title | booktitle | year | volume | series | month | publisher | url | abstract | layout | issn | id | tex_title | firstpage | lastpage | page | order | cycles | bibtex_editor | editor | bibtex_author | author | date | address | container-title | genre | issued | extras | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Multi-label Conformal Prediction with a Mahalanobis Distance Nonconformity Measure |
Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with Applications |
2024 |
230 |
Proceedings of Machine Learning Research |
0 |
PMLR |
This preliminary study introduces a Conformal Prediction method for Multi-label Classification with a nonconformity measure based on the Mahalanobis distance. The Mahalanobis measure incorporates a covariance matrix considering correlations between the errors of the underlying classifier on each label. Our experimental results show that this approach results in a significant informational efficiency improvement over the previously proposed Euclidean Norm nonconformity measure. |
inproceedings |
2640-3498 |
katsios24a |
Multi-label Conformal Prediction with a Mahalanobis Distance Nonconformity Measure |
522 |
535 |
522-535 |
522 |
false |
Vantini, Simone and Fontana, Matteo and Solari, Aldo and Bostr\"{o}m, Henrik and Carlsson, Lars |
|
Katsios, Kostas and Papadopulos, Harris |
|
2024-09-10 |
Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with Applications |
inproceedings |
|