title | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Efficient Quantum Agnostic Improper Learning of Decision Trees |
The agnostic setting is the hardest generalization of the PAC model since it is akin to learning with adversarial noise. In this paper, we give a poly |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
chatterjee24a |
0 |
Efficient Quantum Agnostic Improper Learning of Decision Trees |
514 |
522 |
514-522 |
514 |
false |
Chatterjee, Sagnik and SAPV, Tharrmashastha and Bera, Debajyoti |
|
2024-04-18 |
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics |
238 |
inproceedings |
|