-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathmusicgen.py
358 lines (297 loc) · 12.9 KB
/
musicgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# Copyright © 2024 Apple Inc.
import json
from functools import partial
from pathlib import Path
from types import SimpleNamespace
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
from tqdm import tqdm
from encodec import EncodecModel
from t5 import T5
class TextConditioner(nn.Module):
def __init__(self, t5_name, input_dim, output_dim):
super().__init__()
self._t5, self.tokenizer = T5.from_pretrained(t5_name)
self.output_proj = nn.Linear(input_dim, output_dim)
def __call__(self, text):
x = self.tokenizer.encode(text)
x = self._t5.encode(x)
return self.output_proj(x)
class KVCache:
def __init__(self, head_dim, n_kv_heads):
self.n_kv_heads = n_kv_heads
if isinstance(head_dim, int):
self.k_head_dim = self.v_head_dim = head_dim
elif isinstance(head_dim, tuple) and len(head_dim) == 2:
self.k_head_dim, self.v_head_dim = head_dim
else:
raise ValueError("head_dim must be an int or a tuple of two ints")
self.keys = None
self.values = None
self.offset = 0
self.step = 256
def update_and_fetch(self, keys, values):
prev = self.offset
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
B = keys.shape[0]
n_steps = (self.step + keys.shape[2] - 1) // self.step
k_shape = (B, self.n_kv_heads, n_steps * self.step, self.k_head_dim)
v_shape = (B, self.n_kv_heads, n_steps * self.step, self.v_head_dim)
new_k = mx.zeros(k_shape, keys.dtype)
new_v = mx.zeros(v_shape, values.dtype)
if self.keys is not None:
if prev % self.step != 0:
self.keys = self.keys[..., :prev, :]
self.values = self.values[..., :prev, :]
self.keys = mx.concatenate([self.keys, new_k], axis=2)
self.values = mx.concatenate([self.values, new_v], axis=2)
else:
self.keys, self.values = new_k, new_v
self.offset += keys.shape[2]
self.keys[..., prev : self.offset, :] = keys
self.values[..., prev : self.offset, :] = values
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
@property
def state(self):
return self.keys, self.values
class MultiHeadAttention(nn.Module):
def __init__(self, dim, n_heads):
super().__init__()
self.n_heads = n_heads
head_dim = dim // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.out_proj = nn.Linear(dim, dim, bias=False)
def __call__(
self,
queries: mx.array,
keys: mx.array,
values: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[KVCache] = None,
) -> mx.array:
B, L_q, D = queries.shape
L_k = keys.shape[1]
queries, keys, values = (
self.q_proj(queries),
self.k_proj(keys),
self.v_proj(values),
)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L_q, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L_k, self.n_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
keys, values = cache.update_and_fetch(keys, values)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L_q, -1)
return self.out_proj(output)
class TransformerBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.num_attention_heads = config.decoder.num_attention_heads
self.hidden_size = config.decoder.hidden_size
self.self_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
self.cross_attn = MultiHeadAttention(self.hidden_size, self.num_attention_heads)
self.linear1 = nn.Linear(self.hidden_size, config.decoder.ffn_dim, bias=False)
self.linear2 = nn.Linear(config.decoder.ffn_dim, self.hidden_size, bias=False)
self.norm1 = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.norm_cross = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.norm2 = nn.LayerNorm(self.hidden_size, eps=1e-5)
def __call__(
self,
x: mx.array,
conditioning: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[KVCache] = None,
) -> mx.array:
xn = self.norm1(x)
x += self.self_attn(xn, xn, xn, mask, cache)
xn = self.norm_cross(x)
x += self.cross_attn(xn, conditioning, conditioning, mask)
xn = self.norm2(x)
x += self.linear2(nn.gelu(self.linear1(xn)))
return x
@partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
def top_k_sampling(
logits: mx.array, top_k: float, temperature: float, axis: int = -1
) -> mx.array:
"""
Apply top-k sampling to logits.
Args:
logits: The logits from the model's output.
top_k: Sample from the top k logits.
temperature: Temperature parameter for softmax distribution reshaping.
axis: Axis along which to sample.
Returns:
token selected based on the top-k criterion.
"""
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
probs = mx.softmax(logits * (1 / temperature), axis=axis)
# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=axis)
sorted_probs = mx.take_along_axis(probs, sorted_indices, axis=axis)
prob_threshold = mx.take(sorted_probs, mx.array(-top_k), axis=axis)
# select the top K tokens in probability
top_probs = mx.where(
sorted_probs > prob_threshold,
sorted_probs,
0,
)
sorted_token = mx.random.categorical(mx.log(top_probs), axis=axis)
token = mx.take_along_axis(
sorted_indices, mx.expand_dims(sorted_token, axis), axis=axis
)
return token
def create_sin_embedding(positions: mx.array, dim: int, max_period: float = 10000):
assert dim % 2 == 0
half_dim = dim // 2
adim = mx.arange(half_dim).reshape(1, 1, -1)
phase = positions / (max_period ** (adim / (half_dim - 1)))
return mx.concatenate([mx.cos(phase), mx.sin(phase)], axis=-1)
class MusicGen(nn.Module):
def __init__(self, config):
self.num_codebooks = config.decoder.num_codebooks
self.codebook_size = config.audio_encoder.codebook_size
self.bos_token_id = config.decoder.bos_token_id
self.hidden_size = config.decoder.hidden_size
self.num_attention_heads = config.decoder.num_attention_heads
self.sampling_rate = config.audio_encoder.sampling_rate
self.text_conditioner = TextConditioner(
config.text_encoder._name_or_path,
config.text_encoder.d_model,
self.hidden_size,
)
self.emb = [
nn.Embedding(self.codebook_size + 1, self.hidden_size)
for _ in range(self.num_codebooks)
]
self.layers = [
TransformerBlock(config) for _ in range(config.decoder.num_hidden_layers)
]
self.out_norm = nn.LayerNorm(self.hidden_size, eps=1e-5)
self.linears = [
nn.Linear(self.hidden_size, self.codebook_size, bias=False)
for _ in range(self.num_codebooks)
]
encodec_name = config.audio_encoder._name_or_path.split("/")[-1]
encodec_name = encodec_name.replace("_", "-")
self._audio_decoder, _ = EncodecModel.from_pretrained(
f"mlx-community/{encodec_name}-float32"
)
def __call__(
self,
audio_tokens: mx.array,
conditioning: mx.array,
cache: list[KVCache] = None,
):
if cache is None:
cache = [None] * len(self.layers)
x = sum([self.emb[k](audio_tokens[..., k]) for k in range(self.num_codebooks)])
offset = cache[0].offset if cache[0] is not None else 0
pos_emb = create_sin_embedding(offset, self.hidden_size)
x += pos_emb.astype(x.dtype)
for layer, c in zip(self.layers, cache):
x = layer(x, conditioning, cache=c)
x = self.out_norm(x)
x = mx.stack([self.linears[k](x) for k in range(self.num_codebooks)], axis=-1)
return x
def generate(
self,
text: str,
max_steps: int = 200,
top_k: int = 250,
temp: float = 1.0,
guidance_coef: float = 3.0,
) -> mx.array:
"""
Generates a waveform conditioned on `text`.
Args:
text (str): The text to condition generation on.
max_steps (int): Max steps to generate.
top_k (int): Top k used in sampling.
temp (float): Sampling softmax temperature.
guidance_coef (float): Classifier free guidance coefficent.
Used to combine conditional and unconditional logits.
Returns:
An mx.array of audio samples of shape ``(num_samples,)``.
"""
# Assuming no audio prompt we start with all bos token for the codebooks
audio_shape = (1, max_steps + 1, self.num_codebooks)
audio_seq = mx.full(audio_shape, self.bos_token_id)
text_tokens = self.text_conditioner(text)
# Compute conditional and unconditional logits in one batch
text_tokens = mx.concatenate([text_tokens, mx.zeros_like(text_tokens)], axis=0)
head_dim = self.hidden_size // self.num_attention_heads
cache = [
KVCache(head_dim, self.num_attention_heads) for _ in range(len(self.layers))
]
for offset in tqdm(range(max_steps)):
audio_input = mx.tile(audio_seq[:, offset : offset + 1], [2, 1, 1])
audio_logits = self(audio_input, text_tokens, cache)
cond_logits, uncond_logits = audio_logits[:1], audio_logits[1:2]
audio_logits = uncond_logits + (cond_logits - uncond_logits) * guidance_coef
audio_tokens = top_k_sampling(audio_logits, top_k, temp, axis=-2)
# "delay" pattern
audio_tokens[..., offset + 1 :] = self.bos_token_id
audio_tokens[..., : -max_steps + offset] = self.bos_token_id
audio_seq[:, offset + 1 : offset + 2] = audio_tokens
mx.eval(audio_seq)
# Undo delay
for i in range(self.num_codebooks):
audio_seq[:, : -self.num_codebooks, i] = audio_seq[
:, i : -self.num_codebooks + i, i
]
audio_seq = audio_seq[:, 1 : -self.num_codebooks + 1]
audio_seq = mx.swapaxes(audio_seq, -1, -2)[:, mx.newaxis]
audio = self._audio_decoder.decode(audio_seq, audio_scales=[None])
return audio[0]
@classmethod
def sanitize(cls, weights):
out_weights = {}
for k, arr in weights.items():
if k.startswith("transformer."):
k = k[len("transformer.") :]
if "cross_attention" in k:
k = k.replace("cross_attention", "cross_attn")
if "condition_provider" in k:
k = k.replace(
"condition_provider.conditioners.description", "text_conditioner"
)
if "in_proj_weight" in k:
dim = arr.shape[0] // 3
name = "in_proj_weight"
out_weights[k.replace(name, "q_proj.weight")] = arr[:dim]
out_weights[k.replace(name, "k_proj.weight")] = arr[dim : dim * 2]
out_weights[k.replace(name, "v_proj.weight")] = arr[dim * 2 :]
continue
out_weights[k] = arr
return out_weights
@classmethod
def from_pretrained(cls, path_or_repo: str):
import torch
from huggingface_hub import snapshot_download
path = Path(path_or_repo)
if not path.exists():
path = Path(
snapshot_download(
repo_id=path_or_repo,
allow_patterns=["*.json", "state_dict.bin"],
)
)
with open(path / "config.json", "r") as f:
config = SimpleNamespace(**json.load(f))
config.text_encoder = SimpleNamespace(**config.text_encoder)
config.audio_encoder = SimpleNamespace(**config.audio_encoder)
config.decoder = SimpleNamespace(**config.decoder)
weights = torch.load(path / "state_dict.bin", weights_only=True)["best_state"]
weights = {k: mx.array(v) for k, v in weights.items()}
weights = cls.sanitize(weights)
model = MusicGen(config)
model.load_weights(list(weights.items()))
return model