-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathkeras_save.py
52 lines (39 loc) · 1.52 KB
/
keras_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import tensorflow as tf
data_x = np.random.default_rng().normal(size=(100, 16, 10))
data_y = np.random.default_rng().normal(size=(100, 16, 1))
@tf.keras.utils.register_keras_serializable(package="Custom")
class CustomLayer(tf.keras.layers.AbstractRNNCell):
def __init__(self, units, outputs, **kwargs):
self.units = units
self.outputs = outputs
super(CustomLayer, self).__init__(**kwargs)
@property
def state_size(self):
return self.units
def build(self, input_shape):
self.w = self.add_weight("w", shape=(input_shape[-1], self.units))
self.o = self.add_weight("o", shape=(self.units, self.outputs))
self.r = self.add_weight("r", shape=(self.units, self.units))
self.built = True
def call(self, inputs, states):
next_hidden = tf.nn.tanh(
tf.matmul(inputs, self.w) + tf.matmul(states[0], self.r)
)
output = tf.matmul(next_hidden, self.o)
return output, [next_hidden]
def get_config(self):
return {"units": self.units, "outputs": self.outputs}
model = tf.keras.models.Sequential(
[
tf.keras.Input((16, 10,)),
tf.keras.layers.RNN(CustomLayer(10, 1), return_sequences=True),
]
)
model.compile(optimizer="adam", loss="mean_squared_error")
model.summary()
model.fit(x=data_x, y=data_y, batch_size=25, epochs=1)
model.evaluate(x=data_x, y=data_y)
model.save("test_2.h5")
model = tf.keras.models.load_model("test_2.h5") ## Crashes here
model.evaluate(x=data_x, y=data_y)