-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathbidirectional.py
33 lines (29 loc) · 1.18 KB
/
bidirectional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright (2017-2020)
# The Wormnet project
# Mathias Lechner ([email protected])
import numpy as np
import tensorflow as tf
from kerasncp import wirings
from kerasncp.tf import LTCCell
N = 48 # Length of the time-series
# Input feature is a sine and a cosine wave
data_x = np.stack(
[np.sin(np.linspace(0, 3 * np.pi, N)), np.cos(np.linspace(0, 3 * np.pi, N))], axis=1
)
data_x = np.expand_dims(data_x, axis=0).astype(np.float32) # Add batch dimension
# Target output is a sine with double the frequency of the input signal
data_y = np.sin(np.linspace(0, 6 * np.pi, N)).reshape([1, N, 1]).astype(np.float32)
print("data_y.shape: ", str(data_y.shape))
fc_wiring = wirings.FullyConnected(8, 1) # 8 units, 1 of which is a motor neuron
ltc_cell = LTCCell(fc_wiring)
model = tf.keras.models.Sequential(
[
tf.keras.layers.InputLayer(input_shape=(None, 2)),
tf.keras.layers.Bidirectional(tf.keras.layers.RNN(ltc_cell)),
tf.keras.layers.Dense(1)
# tf.keras.layers.RNN(ltc_cell, return_sequences=True),
]
)
model.compile(optimizer=tf.keras.optimizers.Adam(0.01), loss="mean_squared_error")
model.summary()
model.fit(x=data_x, y=data_y, batch_size=1, epochs=200)