-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtabla_Zekri_aa.py
410 lines (267 loc) · 11.8 KB
/
tabla_Zekri_aa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
#!/usr/bin/env python
#coding: utf-8
# In[1]:
## Script para recrear la tabla de Zekri et al. 2020
# In[1]:
import pandas as pd
import os
from collections import Counter
import glob as g
import argparse
import re
# In[2]:
parser = argparse.ArgumentParser(description = "Analizador del tipo de mutación")
parser.add_argument("report", help= "'/complete/path/to/*_analysis_report.csv'")
#parser.add_argument("variants", help= "'/complete/path/to/variants/ivar/*.tsv'")
parser.add_argument("-a", action = "store_true", help = "incluye una columna con las alteraciones")
args = parser.parse_args()
#qc = g.glob("/home/marialara/gattaca/all_run_QC_results/*_analysis_report.csv")
qc = g.glob(args.report)
# In[3]:
mn = "../covid_gattaca_ola1/"
yes = []
for w in range(len(qc)):
tabla = pd.read_csv(qc[w], sep=",") #lee una de las tablas (csv)
for i in range(len(tabla)):
if tabla["selected_for_nextstrain"][i] == "yes": #si está seleccionada para nextstrain
run = qc[w].split("/")[-1].split("_")[0]
num = qc[w].split("/")[-1].split("_")[1]
tog = [run, num]
rute = "_".join(tog)
ap = mn + rute + "_batch*/variants/ivar/" + tabla["sample"][i] +".tsv" #ruta de muestras que han pasado el qc
yes.append(ap) #guarda las rutas
gisaid = g.glob("/home/mlara/covid_gattaca_ola1/run_gisaid*/variants/ivar/*.tsv") #guarda directorio de los falsos .tsv de gisaid
yes = yes + gisaid
# In[4]:
total = len(yes) #aqui van incluidas tambien las de la segunda ola
print("%s secuencias han pasado el control de calidad" %total)
# In[5]:
#archivos = g.glob("/home/marialara/gattaca/gtc/*.tsv")
#archivos = g.glob(args.variants)
archivos = yes
# In[49]:
utr5 = []
orf1ab= []
spike = []
orf3a= []
e = []
me = []
orf6 = []
orf7a = []
orf7b=[]
orf8 = []
nu = []
orf10 = []
utr3 = []
intergen = []
orf7ab = []
mutorf1ab= []
mutspike = []
mutorf3a= []
mute = []
mutme = []
mutorf6 = []
mutorf7a = []
mutorf7b=[]
mutorf8 = []
mutnu = []
mutorf10 = []
mutorf7ab = []
fw = 0
for a in archivos:
id = g.glob(a)[0].split("/")[-1].split(".")[0] #extrae el id de la muestra de la ruta del directorio
#for b in yes: #recorre los id de yes
if bool(re.match("HUVR_(\d*)UK", id)) == False: #si es de la primera ola
fw += 1
#if b == id: #si esa muestra ha pasado el control
tabla = pd.read_csv(g.glob(a)[0], sep="\t") #lee el tsv
for i in range(len(tabla)):
# if tabla["ALT_FREQ"][i] >= 0.75: #si la mutación tiene una frecuencia mayor o igual a 0.75
if tabla["POS"][i]< 266 and tabla["ALT_FREQ"][i] >= 0.75:
utr5.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 266<=tabla["POS"][i]<13468 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 265 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf1ab.append(mut)
mutorf1ab.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 13468<=tabla["POS"][i]<=21555 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 264 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf1ab.append(mut)
mutorf1ab.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 21563<=tabla["POS"][i]<=25384 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 21562 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
spike.append(mut)
mutspike.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 25393<=tabla["POS"][i]<=26220 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 25392 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf3a.append(mut)
mutorf3a.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 26245<=tabla["POS"][i]<=26472 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 26244 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
e.append(mut)
mute.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 26523<=tabla["POS"][i]<=27191 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 26522 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
me.append(mut)
mutme.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 27202<=tabla["POS"][i]<=27387 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 27201 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf6.append(mut)
mutorf6.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 27394<=tabla["POS"][i]<=27759 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 27393 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf7a.append(mut)
mutorf7a.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 27756<=tabla["POS"][i]<=27759 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 27393 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf7ab.append(mut)
mutorf7ab.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 27756<=tabla["POS"][i]<=27887 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 27755 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf7b.append(mut)
mutorf7b.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 27894<=tabla["POS"][i]<=28259 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 27893 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf8.append(mut)
mutorf8.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 28274<=tabla["POS"][i]<=29533 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 28273 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
nu.append(mut)
mutnu.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif 29558<=tabla["POS"][i]<=29674 and tabla["ALT_FREQ"][i]>=0.75:
pos = int((tabla["POS"][i] - 29557 +2)/3)
mut = str(tabla["REF_AA"][i]) + str(pos) + str(tabla["ALT_AA"][i])
orf10.append(mut)
mutorf10.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif tabla["POS"][i] > 29674 and tabla["ALT_FREQ"][i]>=0.75:
utr3.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
elif tabla["ALT_FREQ"][i]>=0.75:
intergen.append(str(tabla["REF"][i]) + str(tabla["POS"][i]) + str(tabla["ALT"][i]))
# In[50]:
mutgenes = [mutorf1ab, mutspike, mutorf3a, mute, mutme, mutorf6, mutorf7a, mutorf7ab, mutorf7b, mutorf8, mutnu, mutorf10]
genes2 = [orf1ab, spike, orf3a, e, me, orf6, orf7a, orf7ab, orf7b, orf8, nu, orf10]
for g in range(len(mutgenes)): #recorre lista con las listas de mutaciones de nucleotidos
for j in range(len(mutgenes[g])):
for i in range(len(mutgenes[g])):
if mutgenes[g][j] == mutgenes[g][i]: #si la mutacion es la misma a nivel ntds
if genes2[g][j][0:3] == "non": #si alguna del gisaid no se conoce
genes2[g][j] = genes2[g][i] #se cambia por la conocida
if genes2[g][i][0:3] == "non":
genes2[g][i] = genes2[g][j]
regiones = [utr5, orf1ab, spike, orf3a, e, me, orf6, orf7a, orf7ab, orf7b, orf8, nu, orf10, utr3, intergen]
orf1ab = list(set(orf1ab))
spike = list(set(spike))
orf3a = list(set(orf3a))
e = list(set(e))
me = list(set(me))
orf6 = list(set(orf6))
orf7a = list(set(orf7a))
orf7ab = list(set(orf7ab))
orf8 = list(set(orf8))
nu = list(set(nu))
orf10 = list(set(orf10))
genes = [orf1ab, spike, orf3a, e, me, orf6, orf7a, orf7ab, orf7b, orf8, nu, orf10]
#for x in genes1:
# for m in range(len(x)):
# for n in range(len(x)):
# if re.findall("\d+", x[m]) == re.findall("\d+", x[n]):
# if x[m][0:3] == "non":
# x[m] = x[n]
# if x[n][0:3] == "non":
# x[n] = x[m]
#genes = genes2
# In[51]:
indels = []
for i in genes:
count = 0
for j in i:
if j[0:3] == "nan":
count = count + 1
indels.append(count)
# In[52]:
indels
# In[53]:
for g in genes:
quitar = []
for j in g:
if j[0:3] == "nan": #se quitan las mutaciones de inserción/deleción
quitar.append(j)
for k in quitar:
g.remove(k)
# In[54]:
sin = []
for g in genes:
count = 0
for j in g: #mutaciones en ese gen
if j[0] == j[-1] and j[0:3] != "nan": #si el aa de ref y la alteracion son el mismo
count = count + 1
sin.append(count)
# In[55]:
nosin = []
for g in genes:
count = 0
for j in g:
if j[0] != j[-1]:
count = count + 1
nosin.append(count)
# In[56]:
sin
# In[57]:
names = ["orf1ab", "spike", "orf3a", "e", "me", "orf6", "orf7a", "orf7ab", "orf7b", "orf8", "nu", "orf10"]
# In[58]:
genes_c = []
for i in genes:
genes_c.append(list(Counter(i).keys()))
# In[59]:
if args.a:
data = { "GEN" : names,
"SYNONYMOUS": sin,
"MISSENSE": nosin,
"INDELS" : indels,
"MUTATIONS" : genes_c
}
df = pd.DataFrame(data, columns = ["GEN", "SYNONYMOUS", "MISSENSE", "INDELS", "MUTATIONS"])
df.to_csv("10.tabla_zekri_mutaa%s.tsv" %fw, sep="\t", index=False)
else:
data = { "GEN" : names,
"SYNONYMOUS": sin,
"MISSENSE": nosin,
"INDELS" : indels,
}
df = pd.DataFrame(data, columns = ["GEN", "SYNONYMOUS", "MISSENSE", "INDELS"])
df.to_csv("10.tabla_zekri%s.tsv" %fw, sep="\t", index=False)
# In[60]:
ncr = [list(set(utr5)), list(set(utr3)), list(set(intergen))]
ncr_c = []
# In[61]:
for i in ncr:
ncr_c.append(list(Counter(i).keys()))
# In[ ]:
# In[62]:
num = []
for i in ncr:
num.append(len(i))
# In[63]:
num
# In[64]:
names_ncr = ["5UTR", "3UTR", "intergen"]
# In[65]:
data = { "REGION" : names_ncr,
"NUM_MUT": num,
"MUTATIONS": ncr_c
}
df = pd.DataFrame(data, columns = ["REGION", "NUM_MUT", "MUTATIONS"])
df.to_csv("10.tabla_zekri_mutncr%s.tsv" %fw, sep="\t", index=False)
# In[ ]:
# In[ ]: