title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SGD Generalizes Better Than GD (And Regularization Doesn’t Help) |
We give a new separation result between the generalization performance of stochastic gradient descent (SGD) and of full-batch gradient descent (GD) in the fundamental stochastic convex optimization model. While for SGD it is well-known that |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
amir21a |
0 |
SGD Generalizes Better Than GD (And Regularization Doesn’t Help) |
63 |
92 |
63-92 |
63 |
false |
Amir, Idan and Koren, Tomer and Livni, Roi |
|
2021-07-21 |
Proceedings of Thirty Fourth Conference on Learning Theory |
134 |
inproceedings |
|