-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_glue.py
342 lines (297 loc) · 14.6 KB
/
run_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Finetuning the library models for sequence classification on GLUE."""
import dataclasses
import logging
import os
import copy
import sys
from dataclasses import dataclass, field
from typing import Callable, Dict, Optional
import numpy as np
from src.transformers import AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, EvalPrediction, GlueDataset
from src.transformers import GlueDataTrainingArguments as DataTrainingArguments
from src.transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
glue_compute_metrics,
glue_output_modes,
glue_tasks_num_labels,
set_seed,
)
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
hyperparams: Optional[str] = field(
default="electra", metadata={"help": "What hyperparameters to use: electra, electra_base, stable"}
)
# The task to be run should be in the data_args.task_name field.
def run_task(model_args, data_args, training_args):
try:
num_labels = glue_tasks_num_labels[data_args.task_name]
output_mode = glue_output_modes[data_args.task_name]
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name))
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if not training_args.do_train:
model_args.model_name_or_path = training_args.output_dir
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
# Get datasets
train_dataset = (
GlueDataset(data_args, tokenizer=tokenizer, cache_dir=model_args.cache_dir) if training_args.do_train else None
)
eval_dataset = (
GlueDataset(data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir)
if training_args.do_eval
else None
)
test_dataset = (
GlueDataset(data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir)
if training_args.do_predict
else None
)
def build_compute_metrics_fn(task_name: str) -> Callable[[EvalPrediction], Dict]:
def compute_metrics_fn(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
if output_mode == "classification":
preds = np.argmax(preds, axis=1)
else: # regression
preds = np.squeeze(preds)
return glue_compute_metrics(task_name, preds, p.label_ids)
return compute_metrics_fn
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=build_compute_metrics_fn(data_args.task_name),
)
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
)
trainer.save_model()
if data_args.task_name == 'mnli': # Save a copy of the tuned subgraph for MNLI, to use for other tasks.
trainer.model.bert.save_pretrained(os.path.join(training_args.output_dir, "transformer_subgraph"))
print("Saved transformer subgraph tuned on MNLI.")
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
eval_results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
eval_datasets.append(
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="dev", cache_dir=model_args.cache_dir)
)
for eval_dataset in eval_datasets:
trainer.compute_metrics = build_compute_metrics_fn(eval_dataset.args.task_name)
eval_result = trainer.evaluate(eval_dataset=eval_dataset)
output_eval_file = os.path.join(
training_args.output_dir, f"eval_results_{eval_dataset.args.task_name}.txt"
)
if trainer.is_world_master():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results {} *****".format(eval_dataset.args.task_name))
for key, value in eval_result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
eval_results.update(eval_result)
if training_args.do_predict:
logging.info("*** Test ***")
test_datasets = [test_dataset]
if data_args.task_name == "mnli":
mnli_mm_data_args = dataclasses.replace(data_args, task_name="mnli-mm")
test_datasets.append(
GlueDataset(mnli_mm_data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir)
)
diagnostic_data_args = dataclasses.replace(data_args, task_name="diagnostic")
test_datasets.append(
GlueDataset(diagnostic_data_args, tokenizer=tokenizer, mode="test", cache_dir=model_args.cache_dir)
)
for test_dataset in test_datasets:
predictions = trainer.predict(test_dataset=test_dataset).predictions
if output_mode == "classification":
predictions = np.argmax(predictions, axis=1)
output_test_file = os.path.join(
training_args.output_dir, f"test_results_{test_dataset.args.task_name}.txt"
)
if trainer.is_world_master():
with open(output_test_file, "w") as writer:
logger.info("***** Test results {} *****".format(test_dataset.args.task_name))
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if output_mode == "regression":
writer.write("%d\t%3.3f\n" % (index, item))
else:
item = test_dataset.get_labels()[item]
writer.write("%d\t%s\n" % (index, item))
return eval_results
def run_all_tasks(model_args, data_args, training_args, dir_suffix=""):
# Set seed
set_seed(training_args.seed)
# Run the task(s).
glue_data_dir = data_args.data_dir
output_dir = training_args.output_dir
model_dir = model_args.model_name_or_path
# Treat the batch_size flag as the max batch size. May be lowered for some tasks.
max_per_device_batch_size = training_args.per_device_train_batch_size
for task_name in ['MNLI', 'CoLA', 'SST-2', 'MRPC', 'STS-B', 'QQP', 'QNLI', 'RTE', 'WNLI']:
data_args.task_name = task_name.lower()
data_args.data_dir = os.path.join(glue_data_dir, task_name)
training_args.output_dir = os.path.join(output_dir, task_name)
training_args.output_dir = training_args.output_dir + dir_suffix
# Overwrite default ELECTRA hyperparameters.
if "electra" in model_args.hyperparams:
print("Using hyperparameters from ELECTRA.")
# Approximate ELECTRA steps (10 epochs for RTE and STS, 3 epochs for others), with batch size 32:
electra_steps = {'MNLI': 36364, 'CoLA': 851, 'SST-2': 6409, 'MRPC': 343, 'STS-B': 1836,
'QQP': 33600, 'QNLI': 9835, 'RTE': 777, 'WNLI': 100} # 5 epochs for WNLI.
training_args.learning_rate = 0.0003
training_args.per_device_train_batch_size = 32 // training_args.n_gpu
training_args.max_steps = electra_steps[task_name]
training_args.warmup_steps = electra_steps[task_name] // 10
# Different from ELECTRA paper: use a larger batch size for MNLI and QQP, as in ALBERT:
if task_name=="MNLI" or task_name=="QQP":
training_args.per_device_train_batch_size *= 4
# New MNLI steps: ~12121
# New QQP steps: ~11200
# x(4/3)//4 because training for 4 epochs instead of 3, but using 4x larger batches.
training_args.max_steps = training_args.max_steps // 3
training_args.warmup_steps = training_args.max_steps // 10
# To improve QNLI stability, lower learning rate:
if task_name=="QNLI":
training_args.learning_rate = 0.0001
if model_args.hyperparams == "electra_base":
# Use electra hyperparameters but smaller learning rate for base size model.
print("Using LR 0.0001.")
training_args.learning_rate = 0.0001
if model_args.hyperparams == "stable":
# This is too slow for larger datasets.
# Approximate steps for one epoch using batch size 16.
epoch_steps = {'MNLI': 24243, 'CoLA': 567, 'SST-2': 4273, 'MRPC': 229, 'STS-B': 367,
'QQP': 22400, 'QNLI': 6557, 'RTE': 155, 'WNLI': 100}
training_args.learning_rate = 0.00002
training_args.per_device_train_batch_size = 16 // training_args.n_gpu
training_args.max_steps = epoch_steps[task_name]*20
training_args.warmup_steps = epoch_steps[task_name]*2
# Use the MNLI checkpoint for RTE, STS, and MRPC (as in the ALBERT paper).
model_args.model_name_or_path = model_dir
if task_name=="RTE" or task_name=="STS-B" or task_name=="MRPC":
# Assume MNLI has already been run.
model_args.model_name_or_path = os.path.join(output_dir, "MNLI" + dir_suffix + "/transformer_subgraph")
if training_args.per_device_train_batch_size > max_per_device_batch_size:
training_args.per_device_train_batch_size = max_per_device_batch_size
training_args.per_device_eval_batch_size = training_args.per_device_train_batch_size
print('\nRUNNING TASK: {}\n'.format(task_name))
run_task(model_args, data_args, training_args)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
)
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
training_args.local_rank,
training_args.device,
training_args.n_gpu,
bool(training_args.local_rank != -1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
if data_args.task_name == 'all' or data_args.task_name == 'ALL':
# For this case, run ten sets of finetuning.
suffixes = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
seeds = [42, 97, 834, 622, 329, 75, 213, 101, 123, 57] # Default seed is 42.
if training_args.seed != 42:
seeds = [seed + training_args.seed for seed in seeds]
for i in range(len(suffixes)):
training_args.seed = seeds[i]
run_all_tasks(copy.deepcopy(model_args),
copy.deepcopy(data_args),
copy.deepcopy(training_args),
dir_suffix=suffixes[i])
else:
run_task(model_args, data_args, training_args)
return
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()