abstract | section | title | layout | series | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | publisher | container-title | volume | genre | issued | extras | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We propose a near-optimal method for highly smooth convex optimization. More precisely, in the oracle model where one obtains the |
contributed |
Near-optimal method for highly smooth convex optimization |
inproceedings |
Proceedings of Machine Learning Research |
bubeck19a |
0 |
Near-optimal method for highly smooth convex optimization |
492 |
507 |
492-507 |
492 |
false |
Bubeck, S{\'e}bastien and Jiang, Qijia and Lee, Yin Tat and Li, Yuanzhi and Sidford, Aaron |
|
2019-06-25 |
PMLR |
Proceedings of the Thirty-Second Conference on Learning Theory |
99 |
inproceedings |
|