abstract | section | title | layout | series | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | publisher | container-title | volume | genre | issued | extras | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gradient descent, when applied to the task of logistic regression, outputs iterates which are biased to follow a unique ray defined by the data. The direction of this ray is the maximum margin predictor of a maximal linearly separable subset of the data; the gradient descent iterates converge to this ray in direction at the rate |
contributed |
The implicit bias of gradient descent on nonseparable data |
inproceedings |
Proceedings of Machine Learning Research |
ji19a |
0 |
The implicit bias of gradient descent on nonseparable data |
1772 |
1798 |
1772-1798 |
1772 |
false |
Ji, Ziwei and Telgarsky, Matus |
|
2019-06-25 |
PMLR |
Proceedings of the Thirty-Second Conference on Learning Theory |
99 |
inproceedings |
|