Releases: mljar/mljar-supervised
Releases · mljar/mljar-supervised
0.10.3
Enhancements
- #343 set seed in Optuna
- #344 set eval_metric directly in all algorithms
- #350 add estimated train time in Optuna mode
- #342 add
optuna_verbose
param inAutoML()
- #354 add KNN in Optuna
- #356 and Neural Network in Optuna
- #357, #348 use mljar wrapper for Random Forest and Extra Trees
- #358 add
extra_tree
param in LightGBM - #359 switch off feature engineering in Optuna mode - only highly tuned models are produced
- #361 list all
eval_metric
in error message - #362 add accuracy
eval_metric
- #340 support for r2
Bug fixes
0.10.2
0.10.1
0.9.1
Enhancements
- #179 add
need_retrain()
method to detect performance decrease - #226 extract rules from decision tree
- #310 add support for MAPE
- #312 optimize prediction time
- #313 set stacking time threshold depending on best model train time
- #320 search for model with prediction time constraint
- #322
n_jobs
as a parameter - #328 disable stacking for small (nrows < 500) datasets
Bug fixes
- #214 move directory after training
- #246 raise exception when small time limit and no models are trained
- #247 proper display for optimize AUC and R2
- #306 add
mix_encoding
argument inAutoML
constructor - #308 fix dependencies error in kaggle notebook
- #314 bug fix in hill climbing in Perform mode
- #323 fix catboost bug with tree limit
- #324 #325 bug for feature importance for small data