-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathutils.py
147 lines (131 loc) · 5.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from collections import OrderedDict
import torch
import gymnasium as gym
from nsfr.common import get_nsfr_model, get_blender_nsfr_model
from neumann.common import get_neumann_model, get_blender_neumann_model
from nsfr.utils.common import load_module
import torch
import torch.nn as nn
from torch.distributions.categorical import Categorical
import numpy as np
from stable_baselines3 import PPO
# from huggingface_sb3 import load_from_hub, push_to_hub
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class NeuralBlenderActor(nn.Module):
"""
Neural Blender Actor;
a neural network that takes an image as input and outputs a probability distribution over policies.
"""
def __init__(self):
super().__init__()
self.network = nn.Sequential(
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
nn.ReLU(),
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
nn.ReLU(),
nn.Flatten(),
layer_init(nn.Linear(64 * 7 * 7, 512)),
nn.ReLU(),
)
self.actor = layer_init(nn.Linear(512, 2), std=0.01)
def forward(self, x):
hidden = self.network(x / 255.0)
logits = self.actor(hidden)
probs = Categorical(logits=logits)
return probs.probs
class CNNActor(nn.Module):
"""
Neural Blender Actor;
a neural network that takes an image as input and outputs a probability distribution over actions.
"""
def __init__(self, n_actions=18, ):
super().__init__()
self.network = nn.Sequential(
layer_init(nn.Conv2d(4, 32, 8, stride=4)),
nn.ReLU(),
layer_init(nn.Conv2d(32, 64, 4, stride=2)),
nn.ReLU(),
layer_init(nn.Conv2d(64, 64, 3, stride=1)),
nn.ReLU(),
nn.Flatten(),
layer_init(nn.Linear(64 * 7 * 7, 512)),
nn.ReLU(),
)
self.actor = layer_init(nn.Linear(512, n_actions), std=0.01)
self.critic = layer_init(nn.Linear(512, 1), std=1)
def get_value(self, x):
return self.critic(self.network(x / 255.0))
def get_action_and_value(self, x, action=None):
hidden = self.network(x / 255.0)
logits = self.actor(hidden)
probs = Categorical(logits=logits)
if action is None:
action = probs.sample()
return action, probs.log_prob(action), probs.entropy(), self.critic(hidden)
def forward(self, x):
hidden = self.network(x / 255.0)
logits = self.actor(hidden)
probs = Categorical(logits=logits)
return probs.probs
def get_blender(env, blender_rules, device, train=True, blender_mode='logic', reasoner='nsfr', explain=False):
"""
Load a Blender model.
Args:
env (gym.Env): Environment.
blender_rules (str): Path to Blender rules.
device (torch.device): Device.
train (bool): Whether to train the model.
blender_mode (str): Mode of Blender. Possible values are "logic" and "neural".
reasoner (str): Reasoner. Possible values are "nsfr" and "neumann".
explain (bool): Whether to explain the model.
Returns:
Blender: Blender model.
"""
assert blender_mode in ['logic', 'neural']
if blender_mode == 'logic':
if reasoner == 'nsfr':
return get_blender_nsfr_model(env.name, blender_rules, device, train=train, explain=explain)
elif reasoner == 'neumann':
return get_blender_neumann_model(env.name, blender_rules, device, train=train, explain=explain)
if blender_mode == 'neural':
net = NeuralBlenderActor()
net.to(device)
return net
def load_cleanrl_envs(env_id, run_name=None, capture_video=False, num_envs=1):
from cleanrl.cleanrl.ppo_atari import make_env
# env setup
envs = gym.vector.SyncVectorEnv(
[make_env(env_id, i, capture_video, run_name) for i in range(num_envs)],
)
return envs
def load_cleanrl_agent(pretrained, device):
# from cleanrl.cleanrl.ppo_atari import Agent
agent = CNNActor(n_actions=18) #, device=device, verbose=1)
if pretrained:
try:
agent.load_state_dict(torch.load("cleanrl/out/ppo_Seaquest-v4_1.pth"))
agent.to(device)
except RuntimeError:
agent.load_state_dict(torch.load("cleanrl/out/ppo_Seaquest-v4_1.pth", map_location=torch.device('cpu')))
else:
agent.to(device)
return agent
def load_logic_ppo(agent, path):
new_actor_dic = OrderedDict()
new_critic_dic = OrderedDict()
dic = torch.load(path)
for name, value in dic.items():
if 'actor.' in name:
new_name = name.replace('actor.', '')
new_actor_dic[new_name] = value
if 'critic.' in name:
new_name = name.replace('critic.', '')
new_critic_dic[new_name] = value
agent.logic_actor.load_state_dict(new_actor_dic)
agent.logic_critic.load_state_dict(new_critic_dic)
return agent