Skip to content

Latest commit

 

History

History
55 lines (55 loc) · 2.44 KB

2019-06-25-brennan19a.md

File metadata and controls

55 lines (55 loc) · 2.44 KB
abstract section title layout series id month tex_title firstpage lastpage page order cycles bibtex_author author date address publisher container-title volume genre issued pdf extras
In the general submatrix detection problem, the task is to detect the presence of a small $k \times k$ submatrix with entries sampled from a distribution $\mathcal{P}$ in an $n \times n$ matrix of samples from $\mathcal{Q}$. This formulation includes a number of well-studied problems, such as biclustering when $\mathcal{P}$ and $\mathcal{Q}$ are Gaussians and the planted dense subgraph formulation of community detection when the submatrix is a principal minor and $\mathcal{P}$ and $\mathcal{Q}$ are Bernoulli random variables. These problems all seem to exhibit a universal phenomenon: there is a statistical-computational gap depending on $\mathcal{P}$ and $\mathcal{Q}$ between the minimum $k$ at which this task can be solved and the minimum $k$ at which it can be solved in polynomial time. Our main result is to tightly characterize this computational barrier as a tradeoff between $k$ and the KL divergences between $\mathcal{P}$ and $\mathcal{Q}$ through average-case reductions from the planted clique conjecture. These computational lower bounds hold given mild assumptions on $\mathcal{P}$ and $\mathcal{Q}$ arising naturally from classical binary hypothesis testing. Our results recover and generalize the planted clique lower bounds for Gaussian biclustering in Ma and Wu (2015) and Brennan et al. (2018) and for the sparse and general regimes of planted dense subgraph in Hajek et al. (2015) and Brennan et al. (2018). This yields the first universality principle for computational lower bounds obtained through average-case reductions.
contributed
Universality of Computational Lower Bounds for Submatrix Detection
inproceedings
Proceedings of Machine Learning Research
brennan19a
0
Universality of Computational Lower Bounds for Submatrix Detection
417
468
417-468
417
false
Brennan, Matthew and Bresler, Guy and Huleihel, Wasim
given family
Matthew
Brennan
given family
Guy
Bresler
given family
Wasim
Huleihel
2019-06-25
PMLR
Proceedings of the Thirty-Second Conference on Learning Theory
99
inproceedings
date-parts
2019
6
25