diff --git a/NEWS.md b/NEWS.md index ace7e6d2..7f4024cf 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,9 +1,9 @@ # mlr3mbo (development version) -* refactor: refactored `SurrogateLearner` and `SurrogateLearnerCollection` to allow updating on an asynchronous `Archive` -* feat: added experimental `OptimizerAsyncMbo`, `OptimizerADBO`, `TunerAsyncMbo`, and `TunerADBO` that allow for asynchronous optimization -* feat: added `AcqFunctionStochasticCB` and `AcqFunctionStochasticEI` that are useful for asynchronous optimization -* doc: minor changes to highlight differences between batch and asynchronous objects related to asynchronous support +* refactor: refactored `SurrogateLearner` and `SurrogateLearnerCollection` to allow updating on an asynchronous `Archive`. +* feat: added experimental `OptimizerAsyncMbo`, `OptimizerADBO`, `TunerAsyncMbo`, and `TunerADBO` that allow for asynchronous optimization. +* feat: added `AcqFunctionStochasticCB` and `AcqFunctionStochasticEI` that are useful for asynchronous optimization. +* doc: minor changes to highlight differences between batch and asynchronous objects related to asynchronous support. * refactor: `AcqFunction`s and `AcqOptimizer` gained a `reset()` method. # mlr3mbo 0.2.6 diff --git a/README.Rmd b/README.Rmd index 93aa6829..848f6fbd 100644 --- a/README.Rmd +++ b/README.Rmd @@ -81,7 +81,7 @@ acq_function = acqf("ei") acq_optimizer = acqo( opt("local_search", n_initial_points = 10, initial_random_sample_size = 1000, neighbors_per_point = 10), - terminator = trm("evals", n_evals = 3000) + terminator = trm("evals", n_evals = 2000) ) optimizer = opt("mbo", diff --git a/README.md b/README.md index 4f10ba7c..bb4bc53e 100644 --- a/README.md +++ b/README.md @@ -87,7 +87,7 @@ acq_function = acqf("ei") acq_optimizer = acqo( opt("local_search", n_initial_points = 10, initial_random_sample_size = 1000, neighbors_per_point = 10), - terminator = trm("evals", n_evals = 3000) + terminator = trm("evals", n_evals = 2000) ) optimizer = opt("mbo", @@ -100,9 +100,9 @@ optimizer = opt("mbo", optimizer$optimize(instance) ``` - ## x1 x2 x_domain y - ## - ## 1: 3.090821 2.299709 0.4104925 + ## x1 x2 x_domain y + ## + ## 1: 3.104516 2.396279 0.412985 We can quickly visualize the contours of the objective function (on log scale) as well as the sampling behavior of our BO run (lighter blue