title | software | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization |
This paper studies the stochastic nonconvex-strongly-concave minimax optimization over a multi-agent network. We propose an efficient algorithm, called Decentralized Recursive gradient descEnt Ascent Method (DREAM), which achieves the best-known theoretical guarantee for finding the |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
chen24b |
0 |
An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization |
1990 |
1998 |
1990-1998 |
1990 |
false |
Chen, Lesi and Ye, Haishan and Luo, Luo |
|
2024-04-18 |
Proceedings of The 27th International Conference on Artificial Intelligence and Statistics |
238 |
inproceedings |
|