-
Notifications
You must be signed in to change notification settings - Fork 338
/
Copy pathpt_implicit.py
101 lines (88 loc) · 3.11 KB
/
pt_implicit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright (2017-2021)
# The Wormnet project
# Mathias Lechner ([email protected])
import numpy as np
import torch.nn as nn
import kerasncp as kncp
from kerasncp.torch import LTCCell
import pytorch_lightning as pl
import torch
import torch.utils.data as data
# nn.Module that unfolds a RNN cell into a sequence
class RNNSequence(nn.Module):
def __init__(
self,
rnn_cell,
):
super(RNNSequence, self).__init__()
self.rnn_cell = rnn_cell
def forward(self, x):
device = x.device
batch_size = x.size(0)
seq_len = x.size(1)
hidden_state = torch.zeros(
(batch_size, self.rnn_cell.state_size), device=device
)
outputs = []
for t in range(seq_len):
inputs = x[:, t]
new_output, hidden_state = self.rnn_cell.forward(inputs, hidden_state)
outputs.append(new_output)
outputs = torch.stack(outputs, dim=1) # return entire sequence
return outputs
# LightningModule for training a RNNSequence module
class SequenceLearner(pl.LightningModule):
def __init__(self, model, lr=0.005):
super().__init__()
self.model = model
self.lr = lr
def training_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model.forward(x)
y_hat = y_hat.view_as(y)
loss = nn.MSELoss()(y_hat, y)
self.log("train_loss", loss, prog_bar=True)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self.model.forward(x)
y_hat = y_hat.view_as(y)
loss = nn.MSELoss()(y_hat, y)
self.log("val_loss", loss, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
# Here we just reuse the validation_step for testing
return self.validation_step(batch, batch_idx)
def configure_optimizers(self):
return torch.optim.Adam(self.model.parameters(), lr=self.lr)
in_features = 2
out_features = 1
N = 48 # Length of the time-series
# Input feature is a sine and a cosine wave
data_x = np.stack(
[np.sin(np.linspace(0, 3 * np.pi, N)), np.cos(np.linspace(0, 3 * np.pi, N))], axis=1
)
data_x = np.expand_dims(data_x, axis=0).astype(np.float32) # Add batch dimension
# Target output is a sine with double the frequency of the input signal
data_y = np.sin(np.linspace(0, 6 * np.pi, N)).reshape([1, N, 1]).astype(np.float32)
data_x = torch.Tensor(data_x)
data_y = torch.Tensor(data_y)
print("data_y.shape: ", str(data_y.shape))
wiring = kncp.wirings.FullyConnected(8, out_features) # 16 units, 8 motor neurons
ltc_cell = LTCCell(wiring, in_features,implicit_param_constraints=True)
dataloader = data.DataLoader(
data.TensorDataset(data_x, data_y), batch_size=1, shuffle=True, num_workers=4
)
ltc_sequence = RNNSequence(
ltc_cell,
)
learn = SequenceLearner(ltc_sequence, lr=0.01)
trainer = pl.Trainer(
logger=pl.loggers.CSVLogger("log"),
max_epochs=400,
progress_bar_refresh_rate=1,
gradient_clip_val=1, # Clip gradient to stabilize training
gpus=1,
)
trainer.fit(learn, dataloader)
results = trainer.test(learn, dataloader)