abstract | section | title | layout | series | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | publisher | container-title | volume | genre | issued | extras | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We study the statistical performance of the semidefinite programming (SDP) relaxation approach for clustering under the binary symmetric Stochastic Block Model (SBM). We show that the SDP achieves an error rate of the form |
contributed |
Achieving the Bayes Error Rate in Stochastic Block Model by SDP, Robustly |
inproceedings |
Proceedings of Machine Learning Research |
fei19a |
0 |
Achieving the Bayes Error Rate in Stochastic Block Model by SDP, Robustly |
1235 |
1269 |
1235-1269 |
1235 |
false |
Fei, Yingjie and Chen, Yudong |
|
2019-06-25 |
PMLR |
Proceedings of the Thirty-Second Conference on Learning Theory |
99 |
inproceedings |
|