title | booktitle | year | volume | series | month | publisher | url | abstract | layout | issn | id | tex_title | firstpage | lastpage | page | order | cycles | bibtex_editor | editor | bibtex_author | author | date | address | container-title | genre | issued | extras | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Entropy Reweighted Conformal Classification |
Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with Applications |
2024 |
230 |
Proceedings of Machine Learning Research |
0 |
PMLR |
Conformal Prediction (CP) is a powerful framework for constructing prediction sets with guaranteed coverage. However, recent studies have shown that integrating confidence calibration with CP can lead to a degradation in efficiency. In this paper, We propose an adaptive approach that considers the classifier’s uncertainty and employs entropy-based reweighting to enhance the efficiency of prediction sets for conformal classification. Our experimental results demonstrate that this method significantly improves efficiency. |
inproceedings |
2640-3498 |
luo24a |
Entropy Reweighted Conformal Classification |
264 |
276 |
264-276 |
264 |
false |
Vantini, Simone and Fontana, Matteo and Solari, Aldo and Bostr\"{o}m, Henrik and Carlsson, Lars |
|
Luo, Rui and Colombo, Nicolo |
|
2024-09-10 |
Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with Applications |
inproceedings |
|