: c_type))) = clift hrs'"
apply (rule ext, simp add: lift_t_def)
apply (cases hrs, cases hrs', clarsimp)
apply (simp add: lift_typ_heap_def restrict_map_def)
apply (simp add: s_valid_def proj_d_lift_state
states_all_but_typs_eq_def hrs_htd_def
hrs_mem_def)
apply clarsimp
apply (simp add: heap_list_s_heap_list h_t_valid_def)
apply (subst heap_list_eq_from_region_eq, simp_all)
apply clarsimp
apply (drule spec, erule disjE, assumption)
apply clarsimp
apply (drule(1) valid_footprint_neq_disjoint)
apply (clarsimp simp: typ_uinfo_t_def typ_tag_lt_def
typ_tag_le_def)
apply (force dest: td_set_td_names
intro: td_set_td_names[OF td_set_self])
apply (clarsimp simp: field_of_def typ_uinfo_t_def)
apply (force dest: td_set_td_names
intro: td_set_td_names[OF td_set_self])
apply (simp add: size_of_def)
apply blast
done
lemma states_all_but_typs_eq_refl:
"states_all_but_typs_eq names hrs hrs"
by (simp add: states_all_but_typs_eq_def)
lemma states_all_but_typs_eq_trans:
"states_all_but_typs_eq names hrs hrs'
\<Longrightarrow> states_all_but_typs_eq names hrs' hrs''
\<Longrightarrow> states_all_but_typs_eq names hrs hrs''"
apply (clarsimp simp add: states_all_but_typs_eq_def
del: disjCI)
apply (drule_tac x=x in spec)+
apply clarsimp
done
lemma states_all_but_typs_eq_update:
"\<lbrakk> hrs_htd hrs \<Turnstile>\<^sub>t (ptr :: ('a :: c_type) ptr);
td_names (typ_info_t TYPE('a)) \<subseteq> names;
typ_name (typ_info_t TYPE('a)) \<noteq> pad_typ_name;
wf_fd (typ_info_t TYPE('a)) \<rbrakk>
\<Longrightarrow>
states_all_but_typs_eq names hrs
(hrs_mem_update (heap_update ptr v) hrs)"
apply (clarsimp simp: states_all_but_typs_eq_def hrs_mem_update
del: disjCI)
apply (subst disj_commute, rule disjCI)
apply (rule_tac x="ptr_val ptr" in exI)
apply (rule_tac x="typ_uinfo_t TYPE('a)" in exI)
apply (simp add: typ_uinfo_t_def h_t_valid_def heap_update_def)
apply (rule ccontr)
apply (subst(asm) heap_update_nmem_same)
apply (simp add: to_bytes_def length_fa_ti)
apply (subst length_fa_ti, simp_all add: size_of_def)
done
end