title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Submodular Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with Near-optimal Adaptive Complexity |
The growing need to deal with massive instances motivates the design of algorithms balancing the quality of the solution with applicability. For the latter, an important measure is the \emph{adaptive complexity}, capturing the number of sequential rounds of parallel computation needed. In this work we obtain the first \emph{constant factor} approximation algorithm for non-monotone submodular maximization subject to a knapsack constraint with \emph{near-optimal} |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
amanatidis21a |
0 |
Submodular Maximization subject to a Knapsack Constraint: Combinatorial Algorithms with Near-optimal Adaptive Complexity |
231 |
242 |
231-242 |
231 |
false |
Amanatidis, Georgios and Fusco, Federico and Lazos, Philip and Leonardi, Stefano and Marchetti-Spaccamela, Alberto and Reiffenh{\"a}user, Rebecca |
|
2021-07-01 |
Proceedings of the 38th International Conference on Machine Learning |
139 |
inproceedings |
|
|