Skip to content

Latest commit

 

History

History
50 lines (50 loc) · 2.1 KB

2019-06-25-jun19a.md

File metadata and controls

50 lines (50 loc) · 2.1 KB
abstract section title layout series id month tex_title firstpage lastpage page order cycles bibtex_author author date address publisher container-title volume genre issued pdf extras
We consider the problem of unconstrained online convex optimization (OCO) with sub-exponential noise, a strictly more general problem than the standard OCO. In this setting, the learner receives a subgradient of the loss functions corrupted by sub-exponential noise and strives to achieve optimal regret guarantee, without knowledge of the competitor norm, i.e., in a parameter-free way. Recently, Cutkosky and Boahen (COLT 2017) proved that, given unbounded subgradients, it is impossible to guarantee a sublinear regret due to an exponential penalty. This paper shows that it is possible to go around the lower bound by allowing the observed subgradients to be unbounded via stochastic noise. However, the presence of unbounded noise in unconstrained OCO is challenging; existing algorithms do not provide near-optimal regret bounds or fail to have a guarantee. So, we design a novel parameter-free OCO algorithm for Banach space, which we call BANCO, via a reduction to betting on noisy coins. We show that BANCO achieves the optimal regret rate in our problem. Finally, we show the application of our results to obtain a parameter-free locally private stochastic subgradient descent algorithm, and the connection to the law of iterated logarithms.
contributed
Parameter-Free Online Convex Optimization with Sub-Exponential Noise
inproceedings
Proceedings of Machine Learning Research
jun19a
0
Parameter-Free Online Convex Optimization with Sub-Exponential Noise
1802
1823
1802-1823
1802
false
Jun, Kwang-Sung and Orabona, Francesco
given family
Kwang-Sung
Jun
given family
Francesco
Orabona
2019-06-25
PMLR
Proceedings of the Thirty-Second Conference on Learning Theory
99
inproceedings
date-parts
2019
6
25