diff --git a/README.md b/README.md
index 585479f7..d141dfe0 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,67 @@
+### Change log [2024-04-09 11:08:55]
+1. Item Updated: `coxph_trainer` (from version: `1.1.0` to `1.1.0`)
+2. Item Updated: `load_dataset` (from version: `1.2.0` to `1.2.0`)
+3. Item Updated: `question_answering` (from version: `0.4.0` to `0.4.0`)
+4. Item Updated: `azureml_serving` (from version: `1.1.0` to `1.1.0`)
+5. Item Updated: `hugging_face_serving` (from version: `1.1.0` to `1.1.0`)
+6. Item Updated: `concept_drift_streaming` (from version: `1.1.0` to `1.1.0`)
+7. Item Updated: `sql_to_file` (from version: `1.1.0` to `1.1.0`)
+8. Item Updated: `transcribe` (from version: `1.1.0` to `1.1.0`)
+9. Item Updated: `v2_model_tester` (from version: `1.1.0` to `1.1.0`)
+10. Item Updated: `xgb_test` (from version: `1.1.1` to `1.1.1`)
+11. Item Updated: `describe_spark` (from version: `1.1.0` to `1.1.0`)
+12. Item Updated: `test_classifier` (from version: `1.1.0` to `1.1.0`)
+13. Item Updated: `coxph_test` (from version: `1.1.0` to `1.1.0`)
+14. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`)
+15. Item Updated: `sklearn_classifier` (from version: `1.1.1` to `1.1.1`)
+16. Item Updated: `churn_server` (from version: `1.1.0` to `1.1.0`)
+17. Item Updated: `pii_recognizer` (from version: `0.3.0` to `0.3.0`)
+18. Item Updated: `gen_class_data` (from version: `1.2.0` to `1.2.0`)
+19. Item Updated: `open_archive` (from version: `1.1.0` to `1.1.0`)
+20. Item Updated: `structured_data_generator` (from version: `1.5.0` to `1.5.0`)
+21. Item Updated: `describe` (from version: `1.2.0` to `1.2.0`)
+22. Item Updated: `xgb_trainer` (from version: `1.1.1` to `1.1.1`)
+23. Item Updated: `xgb_serving` (from version: `1.1.2` to `1.1.2`)
+24. Item Updated: `send_email` (from version: `1.2.0` to `1.2.0`)
+25. Item Updated: `tf2_serving_v2` (from version: `1.1.0` to `1.1.0`)
+26. Item Updated: `get_offline_features` (from version: `1.2.0` to `1.2.0`)
+27. Item Updated: `slack_notify` (from version: `1.1.0` to `1.1.0`)
+28. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`)
+29. Item Updated: `arc_to_parquet` (from version: `1.4.1` to `1.4.1`)
+30. Item Updated: `bert_embeddings` (from version: `1.3.0` to `1.3.0`)
+31. Item Updated: `feature_perms` (from version: `1.1.0` to `1.1.0`)
+32. Item Updated: `concept_drift` (from version: `1.1.0` to `1.1.0`)
+33. Item Updated: `describe_dask` (from version: `1.1.0` to `1.1.0`)
+34. Item Updated: `batch_inference` (from version: `1.7.0` to `1.7.0`)
+35. Item Updated: `model_monitoring_stream` (from version: `1.1.0` to `1.1.0`)
+36. Item Updated: `huggingface_auto_trainer` (from version: `1.1.0` to `1.1.0`)
+37. Item Updated: `feature_selection` (from version: `1.4.0` to `1.4.0`)
+38. Item Updated: `pyannote_audio` (from version: `1.2.0` to `1.2.0`)
+39. Item Updated: `ingest` (from version: `1.1.0` to `1.1.0`)
+40. Item Updated: `batch_inference_v2` (from version: `2.5.0` to `2.5.0`)
+41. Item Updated: `validate_great_expectations` (from version: `1.1.0` to `1.1.0`)
+42. Item Updated: `model_server` (from version: `1.1.0` to `1.1.0`)
+43. Item Updated: `xgb_custom` (from version: `1.1.0` to `1.1.0`)
+44. Item Updated: `snowflake_dask` (from version: `1.1.0` to `1.1.0`)
+45. Item Updated: `azureml_utils` (from version: `1.3.0` to `1.3.0`)
+46. Item Updated: `github_utils` (from version: `1.1.0` to `1.1.0`)
+47. Item Updated: `pandas_profiling_report` (from version: `1.1.0` to `1.1.0`)
+48. Item Updated: `translate` (from version: `0.1.0` to `0.1.0`)
+49. Item Updated: `silero_vad` (from version: `1.3.0` to `1.3.0`)
+50. Item Updated: `tf1_serving` (from version: `1.1.0` to `1.1.0`)
+51. Item Updated: `model_monitoring_batch` (from version: `1.1.0` to `1.1.0`)
+52. Item Updated: `hugging_face_classifier_trainer` (from version: `0.3.0` to `0.3.0`)
+53. Item Updated: `stream_to_parquet` (from version: `1.1.0` to `1.1.0`)
+54. Item Updated: `load_dask` (from version: `1.1.0` to `1.1.0`)
+55. Item Updated: `text_to_audio_generator` (from version: `1.2.0` to `1.2.0`)
+56. Item Updated: `virtual_drift` (from version: `1.1.0` to `1.1.0`)
+57. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`)
+58. Item Updated: `auto_trainer` (from version: `1.7.0` to `1.7.0`)
+59. Item Updated: `v2_model_server` (from version: `1.1.0` to `1.1.0`)
+60. Item Updated: `rnn_serving` (from version: `1.1.0` to `1.1.0`)
+61. Item Updated: `sklearn_classifier_dask` (from version: `1.1.1` to `1.1.1`)
+62. Item Updated: `onnx_utils` (from version: `1.2.0` to `1.2.0`)
+
### Change log [2024-04-08 12:13:34]
1. Item Updated: `coxph_trainer` (from version: `1.1.0` to `1.1.0`)
2. Item Updated: `load_dataset` (from version: `1.2.0` to `1.2.0`)
diff --git a/catalog.json b/catalog.json
index 691963bf..5071f6ca 100644
--- a/catalog.json
+++ b/catalog.json
@@ -1 +1 @@
-{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
+{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "machine-learning", "data-preparation", "pytorch"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["huggingface", "machine-learning", "data-preparation", "pytorch"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.3.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/src/bert_embeddings.ipynb b/functions/master/bert_embeddings/1.3.0/src/bert_embeddings.ipynb
new file mode 100644
index 00000000..cb6d5584
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/src/bert_embeddings.ipynb
@@ -0,0 +1,503 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## BERT Embeddings Serverless Function\n",
+ "This notebook presents deployment of pretrained BERT model that outputs embeddings for given textual sequences as a serverless function. Embeddings are meaningful, contextual representations of text in the form of ndarrays that are used frequently as input to various learning tasks in the field of NLP."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Embeddings without bert"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "[One-Hot Encoding](https://en.wikipedia.org/wiki/One-hot) is a general method that can vectorize any categorical features. It is simple and fast to create and update the vectorization. \n",
+ "in case of text embeddings, each row is a sentence and each column is a word/char/[n-gram](https://en.wikipedia.org/wiki/N-gram) ."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# some sentences to do examine\n",
+ "sentences = ['the quick brown fox jumps over the lazy dog',\n",
+ " 'Hello I am Jacob',\n",
+ " 'Daniel visited Tel-Aviv last month']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "lets see the difference between bert embeddings and one-hot encoding"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'lazy', 'dog', 'Hello', 'I', 'am', 'Jacob', 'Daniel', 'visited', 'Tel-Aviv', 'last', 'month']\n"
+ ]
+ }
+ ],
+ "source": [
+ "# constructing a list of all the words (will be our columns) - make sure no duplicate words are set\n",
+ "tokens = []\n",
+ "for sentence in sentences:\n",
+ " for word in sentence.split():\n",
+ " tokens.append(word) if word not in tokens else \"\"\n",
+ "print(tokens)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# constructing the one hot vector\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "\n",
+ "one_hot = pd.DataFrame(columns = range(len(tokens)))\n",
+ "# filling our empty dataframe with each sentence encoding\n",
+ "for sentence in sentences:\n",
+ " vector = np.zeros(len(tokens))\n",
+ " for word in sentence.split():\n",
+ " vector[tokens.index(word)]=1\n",
+ " one_hot = one_hot.append(pd.Series(vector),ignore_index=True)\n",
+ "one_hot.columns = tokens"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " the \n",
+ " quick \n",
+ " brown \n",
+ " fox \n",
+ " jumps \n",
+ " over \n",
+ " lazy \n",
+ " dog \n",
+ " Hello \n",
+ " I \n",
+ " am \n",
+ " Jacob \n",
+ " Daniel \n",
+ " visited \n",
+ " Tel-Aviv \n",
+ " last \n",
+ " month \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " 1.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " the quick brown fox jumps over lazy dog Hello I am Jacob \\\n",
+ "0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 \n",
+ "2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
+ "\n",
+ " Daniel visited Tel-Aviv last month \n",
+ "0 0.0 0.0 0.0 0.0 0.0 \n",
+ "1 0.0 0.0 0.0 0.0 0.0 \n",
+ "2 1.0 1.0 1.0 1.0 1.0 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "one_hot"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The table above represents the one-hot encoding of our sentences, each row is a sentence and each column is a word.\n",
+ "this representation is very slim and will be a very weak learning dataset."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Introducing Bert embeddings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from mlrun import import_function, auto_mount"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# importing the function from the hub\n",
+ "fn = import_function(\"hub://bert_embeddings\").apply(auto_mount())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-02-02 09:29:59,002 [info] Starting remote function deploy\n",
+ "2023-02-02 09:29:59 (info) Deploying function\n",
+ "2023-02-02 09:29:59 (info) Building\n",
+ "2023-02-02 09:29:59 (info) Staging files and preparing base images\n",
+ "2023-02-02 09:29:59 (info) Building processor image\n",
+ "2023-02-02 09:32:09 (info) Build complete\n",
+ "2023-02-02 09:32:35 (info) Function deploy complete\n",
+ "> 2023-02-02 09:32:36,059 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-default-bert-embeddings.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-bert-embeddings-default.default-tenant.app.cto-office.iguazio-cd1.com/']}\n"
+ ]
+ }
+ ],
+ "source": [
+ "# deploying the function\n",
+ "addr = fn.deploy()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import requests\n",
+ "import json\n",
+ "# sending a request to the function endpoint to get the sentences' embeddings\n",
+ "resp = requests.post(addr, json=json.dumps(sentences))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pickle\n",
+ "output_embeddings = pickle.loads(resp.content)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "embeddings per token shape: (3, 11, 768), pooled embeddings shape: (3, 768)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(f'embeddings per token shape: {output_embeddings[0].shape}, pooled embeddings shape: {output_embeddings[1].shape}')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1 \n",
+ " 2 \n",
+ " 3 \n",
+ " 4 \n",
+ " 5 \n",
+ " 6 \n",
+ " 7 \n",
+ " 8 \n",
+ " 9 \n",
+ " ... \n",
+ " 758 \n",
+ " 759 \n",
+ " 760 \n",
+ " 761 \n",
+ " 762 \n",
+ " 763 \n",
+ " 764 \n",
+ " 765 \n",
+ " 766 \n",
+ " 767 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -0.733322 \n",
+ " -0.223540 \n",
+ " 0.342462 \n",
+ " 0.383463 \n",
+ " -0.164796 \n",
+ " 0.040522 \n",
+ " 0.802845 \n",
+ " 0.152842 \n",
+ " 0.331639 \n",
+ " -0.999779 \n",
+ " ... \n",
+ " 0.206564 \n",
+ " 0.231415 \n",
+ " 0.196433 \n",
+ " 0.797908 \n",
+ " 0.435175 \n",
+ " 0.749370 \n",
+ " 0.246098 \n",
+ " 0.427603 \n",
+ " -0.577384 \n",
+ " 0.842063 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -0.953005 \n",
+ " -0.535132 \n",
+ " -0.743822 \n",
+ " 0.893934 \n",
+ " 0.646276 \n",
+ " -0.279388 \n",
+ " 0.943513 \n",
+ " 0.275504 \n",
+ " -0.555109 \n",
+ " -0.999992 \n",
+ " ... \n",
+ " 0.582386 \n",
+ " -0.004614 \n",
+ " 0.976079 \n",
+ " 0.931517 \n",
+ " -0.391442 \n",
+ " 0.530384 \n",
+ " 0.675933 \n",
+ " -0.682721 \n",
+ " -0.746339 \n",
+ " 0.957809 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " -0.843678 \n",
+ " -0.453405 \n",
+ " -0.826011 \n",
+ " 0.650805 \n",
+ " 0.494036 \n",
+ " -0.154117 \n",
+ " 0.821642 \n",
+ " 0.349507 \n",
+ " -0.650629 \n",
+ " -0.999978 \n",
+ " ... \n",
+ " 0.618286 \n",
+ " -0.336700 \n",
+ " 0.936262 \n",
+ " 0.857577 \n",
+ " -0.787489 \n",
+ " 0.246137 \n",
+ " 0.676243 \n",
+ " -0.612532 \n",
+ " -0.708786 \n",
+ " 0.840879 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
3 rows × 768 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " 0 1 2 3 4 5 6 \\\n",
+ "0 -0.733322 -0.223540 0.342462 0.383463 -0.164796 0.040522 0.802845 \n",
+ "1 -0.953005 -0.535132 -0.743822 0.893934 0.646276 -0.279388 0.943513 \n",
+ "2 -0.843678 -0.453405 -0.826011 0.650805 0.494036 -0.154117 0.821642 \n",
+ "\n",
+ " 7 8 9 ... 758 759 760 761 \\\n",
+ "0 0.152842 0.331639 -0.999779 ... 0.206564 0.231415 0.196433 0.797908 \n",
+ "1 0.275504 -0.555109 -0.999992 ... 0.582386 -0.004614 0.976079 0.931517 \n",
+ "2 0.349507 -0.650629 -0.999978 ... 0.618286 -0.336700 0.936262 0.857577 \n",
+ "\n",
+ " 762 763 764 765 766 767 \n",
+ "0 0.435175 0.749370 0.246098 0.427603 -0.577384 0.842063 \n",
+ "1 -0.391442 0.530384 0.675933 -0.682721 -0.746339 0.957809 \n",
+ "2 -0.787489 0.246137 0.676243 -0.612532 -0.708786 0.840879 \n",
+ "\n",
+ "[3 rows x 768 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "pd.DataFrame(output_embeddings[1])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "we can see that the size of the first dimension of the outputs is three since we passed in three sequences. Also the intermediate dimension of the first output is the maximal number of tokens across all input sequences. Sequences with less tokens are padded with zero values. \n",
+ "Note that the first input has an intermediate dimension of size 11 that corresponds to the number of max tokens in the input sequence after addition of two special tokens marking beginning and end of a sequence by the tokenizer. \n",
+ "The last dimension for both is of size 768 which is the embedding dimension for this default configuration of bert. \n",
+ "Now you tell me, which encoding are you gonna use in your project ??"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/functions/master/bert_embeddings/1.3.0/src/bert_embeddings.py b/functions/master/bert_embeddings/1.3.0/src/bert_embeddings.py
new file mode 100644
index 00000000..109081b1
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/src/bert_embeddings.py
@@ -0,0 +1,41 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import json
+import pickle
+
+import torch
+from transformers import BertModel, BertTokenizer
+
+
+def init_context(context):
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
+ model = BertModel.from_pretrained("bert-base-uncased")
+ model.eval()
+
+ setattr(context.user_data, "tokenizer", tokenizer)
+ setattr(context.user_data, "model", model)
+
+
+def handler(context, event):
+ docs = json.loads(event.body)
+ docs = [doc.lower() for doc in docs]
+ docs = context.user_data.tokenizer.batch_encode_plus(
+ docs, pad_to_max_length=True, return_tensors="pt"
+ )
+
+ with torch.no_grad():
+ embeddings = context.user_data.model(**docs)
+ embeddings = [embeddings[0].numpy(), embeddings[1].numpy()]
+ return pickle.dumps(embeddings)
diff --git a/functions/master/bert_embeddings/1.3.0/src/function.yaml b/functions/master/bert_embeddings/1.3.0/src/function.yaml
new file mode 100644
index 00000000..15319c16
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/src/function.yaml
@@ -0,0 +1,42 @@
+kind: remote
+metadata:
+ name: bert-embeddings
+ tag: ''
+ hash: ecf6647fe4716e0df54ce50278b735034536a568
+ project: ''
+ labels:
+ framework: pytorch
+ categories:
+ - huggingface
+ - machine-learning
+ - data-preparation
+ - pytorch
+spec:
+ command: ''
+ args: []
+ image: mlrun/mlrun
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IGpzb24KaW1wb3J0IHBpY2tsZQoKaW1wb3J0IHRvcmNoCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBCZXJ0TW9kZWwsIEJlcnRUb2tlbml6ZXIKCgpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgdG9rZW5pemVyID0gQmVydFRva2VuaXplci5mcm9tX3ByZXRyYWluZWQoImJlcnQtYmFzZS11bmNhc2VkIikKICAgIG1vZGVsID0gQmVydE1vZGVsLmZyb21fcHJldHJhaW5lZCgiYmVydC1iYXNlLXVuY2FzZWQiKQogICAgbW9kZWwuZXZhbCgpCgogICAgc2V0YXR0cihjb250ZXh0LnVzZXJfZGF0YSwgInRva2VuaXplciIsIHRva2VuaXplcikKICAgIHNldGF0dHIoY29udGV4dC51c2VyX2RhdGEsICJtb2RlbCIsIG1vZGVsKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIGRvY3MgPSBqc29uLmxvYWRzKGV2ZW50LmJvZHkpCiAgICBkb2NzID0gW2RvYy5sb3dlcigpIGZvciBkb2MgaW4gZG9jc10KICAgIGRvY3MgPSBjb250ZXh0LnVzZXJfZGF0YS50b2tlbml6ZXIuYmF0Y2hfZW5jb2RlX3BsdXMoCiAgICAgICAgZG9jcywgcGFkX3RvX21heF9sZW5ndGg9VHJ1ZSwgcmV0dXJuX3RlbnNvcnM9InB0IgogICAgKQoKICAgIHdpdGggdG9yY2gubm9fZ3JhZCgpOgogICAgICAgIGVtYmVkZGluZ3MgPSBjb250ZXh0LnVzZXJfZGF0YS5tb2RlbCgqKmRvY3MpCiAgICBlbWJlZGRpbmdzID0gW2VtYmVkZGluZ3NbMF0ubnVtcHkoKSwgZW1iZWRkaW5nc1sxXS5udW1weSgpXQogICAgcmV0dXJuIHBpY2tsZS5kdW1wcyhlbWJlZGRpbmdzKQo=
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - torch
+ description: Get BERT based embeddings for given text
+ default_handler: ''
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
+ priority_class_name: ''
+ preemption_mode: prevent
+ min_replicas: 1
+ max_replicas: 4
+ source: ''
+ function_handler: bert_embeddings:handler
+ base_image_pull: false
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
diff --git a/functions/master/bert_embeddings/1.3.0/src/item.yaml b/functions/master/bert_embeddings/1.3.0/src/item.yaml
new file mode 100644
index 00000000..f96e54ea
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/src/item.yaml
@@ -0,0 +1,28 @@
+apiVersion: v1
+categories:
+- huggingface
+- machine-learning
+- data-preparation
+- pytorch
+description: Get BERT based embeddings for given text
+doc: ''
+example: bert_embeddings.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ framework: pytorch
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.4.1
+name: bert-embeddings
+platformVersion: 3.5.3
+spec:
+ filename: bert_embeddings.py
+ handler: handler
+ image: mlrun/mlrun
+ kind: nuclio
+ requirements:
+ - torch
+url: ''
+version: 1.3.0
diff --git a/functions/master/bert_embeddings/1.3.0/src/requirements.txt b/functions/master/bert_embeddings/1.3.0/src/requirements.txt
new file mode 100644
index 00000000..747b7aa9
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/src/requirements.txt
@@ -0,0 +1 @@
+transformers
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/src/test_bert_embeddings.py b/functions/master/bert_embeddings/1.3.0/src/test_bert_embeddings.py
new file mode 100644
index 00000000..7ad9101c
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/src/test_bert_embeddings.py
@@ -0,0 +1,32 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from bert_embeddings import init_context,handler
+import nuclio
+import json
+import pickle
+import numpy as np
+
+ARCHIVE = "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz"
+ARTIFACTS_PATH = 'artifacts'
+
+
+def test_bert_embeddings():
+ event = nuclio.Event(body=json.dumps(['John loves Mary']))
+ ctx = nuclio.Context()
+ init_context(ctx)
+ outputs = pickle.loads(handler(ctx, event))
+ assert (True if abs(np.mean(outputs[0]) - -0.011996539) <= 0.0001 else False) is True
+ assert (True if abs(np.mean(outputs[0]) - -0.011996539) > 0 else False) is True
+
diff --git a/functions/master/bert_embeddings/1.3.0/static/bert_embeddings.html b/functions/master/bert_embeddings/1.3.0/static/bert_embeddings.html
new file mode 100644
index 00000000..863a0261
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/static/bert_embeddings.html
@@ -0,0 +1,181 @@
+
+
+
+
+
+
+
+bert_embeddings.bert_embeddings
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Source code for bert_embeddings.bert_embeddings
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import json
+import pickle
+
+import torch
+from transformers import BertModel , BertTokenizer
+
+
+[docs] def init_context ( context ):
+
tokenizer = BertTokenizer . from_pretrained ( "bert-base-uncased" )
+
model = BertModel . from_pretrained ( "bert-base-uncased" )
+
model . eval ()
+
+
setattr ( context . user_data , "tokenizer" , tokenizer )
+
setattr ( context . user_data , "model" , model )
+
+
+[docs] def handler ( context , event ):
+
docs = json . loads ( event . body )
+
docs = [ doc . lower () for doc in docs ]
+
docs = context . user_data . tokenizer . batch_encode_plus (
+
docs , pad_to_max_length = True , return_tensors = "pt"
+
)
+
+
with torch . no_grad ():
+
embeddings = context . user_data . model ( ** docs )
+
embeddings = [ embeddings [ 0 ] . numpy (), embeddings [ 1 ] . numpy ()]
+
return pickle . dumps ( embeddings )
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/static/documentation.html b/functions/master/bert_embeddings/1.3.0/static/documentation.html
new file mode 100644
index 00000000..b99c805d
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/static/documentation.html
@@ -0,0 +1,230 @@
+
+
+
+
+
+
+
+bert_embeddings package
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
bert_embeddings package
+
+
+
+
+
+
+bert_embeddings package
+
+
+bert_embeddings.bert_embeddings module
+
+
+bert_embeddings.bert_embeddings. handler ( context , event ) [source]
+
+
+
+bert_embeddings.bert_embeddings. init_context ( context ) [source]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/static/example.html b/functions/master/bert_embeddings/1.3.0/static/example.html
new file mode 100644
index 00000000..59984155
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/static/example.html
@@ -0,0 +1,584 @@
+
+
+
+
+
+
+
+BERT Embeddings Serverless Function
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
BERT Embeddings Serverless Function
+
+
+
+
+
+
+BERT Embeddings Serverless Function
+This notebook presents deployment of pretrained BERT model that outputs embeddings for given textual sequences as a serverless function. Embeddings are meaningful, contextual representations of text in the form of ndarrays that are used frequently as input to various learning tasks in the field of NLP.
+
+
+Embeddings without bert
+One-Hot Encoding is a general method that can vectorize any categorical features. It is simple and fast to create and update the vectorization.
+in case of text embeddings, each row is a sentence and each column is a word/char/n-gram .
+
+lets see the difference between bert embeddings and one-hot encoding
+
+
+
+
['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'lazy', 'dog', 'Hello', 'I', 'am', 'Jacob', 'Daniel', 'visited', 'Tel-Aviv', 'last', 'month']
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+the
+quick
+brown
+fox
+jumps
+over
+lazy
+dog
+Hello
+I
+am
+Jacob
+Daniel
+visited
+Tel-Aviv
+last
+month
+
+
+
+
+0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+1.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+1
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+1.0
+1.0
+1.0
+1.0
+0.0
+0.0
+0.0
+0.0
+0.0
+
+
+2
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+0.0
+1.0
+1.0
+1.0
+1.0
+1.0
+
+
+
+
+
+The table above represents the one-hot encoding of our sentences, each row is a sentence and each column is a word.
+this representation is very slim and will be a very weak learning dataset.
+
+
+Introducing Bert embeddings
+
+
+
+
+
+
> 2023-02-02 09:29:59,002 [info] Starting remote function deploy
+2023-02-02 09:29:59 (info) Deploying function
+2023-02-02 09:29:59 (info) Building
+2023-02-02 09:29:59 (info) Staging files and preparing base images
+2023-02-02 09:29:59 (info) Building processor image
+2023-02-02 09:32:09 (info) Build complete
+2023-02-02 09:32:35 (info) Function deploy complete
+> 2023-02-02 09:32:36,059 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-default-bert-embeddings.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-bert-embeddings-default.default-tenant.app.cto-office.iguazio-cd1.com/']}
+
+
+
+
+
+
+
+
+
+
embeddings per token shape: (3, 11, 768), pooled embeddings shape: (3, 768)
+
+
+
+
+
+
+
+
+
+
+
+
+
+0
+1
+2
+3
+4
+5
+6
+7
+8
+9
+...
+758
+759
+760
+761
+762
+763
+764
+765
+766
+767
+
+
+
+
+0
+-0.733322
+-0.223540
+0.342462
+0.383463
+-0.164796
+0.040522
+0.802845
+0.152842
+0.331639
+-0.999779
+...
+0.206564
+0.231415
+0.196433
+0.797908
+0.435175
+0.749370
+0.246098
+0.427603
+-0.577384
+0.842063
+
+
+1
+-0.953005
+-0.535132
+-0.743822
+0.893934
+0.646276
+-0.279388
+0.943513
+0.275504
+-0.555109
+-0.999992
+...
+0.582386
+-0.004614
+0.976079
+0.931517
+-0.391442
+0.530384
+0.675933
+-0.682721
+-0.746339
+0.957809
+
+
+2
+-0.843678
+-0.453405
+-0.826011
+0.650805
+0.494036
+-0.154117
+0.821642
+0.349507
+-0.650629
+-0.999978
+...
+0.618286
+-0.336700
+0.936262
+0.857577
+-0.787489
+0.246137
+0.676243
+-0.612532
+-0.708786
+0.840879
+
+
+
+
3 rows × 768 columns
+
+
+we can see that the size of the first dimension of the outputs is three since we passed in three sequences. Also the intermediate dimension of the first output is the maximal number of tokens across all input sequences. Sequences with less tokens are padded with zero values.
+Note that the first input has an intermediate dimension of size 11 that corresponds to the number of max tokens in the input sequence after addition of two special tokens marking beginning and end of a sequence by the tokenizer.
+The last dimension for both is of size 768 which is the embedding dimension for this default configuration of bert.
+Now you tell me, which encoding are you gonna use in your project ??
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/static/function.html b/functions/master/bert_embeddings/1.3.0/static/function.html
new file mode 100644
index 00000000..9ab9c5fd
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/static/function.html
@@ -0,0 +1,64 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+kind: remote
+metadata:
+ name: bert-embeddings
+ tag: ''
+ hash: ecf6647fe4716e0df54ce50278b735034536a568
+ project: ''
+ labels:
+ framework: pytorch
+ categories:
+ - huggingface
+ - machine-learning
+ - data-preparation
+ - pytorch
+spec:
+ command: ''
+ args: []
+ image: mlrun/mlrun
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IGpzb24KaW1wb3J0IHBpY2tsZQoKaW1wb3J0IHRvcmNoCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBCZXJ0TW9kZWwsIEJlcnRUb2tlbml6ZXIKCgpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgdG9rZW5pemVyID0gQmVydFRva2VuaXplci5mcm9tX3ByZXRyYWluZWQoImJlcnQtYmFzZS11bmNhc2VkIikKICAgIG1vZGVsID0gQmVydE1vZGVsLmZyb21fcHJldHJhaW5lZCgiYmVydC1iYXNlLXVuY2FzZWQiKQogICAgbW9kZWwuZXZhbCgpCgogICAgc2V0YXR0cihjb250ZXh0LnVzZXJfZGF0YSwgInRva2VuaXplciIsIHRva2VuaXplcikKICAgIHNldGF0dHIoY29udGV4dC51c2VyX2RhdGEsICJtb2RlbCIsIG1vZGVsKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIGRvY3MgPSBqc29uLmxvYWRzKGV2ZW50LmJvZHkpCiAgICBkb2NzID0gW2RvYy5sb3dlcigpIGZvciBkb2MgaW4gZG9jc10KICAgIGRvY3MgPSBjb250ZXh0LnVzZXJfZGF0YS50b2tlbml6ZXIuYmF0Y2hfZW5jb2RlX3BsdXMoCiAgICAgICAgZG9jcywgcGFkX3RvX21heF9sZW5ndGg9VHJ1ZSwgcmV0dXJuX3RlbnNvcnM9InB0IgogICAgKQoKICAgIHdpdGggdG9yY2gubm9fZ3JhZCgpOgogICAgICAgIGVtYmVkZGluZ3MgPSBjb250ZXh0LnVzZXJfZGF0YS5tb2RlbCgqKmRvY3MpCiAgICBlbWJlZGRpbmdzID0gW2VtYmVkZGluZ3NbMF0ubnVtcHkoKSwgZW1iZWRkaW5nc1sxXS5udW1weSgpXQogICAgcmV0dXJuIHBpY2tsZS5kdW1wcyhlbWJlZGRpbmdzKQo=
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - torch
+ description: Get BERT based embeddings for given text
+ default_handler: ''
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
+ priority_class_name: ''
+ preemption_mode: prevent
+ min_replicas: 1
+ max_replicas: 4
+ source: ''
+ function_handler: bert_embeddings:handler
+ base_image_pull: false
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/static/item.html b/functions/master/bert_embeddings/1.3.0/static/item.html
new file mode 100644
index 00000000..25e99ef6
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/static/item.html
@@ -0,0 +1,50 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+apiVersion: v1
+categories:
+- huggingface
+- machine-learning
+- data-preparation
+- pytorch
+description: Get BERT based embeddings for given text
+doc: ''
+example: bert_embeddings.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ framework: pytorch
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.4.1
+name: bert-embeddings
+platformVersion: 3.5.3
+spec:
+ filename: bert_embeddings.py
+ handler: handler
+ image: mlrun/mlrun
+ kind: nuclio
+ requirements:
+ - torch
+url: ''
+version: 1.3.0
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/1.3.0/static/source.html b/functions/master/bert_embeddings/1.3.0/static/source.html
new file mode 100644
index 00000000..1df4accf
--- /dev/null
+++ b/functions/master/bert_embeddings/1.3.0/static/source.html
@@ -0,0 +1,63 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import json
+import pickle
+
+import torch
+from transformers import BertModel, BertTokenizer
+
+
+def init_context(context):
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
+ model = BertModel.from_pretrained("bert-base-uncased")
+ model.eval()
+
+ setattr(context.user_data, "tokenizer", tokenizer)
+ setattr(context.user_data, "model", model)
+
+
+def handler(context, event):
+ docs = json.loads(event.body)
+ docs = [doc.lower() for doc in docs]
+ docs = context.user_data.tokenizer.batch_encode_plus(
+ docs, pad_to_max_length=True, return_tensors="pt"
+ )
+
+ with torch.no_grad():
+ embeddings = context.user_data.model(**docs)
+ embeddings = [embeddings[0].numpy(), embeddings[1].numpy()]
+ return pickle.dumps(embeddings)
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/bert_embeddings/latest/src/function.yaml b/functions/master/bert_embeddings/latest/src/function.yaml
index 4a3fcf54..15319c16 100644
--- a/functions/master/bert_embeddings/latest/src/function.yaml
+++ b/functions/master/bert_embeddings/latest/src/function.yaml
@@ -2,13 +2,15 @@ kind: remote
metadata:
name: bert-embeddings
tag: ''
- hash: 57a2ce8e0da1f6e813a8649e9ea6fcbb69a1ce5f
+ hash: ecf6647fe4716e0df54ce50278b735034536a568
project: ''
labels:
framework: pytorch
categories:
+ - huggingface
- machine-learning
- data-preparation
+ - pytorch
spec:
command: ''
args: []
@@ -16,15 +18,17 @@ spec:
build:
functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IGpzb24KaW1wb3J0IHBpY2tsZQoKaW1wb3J0IHRvcmNoCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBCZXJ0TW9kZWwsIEJlcnRUb2tlbml6ZXIKCgpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgdG9rZW5pemVyID0gQmVydFRva2VuaXplci5mcm9tX3ByZXRyYWluZWQoImJlcnQtYmFzZS11bmNhc2VkIikKICAgIG1vZGVsID0gQmVydE1vZGVsLmZyb21fcHJldHJhaW5lZCgiYmVydC1iYXNlLXVuY2FzZWQiKQogICAgbW9kZWwuZXZhbCgpCgogICAgc2V0YXR0cihjb250ZXh0LnVzZXJfZGF0YSwgInRva2VuaXplciIsIHRva2VuaXplcikKICAgIHNldGF0dHIoY29udGV4dC51c2VyX2RhdGEsICJtb2RlbCIsIG1vZGVsKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIGRvY3MgPSBqc29uLmxvYWRzKGV2ZW50LmJvZHkpCiAgICBkb2NzID0gW2RvYy5sb3dlcigpIGZvciBkb2MgaW4gZG9jc10KICAgIGRvY3MgPSBjb250ZXh0LnVzZXJfZGF0YS50b2tlbml6ZXIuYmF0Y2hfZW5jb2RlX3BsdXMoCiAgICAgICAgZG9jcywgcGFkX3RvX21heF9sZW5ndGg9VHJ1ZSwgcmV0dXJuX3RlbnNvcnM9InB0IgogICAgKQoKICAgIHdpdGggdG9yY2gubm9fZ3JhZCgpOgogICAgICAgIGVtYmVkZGluZ3MgPSBjb250ZXh0LnVzZXJfZGF0YS5tb2RlbCgqKmRvY3MpCiAgICBlbWJlZGRpbmdzID0gW2VtYmVkZGluZ3NbMF0ubnVtcHkoKSwgZW1iZWRkaW5nc1sxXS5udW1weSgpXQogICAgcmV0dXJuIHBpY2tsZS5kdW1wcyhlbWJlZGRpbmdzKQo=
commands: []
- code_origin: http://github.com/aviaIguazio/functions.git#a1c9940e4c2420c88063768b4038e29b1f4e37a6:/Users/Avi_Asulin/PycharmProjects/mlrun/functions/bert_embeddings/bert_embeddings.py
- origin_filename: /Users/Avi_Asulin/PycharmProjects/mlrun/functions/bert_embeddings/bert_embeddings.py
+ code_origin: ''
+ origin_filename: ''
requirements:
- torch
description: Get BERT based embeddings for given text
default_handler: ''
disable_auto_mount: false
clone_target_dir: ''
- env: []
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
priority_class_name: ''
preemption_mode: prevent
min_replicas: 1
diff --git a/functions/master/bert_embeddings/latest/src/item.yaml b/functions/master/bert_embeddings/latest/src/item.yaml
index f0eaed1c..f96e54ea 100644
--- a/functions/master/bert_embeddings/latest/src/item.yaml
+++ b/functions/master/bert_embeddings/latest/src/item.yaml
@@ -1,7 +1,9 @@
apiVersion: v1
categories:
+- huggingface
- machine-learning
- data-preparation
+- pytorch
description: Get BERT based embeddings for given text
doc: ''
example: bert_embeddings.ipynb
@@ -23,4 +25,4 @@ spec:
requirements:
- torch
url: ''
-version: 1.2.0
+version: 1.3.0
diff --git a/functions/master/bert_embeddings/latest/static/function.html b/functions/master/bert_embeddings/latest/static/function.html
index 985f9e26..9ab9c5fd 100644
--- a/functions/master/bert_embeddings/latest/static/function.html
+++ b/functions/master/bert_embeddings/latest/static/function.html
@@ -19,13 +19,15 @@
metadata:
name: bert-embeddings
tag: ''
- hash: 57a2ce8e0da1f6e813a8649e9ea6fcbb69a1ce5f
+ hash: ecf6647fe4716e0df54ce50278b735034536a568
project: ''
labels:
framework: pytorch
categories:
+ - huggingface
- machine-learning
- data-preparation
+ - pytorch
spec:
command: ''
args: []
@@ -33,15 +35,17 @@
build:
functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKaW1wb3J0IGpzb24KaW1wb3J0IHBpY2tsZQoKaW1wb3J0IHRvcmNoCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBCZXJ0TW9kZWwsIEJlcnRUb2tlbml6ZXIKCgpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgdG9rZW5pemVyID0gQmVydFRva2VuaXplci5mcm9tX3ByZXRyYWluZWQoImJlcnQtYmFzZS11bmNhc2VkIikKICAgIG1vZGVsID0gQmVydE1vZGVsLmZyb21fcHJldHJhaW5lZCgiYmVydC1iYXNlLXVuY2FzZWQiKQogICAgbW9kZWwuZXZhbCgpCgogICAgc2V0YXR0cihjb250ZXh0LnVzZXJfZGF0YSwgInRva2VuaXplciIsIHRva2VuaXplcikKICAgIHNldGF0dHIoY29udGV4dC51c2VyX2RhdGEsICJtb2RlbCIsIG1vZGVsKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIGRvY3MgPSBqc29uLmxvYWRzKGV2ZW50LmJvZHkpCiAgICBkb2NzID0gW2RvYy5sb3dlcigpIGZvciBkb2MgaW4gZG9jc10KICAgIGRvY3MgPSBjb250ZXh0LnVzZXJfZGF0YS50b2tlbml6ZXIuYmF0Y2hfZW5jb2RlX3BsdXMoCiAgICAgICAgZG9jcywgcGFkX3RvX21heF9sZW5ndGg9VHJ1ZSwgcmV0dXJuX3RlbnNvcnM9InB0IgogICAgKQoKICAgIHdpdGggdG9yY2gubm9fZ3JhZCgpOgogICAgICAgIGVtYmVkZGluZ3MgPSBjb250ZXh0LnVzZXJfZGF0YS5tb2RlbCgqKmRvY3MpCiAgICBlbWJlZGRpbmdzID0gW2VtYmVkZGluZ3NbMF0ubnVtcHkoKSwgZW1iZWRkaW5nc1sxXS5udW1weSgpXQogICAgcmV0dXJuIHBpY2tsZS5kdW1wcyhlbWJlZGRpbmdzKQo=
commands: []
- code_origin: http://github.com/aviaIguazio/functions.git#a1c9940e4c2420c88063768b4038e29b1f4e37a6:/Users/Avi_Asulin/PycharmProjects/mlrun/functions/bert_embeddings/bert_embeddings.py
- origin_filename: /Users/Avi_Asulin/PycharmProjects/mlrun/functions/bert_embeddings/bert_embeddings.py
+ code_origin: ''
+ origin_filename: ''
requirements:
- torch
description: Get BERT based embeddings for given text
default_handler: ''
disable_auto_mount: false
clone_target_dir: ''
- env: []
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
priority_class_name: ''
preemption_mode: prevent
min_replicas: 1
diff --git a/functions/master/bert_embeddings/latest/static/item.html b/functions/master/bert_embeddings/latest/static/item.html
index 612e78b6..25e99ef6 100644
--- a/functions/master/bert_embeddings/latest/static/item.html
+++ b/functions/master/bert_embeddings/latest/static/item.html
@@ -17,8 +17,10 @@
apiVersion: v1
categories:
+- huggingface
- machine-learning
- data-preparation
+- pytorch
description: Get BERT based embeddings for given text
doc: ''
example: bert_embeddings.ipynb
@@ -40,7 +42,7 @@
requirements:
- torch
url: ''
-version: 1.2.0
+version: 1.3.0
diff --git a/functions/master/catalog.json b/functions/master/catalog.json
index 3c25469b..cc0de364 100644
--- a/functions/master/catalog.json
+++ b/functions/master/catalog.json
@@ -1 +1 @@
-{"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
+{"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "machine-learning", "data-preparation", "pytorch"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["huggingface", "machine-learning", "data-preparation", "pytorch"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.3.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.2.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.5", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.14.1", "onnxruntime~=1.16.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.3.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/src/function.yaml b/functions/master/hugging_face_classifier_trainer/0.3.0/src/function.yaml
new file mode 100644
index 00000000..65f5aeb1
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/src/function.yaml
@@ -0,0 +1,370 @@
+kind: job
+metadata:
+ name: hugging-face-classifier-trainer
+ tag: ''
+ hash: f9d8aa4a2c66e24fa418bb163829adc3e2ada06c
+ project: ''
+ labels:
+ author: davids
+ categories:
+ - deep-learning
+ - huggingface
+ - machine-learning
+ - model-training
+spec:
+ command: ''
+ args: []
+ image: ''
+ build:
+ functionSourceCode: aW1wb3J0IG9zCmltcG9ydCBzaHV0aWwKaW1wb3J0IHRlbXBmaWxlCmltcG9ydCB6aXBmaWxlCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSB0eXBpbmcgaW1wb3J0IEFueSwgQ2FsbGFibGUsIERpY3QsIExpc3QsIE9wdGlvbmFsLCBUdXBsZSwgVW5pb24KCmltcG9ydCBtbHJ1bgppbXBvcnQgbWxydW4uZGF0YXN0b3JlCmltcG9ydCBtbHJ1bi51dGlscwppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgdHJhbnNmb3JtZXJzCmZyb20gZGF0YXNldHMgaW1wb3J0IERhdGFzZXQsIGxvYWRfZGF0YXNldCwgbG9hZF9tZXRyaWMKZnJvbSBtbHJ1biBpbXBvcnQgTUxDbGllbnRDdHgKZnJvbSBtbHJ1biBpbXBvcnQgZmVhdHVyZV9zdG9yZSBhcyBmcwpmcm9tIG1scnVuLmFydGlmYWN0cyBpbXBvcnQgQXJ0aWZhY3QsIFBsb3RseUFydGlmYWN0CmZyb20gbWxydW4uZGF0YXN0b3JlIGltcG9ydCBEYXRhSXRlbQpmcm9tIG1scnVuLmZyYW1ld29ya3MuX2NvbW1vbiBpbXBvcnQgQ29tbW9uVHlwZXMsIE1MUnVuSW50ZXJmYWNlCmZyb20gbWxydW4udXRpbHMgaW1wb3J0IGNyZWF0ZV9jbGFzcwpmcm9tIHBsb3RseSBpbXBvcnQgZ3JhcGhfb2JqZWN0cyBhcyBnbwpmcm9tIHNrbGVhcm4ubW9kZWxfc2VsZWN0aW9uIGltcG9ydCB0cmFpbl90ZXN0X3NwbGl0CmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCAoCiAgICBBdXRvVG9rZW5pemVyLAogICAgRGF0YUNvbGxhdG9yV2l0aFBhZGRpbmcsCiAgICBFdmFsUHJlZGljdGlvbiwKICAgIFByZVRyYWluZWRNb2RlbCwKICAgIFByZVRyYWluZWRUb2tlbml6ZXIsCiAgICBUcmFpbmVyLAogICAgVHJhaW5lckNhbGxiYWNrLAogICAgVHJhaW5lckNvbnRyb2wsCiAgICBUcmFpbmVyU3RhdGUsCiAgICBUcmFpbmluZ0FyZ3VtZW50cywKKQoKCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLWZyb20gTUxSVU4tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpjbGFzcyBIRk9SVE9wdGltaXplck1MUnVuSW50ZXJmYWNlKE1MUnVuSW50ZXJmYWNlLCBBQkMpOgogICAgIiIiCiAgICBJbnRlcmZhY2UgZm9yIGFkZGluZyBNTFJ1biBmZWF0dXJlcyBmb3IgdGVuc29yZmxvdyBrZXJhcyBBUEkuCiAgICAiIiIKCiAgICAjIE1MUnVuJ3MgY29udGV4dCBkZWZhdWx0IG5hbWU6CiAgICBERUZBVUxUX0NPTlRFWFRfTkFNRSA9ICJtbHJ1bi1odWdnaW5nZmFjZSIKCiAgICAjIEF0dHJpYnV0ZXMgdG8gYmUgaW5zZXJ0ZWQgc28gdGhlIE1MUnVuIGludGVyZmFjZSB3aWxsIGJlIGZ1bGx5IGVuYWJsZWQuCiAgICBfUFJPUEVSVElFUyA9IHsKICAgICAgICAiX2F1dG9fbG9nIjogRmFsc2UsCiAgICAgICAgIl9jb250ZXh0IjogTm9uZSwKICAgICAgICAiX21vZGVsX25hbWUiOiAibW9kZWwiLAogICAgICAgICJfdGFnIjogIiIsCiAgICAgICAgIl9sYWJlbHMiOiBOb25lLAogICAgICAgICJfZXh0cmFfZGF0YSI6IE5vbmUsCiAgICB9CiAgICBfTUVUSE9EUyA9IFsiZW5hYmxlX2F1dG9fbG9nZ2luZyJdCiAgICAjIEF0dHJpYnV0ZXMgdG8gcmVwbGFjZSBzbyB0aGUgTUxSdW4gaW50ZXJmYWNlIHdpbGwgYmUgZnVsbHkgZW5hYmxlZC4KICAgIF9SRVBMQUNFRF9NRVRIT0RTID0gWwogICAgICAgICJvcHRpbWl6ZSIsCiAgICBdCgogICAgQGNsYXNzbWV0aG9kCiAgICBkZWYgYWRkX2ludGVyZmFjZSgKICAgICAgICBjbHMsCiAgICAgICAgb2JqLAogICAgICAgIHJlc3RvcmF0aW9uOiBDb21tb25UeXBlcy5NTFJ1bkludGVyZmFjZVJlc3RvcmF0aW9uVHlwZSA9IE5vbmUsCiAgICApOgogICAgICAgICIiIgogICAgICAgIEVucmljaCB0aGUgb2JqZWN0IHdpdGggdGhpcyBpbnRlcmZhY2UgcHJvcGVydGllcywgbWV0aG9kcyBhbmQgZnVuY3Rpb25zLCBzbyBpdCB3aWxsIGhhdmUgdGhpcyBUZW5zb3JGbG93LktlcmFzCiAgICAgICAgTUxSdW4ncyBmZWF0dXJlcy4KICAgICAgICA6cGFyYW0gb2JqOiAgICAgICAgICAgICAgICAgICAgIFRoZSBvYmplY3QgdG8gZW5yaWNoIGhpcyBpbnRlcmZhY2UuCiAgICAgICAgOnBhcmFtIHJlc3RvcmF0aW9uOiBSZXN0b3JhdGlvbiBpbmZvcm1hdGlvbiB0dXBsZSBhcyByZXR1cm5lZCBmcm9tICdyZW1vdmVfaW50ZXJmYWNlJyBpbiBvcmRlciB0bwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWRkIHRoZSBpbnRlcmZhY2UgaW4gYSBjZXJ0YWluIHN0YXRlLgogICAgICAgICIiIgogICAgICAgIHN1cGVyKEhGT1JUT3B0aW1pemVyTUxSdW5JbnRlcmZhY2UsIGNscykuYWRkX2ludGVyZmFjZSgKICAgICAgICAgICAgb2JqPW9iaiwgcmVzdG9yYXRpb249cmVzdG9yYXRpb24KICAgICAgICApCgogICAgQGNsYXNzbWV0aG9kCiAgICBkZWYgbWxydW5fb3B0aW1pemUoY2xzKToKICAgICAgICAiIiIKICAgICAgICBNTFJ1bidzIHRmLmtlcmFzLk1vZGVsLmZpdCB3cmFwcGVyLiBJdCB3aWxsIHNldHVwIHRoZSBvcHRpbWl6ZXIgd2hlbiB1c2luZyBob3Jvdm9kLiBUaGUgb3B0aW1pemVyIG11c3QgYmUKICAgICAgICBwYXNzZWQgaW4gYSBrZXl3b3JkIGFyZ3VtZW50IGFuZCB3aGVuIHVzaW5nIGhvcm92b2QsIGl0IG11c3QgYmUgcGFzc2VkIGFzIGFuIE9wdGltaXplciBpbnN0YW5jZSwgbm90IGEgc3RyaW5nLgoKICAgICAgICByYWlzZSBNTFJ1bkludmFsaWRBcmd1bWVudEVycm9yOiBJbiBjYXNlIHRoZSBvcHRpbWl6ZXIgcHJvdmlkZWQgZGlkIG5vdCBmb2xsb3cgdGhlIGluc3RydWN0aW9ucyBhYm92ZS4KICAgICAgICAiIiIKCiAgICAgICAgZGVmIHdyYXBwZXIoc2VsZiwgKmFyZ3MsICoqa3dhcmdzKToKICAgICAgICAgICAgc2F2ZV9kaXIgPSBjbHMuX2dldF9mdW5jdGlvbl9hcmd1bWVudCgKICAgICAgICAgICAgICAgIHNlbGYub3B0aW1pemUsCiAgICAgICAgICAgICAgICBhcmd1bWVudF9uYW1lPSJzYXZlX2RpciIsCiAgICAgICAgICAgICAgICBwYXNzZWRfYXJncz1hcmdzLAogICAgICAgICAgICAgICAgcGFzc2VkX2t3YXJncz1rd2FyZ3MsCiAgICAgICAgICAgIClbMF0KCiAgICAgICAgICAgICMgQ2FsbCB0aGUgb3JpZ2luYWwgb3B0aW1pemUgbWV0aG9kOgogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm9yaWdpbmFsX29wdGltaXplKCphcmdzLCAqKmt3YXJncykKCiAgICAgICAgICAgIGlmIHNlbGYuX2F1dG9fbG9nOgogICAgICAgICAgICAgICAgIyBMb2cgdGhlIG9ubnggbW9kZWw6CiAgICAgICAgICAgICAgICBzZWxmLl9jb250ZXh0LmxvZ19tb2RlbCgKICAgICAgICAgICAgICAgICAgICBrZXk9Im1vZGVsIiwKICAgICAgICAgICAgICAgICAgICBkYl9rZXk9c2VsZi5fbW9kZWxfbmFtZSwKICAgICAgICAgICAgICAgICAgICBtb2RlbF9maWxlPWYie3NhdmVfZGlyfS9tb2RlbF9vcHRpbWl6ZWQub25ueCIsCiAgICAgICAgICAgICAgICAgICAgdGFnPXNlbGYuX3RhZywKICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcms9Ik9OTlgiLAogICAgICAgICAgICAgICAgICAgIGxhYmVscz1zZWxmLl9sYWJlbHMsCiAgICAgICAgICAgICAgICAgICAgZXh0cmFfZGF0YT1zZWxmLl9leHRyYV9kYXRhLAogICAgICAgICAgICAgICAgKQoKICAgICAgICAgICAgcmV0dXJuIHJlc3VsdAoKICAgICAgICByZXR1cm4gd3JhcHBlcgoKICAgIGRlZiBlbmFibGVfYXV0b19sb2dnaW5nKAogICAgICAgIHNlbGYsCiAgICAgICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICAgICAgbW9kZWxfbmFtZTogc3RyID0gIm1vZGVsIiwKICAgICAgICB0YWc6IHN0ciA9ICIiLAogICAgICAgIGxhYmVsczogRGljdFtzdHIsIHN0cl0gPSBOb25lLAogICAgICAgIGV4dHJhX2RhdGE6IGRpY3QgPSBOb25lLAogICAgKToKICAgICAgICBzZWxmLl9hdXRvX2xvZyA9IFRydWUKCiAgICAgICAgc2VsZi5fY29udGV4dCA9IGNvbnRleHQKICAgICAgICBzZWxmLl9tb2RlbF9uYW1lID0gbW9kZWxfbmFtZQogICAgICAgIHNlbGYuX3RhZyA9IHRhZwogICAgICAgIHNlbGYuX2xhYmVscyA9IGxhYmVscwogICAgICAgIHNlbGYuX2V4dHJhX2RhdGEgPSBleHRyYV9kYXRhCgoKY2xhc3MgSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UoTUxSdW5JbnRlcmZhY2UsIEFCQyk6CiAgICAiIiIKICAgIEludGVyZmFjZSBmb3IgYWRkaW5nIE1MUnVuIGZlYXR1cmVzIGZvciB0ZW5zb3JmbG93IGtlcmFzIEFQSS4KICAgICIiIgoKICAgICMgTUxSdW5zIGNvbnRleHQgZGVmYXVsdCBuYW1lOgogICAgREVGQVVMVF9DT05URVhUX05BTUUgPSAibWxydW4taHVnZ2luZ2ZhY2UiCgogICAgIyBBdHRyaWJ1dGVzIHRvIHJlcGxhY2Ugc28gdGhlIE1MUnVuIGludGVyZmFjZSB3aWxsIGJlIGZ1bGx5IGVuYWJsZWQuCiAgICBfUkVQTEFDRURfTUVUSE9EUyA9IFsKICAgICAgICAidHJhaW4iLAogICAgICAgICMgImV2YWx1YXRlIgogICAgXQoKICAgIEBjbGFzc21ldGhvZAogICAgZGVmIGFkZF9pbnRlcmZhY2UoCiAgICAgICAgY2xzLAogICAgICAgIG9iajogVHJhaW5lciwKICAgICAgICByZXN0b3JhdGlvbjogQ29tbW9uVHlwZXMuTUxSdW5JbnRlcmZhY2VSZXN0b3JhdGlvblR5cGUgPSBOb25lLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBFbnJpY2ggdGhlIG9iamVjdCB3aXRoIHRoaXMgaW50ZXJmYWNlIHByb3BlcnRpZXMsIG1ldGhvZHMgYW5kIGZ1bmN0aW9ucywgc28gaXQgd2lsbCBoYXZlIHRoaXMgVGVuc29yRmxvdy5LZXJhcwogICAgICAgIE1MUnVucyBmZWF0dXJlcy4KICAgICAgICA6cGFyYW0gb2JqOiAgICAgICAgICAgICAgICAgICAgIFRoZSBvYmplY3QgdG8gZW5yaWNoIGhpcyBpbnRlcmZhY2UuCiAgICAgICAgOnBhcmFtIHJlc3RvcmF0aW9uOiBSZXN0b3JhdGlvbiBpbmZvcm1hdGlvbiB0dXBsZSBhcyByZXR1cm5lZCBmcm9tICdyZW1vdmVfaW50ZXJmYWNlJyBpbiBvcmRlciB0bwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWRkIHRoZSBpbnRlcmZhY2UgaW4gYSBjZXJ0YWluIHN0YXRlLgogICAgICAgICIiIgoKICAgICAgICBzdXBlcihIRlRyYWluZXJNTFJ1bkludGVyZmFjZSwgY2xzKS5hZGRfaW50ZXJmYWNlKAogICAgICAgICAgICBvYmo9b2JqLCByZXN0b3JhdGlvbj1yZXN0b3JhdGlvbgogICAgICAgICkKCiAgICBAY2xhc3NtZXRob2QKICAgIGRlZiBtbHJ1bl90cmFpbihjbHMpOgoKICAgICAgICAiIiIKICAgICAgICBNTFJ1bnMgdGYua2VyYXMuTW9kZWwuZml0IHdyYXBwZXIuIEl0IHdpbGwgc2V0dXAgdGhlIG9wdGltaXplciB3aGVuIHVzaW5nIGhvcm92b2QuIFRoZSBvcHRpbWl6ZXIgbXVzdCBiZQogICAgICAgIHBhc3NlZCBpbiBhIGtleXdvcmQgYXJndW1lbnQgYW5kIHdoZW4gdXNpbmcgaG9yb3ZvZCwgaXQgbXVzdCBiZSBwYXNzZWQgYXMgYW4gT3B0aW1pemVyIGluc3RhbmNlLCBub3QgYSBzdHJpbmcuCgogICAgICAgIHJhaXNlIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IEluIGNhc2UgdGhlIG9wdGltaXplciBwcm92aWRlZCBkaWQgbm90IGZvbGxvdyB0aGUgaW5zdHJ1Y3Rpb25zIGFib3ZlLgogICAgICAgICIiIgoKICAgICAgICBkZWYgd3JhcHBlcihzZWxmOiBUcmFpbmVyLCAqYXJncywgKiprd2FyZ3MpOgogICAgICAgICAgICAjIFJlc3RvcmUgdGhlIGV2YWx1YXRpb24gbWV0aG9kIGFzIGB0cmFpbmAgd2lsbCB1c2UgaXQ6CiAgICAgICAgICAgICMgY2xzLl9yZXN0b3JlX2F0dHJpYnV0ZShvYmo9c2VsZiwgYXR0cmlidXRlX25hbWU9ImV2YWx1YXRlIikKCiAgICAgICAgICAgICMgQ2FsbCB0aGUgb3JpZ2luYWwgZml0IG1ldGhvZDoKICAgICAgICAgICAgcmVzdWx0ID0gc2VsZi5vcmlnaW5hbF90cmFpbigqYXJncywgKiprd2FyZ3MpCgogICAgICAgICAgICAjIFJlcGxhY2UgdGhlIGV2YWx1YXRpb24gbWV0aG9kIGFnYWluOgogICAgICAgICAgICAjIGNscy5fcmVwbGFjZV9mdW5jdGlvbihvYmo9c2VsZiwgZnVuY3Rpb25fbmFtZT0iZXZhbHVhdGUiKQoKICAgICAgICAgICAgcmV0dXJuIHJlc3VsdAoKICAgICAgICByZXR1cm4gd3JhcHBlcgoKCmNsYXNzIE1MUnVuQ2FsbGJhY2soVHJhaW5lckNhbGxiYWNrKToKICAgICIiIgogICAgQ2FsbGJhY2sgZm9yIGNvbGxlY3RpbmcgbG9ncyBkdXJpbmcgdHJhaW5pbmcgLyBldmFsdWF0aW9uIG9mIHRoZSBgVHJhaW5lcmAgQVBJLgogICAgIiIiCgogICAgZGVmIF9faW5pdF9fKAogICAgICAgIHNlbGYsCiAgICAgICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHggPSBOb25lLAogICAgICAgIG1vZGVsX25hbWU6IHN0ciA9ICJtb2RlbCIsCiAgICAgICAgdGFnOiBzdHIgPSAiIiwKICAgICAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgICAgICBleHRyYV9kYXRhOiBkaWN0ID0gTm9uZSwKICAgICk6CiAgICAgICAgc3VwZXIoKS5fX2luaXRfXygpCgogICAgICAgICMgU3RvcmUgdGhlIGNvbmZpZ3VyYXRpb25zOgogICAgICAgIHNlbGYuX2NvbnRleHQgPSAoCiAgICAgICAgICAgIGNvbnRleHQKICAgICAgICAgICAgaWYgY29udGV4dCBpcyBub3QgTm9uZQogICAgICAgICAgICBlbHNlIG1scnVuLmdldF9vcl9jcmVhdGVfY3R4KCIuL21scnVuLWh1Z2dpbmdmYWNlIikKICAgICAgICApCiAgICAgICAgc2VsZi5fbW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLl90YWcgPSB0YWcKICAgICAgICBzZWxmLl9sYWJlbHMgPSBsYWJlbHMKICAgICAgICBzZWxmLl9leHRyYV9kYXRhID0gZXh0cmFfZGF0YSBpZiBleHRyYV9kYXRhIGlzIG5vdCBOb25lIGVsc2Uge30KCiAgICAgICAgIyBTZXQgdXAgdGhlIGxvZ2dpbmcgbW9kZToKICAgICAgICBzZWxmLl9pc190cmFpbmluZyA9IEZhbHNlCiAgICAgICAgc2VsZi5fc3RlcHM6IExpc3RbTGlzdFtpbnRdXSA9IFtdCiAgICAgICAgc2VsZi5fbWV0cmljX3Njb3JlczogRGljdFtzdHIsIExpc3RbZmxvYXRdXSA9IHt9CiAgICAgICAgc2VsZi5fYXJ0aWZhY3RzOiBEaWN0W3N0ciwgQXJ0aWZhY3RdID0ge30KCiAgICBkZWYgb25fZXBvY2hfYmVnaW4oCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgICoqa3dhcmdzLAogICAgKToKICAgICAgICBzZWxmLl9zdGVwcy5hcHBlbmQoW10pCgogICAgZGVmIG9uX2Vwb2NoX2VuZCgKICAgICAgICBzZWxmLAogICAgICAgIGFyZ3M6IFRyYWluaW5nQXJndW1lbnRzLAogICAgICAgIHN0YXRlOiBUcmFpbmVyU3RhdGUsCiAgICAgICAgY29udHJvbDogVHJhaW5lckNvbnRyb2wsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIHNlbGYuX2xvZ19tZXRyaWNzKCkKCiAgICBkZWYgb25fbG9nKAogICAgICAgIHNlbGYsCiAgICAgICAgYXJnczogVHJhaW5pbmdBcmd1bWVudHMsCiAgICAgICAgc3RhdGU6IFRyYWluZXJTdGF0ZSwKICAgICAgICBjb250cm9sOiBUcmFpbmVyQ29udHJvbCwKICAgICAgICBsb2dzOiBEaWN0W3N0ciwgZmxvYXRdID0gTm9uZSwKICAgICAgICAqKmt3YXJncywKICAgICk6CiAgICAgICAgcmVjZW50X2xvZ3MgPSBzdGF0ZS5sb2dfaGlzdG9yeVstMV0uY29weSgpCgogICAgICAgIHJlY2VudF9sb2dzLnBvcCgiZXBvY2giKQogICAgICAgIGN1cnJlbnRfc3RlcCA9IGludChyZWNlbnRfbG9ncy5wb3AoInN0ZXAiKSkKICAgICAgICBpZiBjdXJyZW50X3N0ZXAgbm90IGluIHNlbGYuX3N0ZXBzWy0xXToKICAgICAgICAgICAgc2VsZi5fc3RlcHNbLTFdLmFwcGVuZChjdXJyZW50X3N0ZXApCgogICAgICAgIGZvciBtZXRyaWNfbmFtZSwgbWV0cmljX3Njb3JlIGluIHJlY2VudF9sb2dzLml0ZW1zKCk6CiAgICAgICAgICAgIGlmIG1ldHJpY19uYW1lLnN0YXJ0c3dpdGgoInRyYWluXyIpOgogICAgICAgICAgICAgICAgaWYgbWV0cmljX25hbWUuc3BsaXQoInRyYWluXyIpWzFdIG5vdCBpbiBzZWxmLl9tZXRyaWNfc2NvcmVzOgogICAgICAgICAgICAgICAgICAgIHNlbGYuX21ldHJpY19zY29yZXNbbWV0cmljX25hbWVdID0gW21ldHJpY19zY29yZV0KICAgICAgICAgICAgICAgIGNvbnRpbnVlCiAgICAgICAgICAgIGlmIG1ldHJpY19uYW1lIG5vdCBpbiBzZWxmLl9tZXRyaWNfc2NvcmVzOgogICAgICAgICAgICAgICAgc2VsZi5fbWV0cmljX3Njb3Jlc1ttZXRyaWNfbmFtZV0gPSBbXQogICAgICAgICAgICBzZWxmLl9tZXRyaWNfc2NvcmVzW21ldHJpY19uYW1lXS5hcHBlbmQobWV0cmljX3Njb3JlKQoKICAgIGRlZiBvbl90cmFpbl9iZWdpbigKICAgICAgICBzZWxmLAogICAgICAgIGFyZ3M6IFRyYWluaW5nQXJndW1lbnRzLAogICAgICAgIHN0YXRlOiBUcmFpbmVyU3RhdGUsCiAgICAgICAgY29udHJvbDogVHJhaW5lckNvbnRyb2wsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIHNlbGYuX2lzX3RyYWluaW5nID0gVHJ1ZQoKICAgIGRlZiBvbl90cmFpbl9lbmQoCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgIG1vZGVsOiBQcmVUcmFpbmVkTW9kZWwgPSBOb25lLAogICAgICAgIHRva2VuaXplcjogUHJlVHJhaW5lZFRva2VuaXplciA9IE5vbmUsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIHNlbGYuX2xvZ19tZXRyaWNzKCkKCiAgICAgICAgdGVtcF9kaXJlY3RvcnkgPSB0ZW1wZmlsZS5nZXR0ZW1wZGlyKCkKCiAgICAgICAgIyBTYXZlIGFuZCBsb2cgdGhlIHRva2VuaXplcjoKICAgICAgICBpZiB0b2tlbml6ZXIgaXMgbm90IE5vbmU6CiAgICAgICAgICAgICMgU2F2ZSB0b2tlbml6ZXI6CiAgICAgICAgICAgIHRva2VuaXplcl9kaXIgPSBvcy5wYXRoLmpvaW4odGVtcF9kaXJlY3RvcnksICJ0b2tlbml6ZXIiKQogICAgICAgICAgICB0b2tlbml6ZXIuc2F2ZV9wcmV0cmFpbmVkKHNhdmVfZGlyZWN0b3J5PXRva2VuaXplcl9kaXIpCiAgICAgICAgICAgICMgWmlwIHRoZSB0b2tlbml6ZXIgZGlyZWN0b3J5OgogICAgICAgICAgICB0b2tlbml6ZXJfemlwID0gc2h1dGlsLm1ha2VfYXJjaGl2ZSgKICAgICAgICAgICAgICAgIGJhc2VfbmFtZT0idG9rZW5pemVyIiwKICAgICAgICAgICAgICAgIGZvcm1hdD0iemlwIiwKICAgICAgICAgICAgICAgIHJvb3RfZGlyPXRva2VuaXplcl9kaXIsCiAgICAgICAgICAgICkKICAgICAgICAgICAgIyBMb2cgdGhlIHppcCBmaWxlOgogICAgICAgICAgICBzZWxmLl9hcnRpZmFjdHNbInRva2VuaXplciJdID0gc2VsZi5fY29udGV4dC5sb2dfYXJ0aWZhY3QoCiAgICAgICAgICAgICAgICBpdGVtPSJ0b2tlbml6ZXIiLCBsb2NhbF9wYXRoPXRva2VuaXplcl96aXAKICAgICAgICAgICAgKQoKICAgICAgICAjIFNhdmUgdGhlIG1vZGVsOgogICAgICAgIG1vZGVsX2RpciA9IG9zLnBhdGguam9pbih0ZW1wX2RpcmVjdG9yeSwgIm1vZGVsIikKICAgICAgICBtb2RlbC5zYXZlX3ByZXRyYWluZWQoc2F2ZV9kaXJlY3Rvcnk9bW9kZWxfZGlyKQoKICAgICAgICAjIFppcCB0aGUgbW9kZWwgZGlyZWN0b3J5OgogICAgICAgIHNodXRpbC5tYWtlX2FyY2hpdmUoCiAgICAgICAgICAgIGJhc2VfbmFtZT0ibW9kZWwiLAogICAgICAgICAgICBmb3JtYXQ9InppcCIsCiAgICAgICAgICAgIHJvb3RfZGlyPW1vZGVsX2RpciwKICAgICAgICApCgogICAgICAgICMgTG9nIHRoZSBtb2RlbDoKICAgICAgICBzZWxmLl9jb250ZXh0LmxvZ19tb2RlbCgKICAgICAgICAgICAga2V5PSJtb2RlbCIsCiAgICAgICAgICAgIGRiX2tleT1zZWxmLl9tb2RlbF9uYW1lLAogICAgICAgICAgICBtb2RlbF9maWxlPSJtb2RlbC56aXAiLAogICAgICAgICAgICB0YWc9c2VsZi5fdGFnLAogICAgICAgICAgICBmcmFtZXdvcms9Ikh1Z2dpbmcgRmFjZSIsCiAgICAgICAgICAgIGxhYmVscz1zZWxmLl9sYWJlbHMsCiAgICAgICAgICAgIGV4dHJhX2RhdGE9eyoqc2VsZi5fYXJ0aWZhY3RzLCAqKnNlbGYuX2V4dHJhX2RhdGF9LAogICAgICAgICkKCiAgICBkZWYgb25fZXZhbHVhdGUoCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgICoqa3dhcmdzLAogICAgKToKICAgICAgICBzZWxmLl9sb2dfbWV0cmljcygpCgogICAgICAgIGlmIHNlbGYuX2lzX3RyYWluaW5nOgogICAgICAgICAgICByZXR1cm4KCiAgICAgICAgIyBUT0RPOiBVcGRhdGUgdGhlIG1vZGVsIG9iamVjdAoKICAgIGRlZiBfbG9nX21ldHJpY3Moc2VsZik6CiAgICAgICAgZm9yIG1ldHJpY19uYW1lLCBtZXRyaWNfc2NvcmVzIGluIHNlbGYuX21ldHJpY19zY29yZXMuaXRlbXMoKToKICAgICAgICAgICAgc2VsZi5fY29udGV4dC5sb2dfcmVzdWx0KGtleT1tZXRyaWNfbmFtZSwgdmFsdWU9bWV0cmljX3Njb3Jlc1stMV0pCiAgICAgICAgICAgIGlmIGxlbihtZXRyaWNfc2NvcmVzKSA+IDE6CiAgICAgICAgICAgICAgICBzZWxmLl9sb2dfbWV0cmljX3Bsb3QobmFtZT1tZXRyaWNfbmFtZSwgc2NvcmVzPW1ldHJpY19zY29yZXMpCiAgICAgICAgc2VsZi5fY29udGV4dC5jb21taXQoY29tcGxldGVkPUZhbHNlKQoKICAgIGRlZiBfbG9nX21ldHJpY19wbG90KHNlbGYsIG5hbWU6IHN0ciwgc2NvcmVzOiBMaXN0W2Zsb2F0XSk6CiAgICAgICAgIyBJbml0aWFsaXplIGEgcGxvdGx5IGZpZ3VyZToKICAgICAgICBtZXRyaWNfZmlndXJlID0gZ28uRmlndXJlKCkKCiAgICAgICAgIyBBZGQgdGl0bGVzOgogICAgICAgIG1ldHJpY19maWd1cmUudXBkYXRlX2xheW91dCgKICAgICAgICAgICAgdGl0bGU9bmFtZS5jYXBpdGFsaXplKCkucmVwbGFjZSgiXyIsICIgIiksCiAgICAgICAgICAgIHhheGlzX3RpdGxlPSJTYW1wbGVzIiwKICAgICAgICAgICAgeWF4aXNfdGl0bGU9IlNjb3JlcyIsCiAgICAgICAgKQoKICAgICAgICAjIERyYXc6CiAgICAgICAgbWV0cmljX2ZpZ3VyZS5hZGRfdHJhY2UoCiAgICAgICAgICAgIGdvLlNjYXR0ZXIoeD1ucC5hcmFuZ2UobGVuKHNjb3JlcykpLCB5PXNjb3JlcywgbW9kZT0ibGluZXMiKQogICAgICAgICkKCiAgICAgICAgIyBDcmVhdGUgdGhlIHBsb3RseSBhcnRpZmFjdDoKICAgICAgICBhcnRpZmFjdF9uYW1lID0gZiJ7bmFtZX1fcGxvdCIKICAgICAgICBhcnRpZmFjdCA9IFBsb3RseUFydGlmYWN0KGtleT1hcnRpZmFjdF9uYW1lLCBmaWd1cmU9bWV0cmljX2ZpZ3VyZSkKICAgICAgICBzZWxmLl9hcnRpZmFjdHNbYXJ0aWZhY3RfbmFtZV0gPSBzZWxmLl9jb250ZXh0LmxvZ19hcnRpZmFjdChhcnRpZmFjdCkKCgpkZWYgX2FwcGx5X21scnVuX29uX3RyYWluZXIoCiAgICB0cmFpbmVyOiB0cmFuc2Zvcm1lcnMuVHJhaW5lciwKICAgIG1vZGVsX25hbWU6IHN0ciA9IE5vbmUsCiAgICB0YWc6IHN0ciA9ICIiLAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHggPSBOb25lLAogICAgYXV0b19sb2c6IGJvb2wgPSBUcnVlLAogICAgbGFiZWxzOiBEaWN0W3N0ciwgc3RyXSA9IE5vbmUsCiAgICBleHRyYV9kYXRhOiBkaWN0ID0gTm9uZSwKICAgICoqa3dhcmdzLAopOgogICAgIyBHZXQgcGFyYW1ldGVycyBkZWZhdWx0czoKICAgIGlmIGNvbnRleHQgaXMgTm9uZToKICAgICAgICBjb250ZXh0ID0gbWxydW4uZ2V0X29yX2NyZWF0ZV9jdHgoSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UuREVGQVVMVF9DT05URVhUX05BTUUpCgogICAgSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UuYWRkX2ludGVyZmFjZShvYmo9dHJhaW5lcikKCiAgICBpZiBhdXRvX2xvZzoKICAgICAgICB0cmFpbmVyLmFkZF9jYWxsYmFjaygKICAgICAgICAgICAgTUxSdW5DYWxsYmFjaygKICAgICAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgICAgIHRhZz10YWcsCiAgICAgICAgICAgICAgICBsYWJlbHM9bGFiZWxzLAogICAgICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICAgICApCiAgICAgICAgKQoKCmRlZiBfYXBwbHlfbWxydW5fb25fb3B0aW1pemVyKAogICAgb3B0aW1pemVyLAogICAgbW9kZWxfbmFtZTogc3RyID0gTm9uZSwKICAgIHRhZzogc3RyID0gIiIsCiAgICBjb250ZXh0OiBtbHJ1bi5NTENsaWVudEN0eCA9IE5vbmUsCiAgICBhdXRvX2xvZzogYm9vbCA9IFRydWUsCiAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgIGV4dHJhX2RhdGE6IGRpY3QgPSBOb25lLAogICAgKiprd2FyZ3MsCik6CiAgICAjIEdldCBwYXJhbWV0ZXJzIGRlZmF1bHRzOgogICAgaWYgY29udGV4dCBpcyBOb25lOgogICAgICAgIGNvbnRleHQgPSBtbHJ1bi5nZXRfb3JfY3JlYXRlX2N0eCgKICAgICAgICAgICAgSEZPUlRPcHRpbWl6ZXJNTFJ1bkludGVyZmFjZS5ERUZBVUxUX0NPTlRFWFRfTkFNRQogICAgICAgICkKCiAgICBIRk9SVE9wdGltaXplck1MUnVuSW50ZXJmYWNlLmFkZF9pbnRlcmZhY2Uob2JqPW9wdGltaXplcikKCiAgICBpZiBhdXRvX2xvZzoKICAgICAgICBvcHRpbWl6ZXIuZW5hYmxlX2F1dG9fbG9nZ2luZygKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBtb2RlbF9uYW1lPW1vZGVsX25hbWUsCiAgICAgICAgICAgIHRhZz10YWcsCiAgICAgICAgICAgIGxhYmVscz1sYWJlbHMsCiAgICAgICAgICAgIGV4dHJhX2RhdGE9ZXh0cmFfZGF0YSwKICAgICAgICApCgoKZGVmIGFwcGx5X21scnVuKAogICAgaHVnZ2luZ2ZhY2Vfb2JqZWN0LAogICAgbW9kZWxfbmFtZTogc3RyID0gTm9uZSwKICAgIHRhZzogc3RyID0gIiIsCiAgICBjb250ZXh0OiBtbHJ1bi5NTENsaWVudEN0eCA9IE5vbmUsCiAgICBhdXRvX2xvZzogYm9vbCA9IFRydWUsCiAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgIGV4dHJhX2RhdGE6IGRpY3QgPSBOb25lLAogICAgKiprd2FyZ3MsCik6CiAgICAiIiIKICAgIFdyYXAgdGhlIGdpdmVuIG1vZGVsIHdpdGggTUxSdW4ncyBpbnRlcmZhY2UgcHJvdmlkaW5nIGl0IHdpdGggbWxydW4ncyBhZGRpdGlvbmFsIGZlYXR1cmVzLgogICAgOnBhcmFtIGh1Z2dpbmdmYWNlX29iamVjdDogVGhlIG1vZGVsIHRvIHdyYXAuIENhbiBiZSBsb2FkZWQgZnJvbSB0aGUgbW9kZWwgcGF0aCBnaXZlbiBhcyB3ZWxsLgogICAgOnBhcmFtIG1vZGVsX25hbWU6ICAgICAgICAgVGhlIG1vZGVsIG5hbWUgdG8gdXNlIGZvciBzdG9yaW5nIHRoZSBtb2RlbCBhcnRpZmFjdC4gRGVmYXVsdDogIm1vZGVsIi4KICAgIDpwYXJhbSB0YWc6ICAgICAgICAgICAgICAgIFRoZSBtb2RlbCdzIHRhZyB0byBsb2cgd2l0aC4KICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgIE1MUnVuIGNvbnRleHQgdG8gd29yayB3aXRoLiBJZiBubyBjb250ZXh0IGlzIGdpdmVuIGl0IHdpbGwgYmUgcmV0cmlldmVkIHZpYQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ21scnVuLmdldF9vcl9jcmVhdGVfY3R4KE5vbmUpJwogICAgOnBhcmFtIGF1dG9fbG9nOiAgICAgICAgICAgV2hldGhlciB0byBlbmFibGUgTUxSdW4ncyBhdXRvIGxvZ2dpbmcuIERlZmF1bHQ6IFRydWUuCiAgICAiIiIKCiAgICBpZiBpc2luc3RhbmNlKGh1Z2dpbmdmYWNlX29iamVjdCwgdHJhbnNmb3JtZXJzLlRyYWluZXIpOgogICAgICAgIHJldHVybiBfYXBwbHlfbWxydW5fb25fdHJhaW5lcigKICAgICAgICAgICAgdHJhaW5lcj1odWdnaW5nZmFjZV9vYmplY3QsCiAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgdGFnPXRhZywKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBhdXRvX2xvZz1hdXRvX2xvZywKICAgICAgICAgICAgbGFiZWxzPWxhYmVscywKICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICkKICAgIGltcG9ydCBvcHRpbXVtLm9ubnhydW50aW1lIGFzIG9wdGltdW1fb3J0CgogICAgaWYgaXNpbnN0YW5jZShodWdnaW5nZmFjZV9vYmplY3QsIG9wdGltdW1fb3J0Lk9SVE9wdGltaXplcik6CiAgICAgICAgcmV0dXJuIF9hcHBseV9tbHJ1bl9vbl9vcHRpbWl6ZXIoCiAgICAgICAgICAgIG9wdGltaXplcj1odWdnaW5nZmFjZV9vYmplY3QsCiAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgdGFnPXRhZywKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBhdXRvX2xvZz1hdXRvX2xvZywKICAgICAgICAgICAgbGFiZWxzPWxhYmVscywKICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICkKICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yCgoKIyAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tIGZyb20gYXV0b190cmFpbmVyLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KY2xhc3MgS1dBcmdzUHJlZml4ZXM6CiAgICBNT0RFTF9DTEFTUyA9ICJDTEFTU18iCiAgICBGSVQgPSAiRklUXyIKICAgIFRSQUlOID0gIlRSQUlOXyIKICAgIFBSRURJQ1QgPSAiUFJFRElDVF8iCgoKZGVmIF9nZXRfc3ViX2RpY3RfYnlfcHJlZml4KHNyYzogRGljdCwgcHJlZml4X2tleTogc3RyKSAtPiBEaWN0W3N0ciwgQW55XToKICAgICIiIgogICAgQ29sbGVjdCBhbGwgdGhlIGtleXMgZnJvbSB0aGUgZ2l2ZW4gZGljdCB0aGF0IHN0YXJ0cyB3aXRoIHRoZSBnaXZlbiBwcmVmaXggYW5kIGNyZWF0ZXMgYSBuZXcgZGljdGlvbmFyeSB3aXRoIHRoZXNlCiAgICBrZXlzLgoKICAgIDpwYXJhbSBzcmM6ICAgICAgICAgVGhlIHNvdXJjZSBkaWN0IHRvIGV4dHJhY3QgdGhlIHZhbHVlcyBmcm9tLgogICAgOnBhcmFtIHByZWZpeF9rZXk6ICBPbmx5IGtleXMgd2l0aCB0aGlzIHByZWZpeCB3aWxsIGJlIHJldHVybmVkLiBUaGUga2V5cyBpbiB0aGUgcmVzdWx0IGRpY3Qgd2lsbCBiZSB3aXRob3V0IHRoaXMKICAgICAgICAgICAgICAgICAgICAgICAgcHJlZml4LgogICAgIiIiCiAgICByZXR1cm4gewogICAgICAgIGtleS5yZXBsYWNlKHByZWZpeF9rZXksICIiKTogdmFsCiAgICAgICAgZm9yIGtleSwgdmFsIGluIHNyYy5pdGVtcygpCiAgICAgICAgaWYga2V5LnN0YXJ0c3dpdGgocHJlZml4X2tleSkKICAgIH0KCgpkZWYgX2dldF9kYXRhZnJhbWUoCiAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgIGRhdGFzZXQ6IERhdGFJdGVtLAogICAgbGFiZWxfY29sdW1uczogT3B0aW9uYWxbVW5pb25bc3RyLCBMaXN0W3N0cl1dXSA9IE5vbmUsCiAgICBkcm9wX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdLCBpbnQsIExpc3RbaW50XV0gPSBOb25lLAopIC0+IFR1cGxlW3BkLkRhdGFGcmFtZSwgT3B0aW9uYWxbVW5pb25bc3RyLCBMaXN0W3N0cl1dXV06CiAgICAiIiIKICAgIEdldHRpbmcgdGhlIERhdGFGcmFtZSBvZiB0aGUgZGF0YXNldCBhbmQgZHJvcCB0aGUgY29sdW1ucyBhY2NvcmRpbmdseS4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICBNTFJ1biBjb250ZXh0LgogICAgOnBhcmFtIGRhdGFzZXQ6ICAgICAgICAgVGhlIGRhdGFzZXQgdG8gdHJhaW4gdGhlIG1vZGVsIG9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIGVpdGhlciBhIGxpc3Qgb2YgbGlzdHMsIGRpY3QsIFVSSSBvciBhIEZlYXR1cmVWZWN0b3IuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQuIGZvciBSZWdyZXNzaW9uIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBDbGFzc2lmaWNhdGlvbiB0YXNrcy4KICAgIDpwYXJhbSBkcm9wX2NvbHVtbnM6ICAgIHN0ci9pbnQgb3IgYSBsaXN0IG9mIHN0cmluZ3MvaW50cyB0aGF0IHJlcHJlc2VudCB0aGUgY29sdW1uIG5hbWVzL2luZGljZXMgdG8gZHJvcC4KICAgICIiIgogICAgaWYgaXNpbnN0YW5jZShkYXRhc2V0LCAobGlzdCwgZGljdCkpOgogICAgICAgIGRhdGFzZXQgPSBwZC5EYXRhRnJhbWUoZGF0YXNldCkKICAgICAgICAjIENoZWNraW5nIGlmIGRyb3BfY29sdW1ucyBwcm92aWRlZCBieSBpbnRlZ2VyIHR5cGU6CiAgICAgICAgaWYgZHJvcF9jb2x1bW5zOgogICAgICAgICAgICBpZiBpc2luc3RhbmNlKGRyb3BfY29sdW1ucywgc3RyKSBvciAoCiAgICAgICAgICAgICAgICBpc2luc3RhbmNlKGRyb3BfY29sdW1ucywgbGlzdCkKICAgICAgICAgICAgICAgIGFuZCBhbnkoaXNpbnN0YW5jZShjb2wsIHN0cikgZm9yIGNvbCBpbiBkcm9wX2NvbHVtbnMpCiAgICAgICAgICAgICk6CiAgICAgICAgICAgICAgICBjb250ZXh0LmxvZ2dlci5lcnJvcigKICAgICAgICAgICAgICAgICAgICAiZHJvcF9jb2x1bW5zIG11c3QgYmUgYW4gaW50ZWdlci9saXN0IG9mIGludGVnZXJzIGlmIG5vdCBwcm92aWRlZCB3aXRoIGEgVVJJL0ZlYXR1cmVWZWN0b3IgZGF0YXNldCIKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IKICAgICAgICAgICAgZGF0YXNldC5kcm9wKGRyb3BfY29sdW1ucywgYXhpcz0xLCBpbnBsYWNlPVRydWUpCgogICAgICAgIHJldHVybiBkYXRhc2V0LCBsYWJlbF9jb2x1bW5zCgogICAgc3RvcmVfdXJpX3ByZWZpeCwgXyA9IG1scnVuLmRhdGFzdG9yZS5wYXJzZV9zdG9yZV91cmkoZGF0YXNldC5hcnRpZmFjdF91cmwpCiAgICBpZiBtbHJ1bi51dGlscy5TdG9yZVByZWZpeC5GZWF0dXJlVmVjdG9yID09IHN0b3JlX3VyaV9wcmVmaXg6CiAgICAgICAgIyBmZWF0dXJlLXZlY3RvciBjYXNlOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBsYWJlbF9jb2x1bW5zIG9yIGRhdGFzZXQubWV0YS5zdGF0dXMubGFiZWxfY29sdW1uCiAgICAgICAgZGF0YXNldCA9IGZzLmdldF9vZmZsaW5lX2ZlYXR1cmVzKAogICAgICAgICAgICBkYXRhc2V0Lm1ldGEudXJpLCBkcm9wX2NvbHVtbnM9ZHJvcF9jb2x1bW5zCiAgICAgICAgKS50b19kYXRhZnJhbWUoKQoKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYibGFiZWwgY29sdW1uczoge2xhYmVsX2NvbHVtbnN9IikKICAgIGVsc2U6CiAgICAgICAgIyBzaW1wbGUgVVJMIGNhc2U6CiAgICAgICAgZGF0YXNldCA9IGRhdGFzZXQuYXNfZGYoKQogICAgICAgIGlmIGRyb3BfY29sdW1uczoKICAgICAgICAgICAgaWYgYWxsKGNvbCBpbiBkYXRhc2V0IGZvciBjb2wgaW4gZHJvcF9jb2x1bW5zKToKICAgICAgICAgICAgICAgIGRhdGFzZXQgPSBkYXRhc2V0LmRyb3AoZHJvcF9jb2x1bW5zLCBheGlzPTEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKAogICAgICAgICAgICAgICAgICAgICJub3QgYWxsIG9mIHRoZSBjb2x1bW5zIHRvIGRyb3AgaW4gdGhlIGRhdGFzZXQsIGRyb3AgY29sdW1ucyBwcm9jZXNzIHNraXBwZWQiCiAgICAgICAgICAgICAgICApCiAgICByZXR1cm4gZGF0YXNldCwgbGFiZWxfY29sdW1ucwoKCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSBIdWdnaW5nIEZhY2UgVHJhaW5lciAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKCmRlZiBfY3JlYXRlX2NvbXB1dGVfbWV0cmljcyhtZXRyaWNzOiBMaXN0W3N0cl0pIC0+IENhbGxhYmxlW1tFdmFsUHJlZGljdGlvbl0sIERpY3RdOgogICAgIiIiCiAgICBUaGlzIGZ1bmN0aW9uIGNyZWF0ZSBhbmQgcmV0dXJucyBhIGZ1bmN0aW9uIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGNvbXB1dGUgbWV0cmljcyBhdCBldmFsdWF0aW9uLgogICAgOnBhcmFtIG1ldHJpY3M6IExpc3Qgb2YgZGlmZmVyZW50IG1ldHJpY3MgZm9yIGV2YWx1YXRlIHRoZSBtb2RlbCBzdWNoIGFzIGYxLCBhY2N1cmFjeSBldGMuCgogICAgOnJldHVybnM6IEZ1bmN0aW9uIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGNvbXB1dGUgbWV0cmljcyBhdCBldmFsdWF0aW9uLgogICAgICAgICAgICAgTXVzdCB0YWtlIGEgW2BFdmFsUHJlZGljdGlvbmBdIGFuZCByZXR1cm4gYSBkaWN0aW9uYXJ5IHN0cmluZyB0byBtZXRyaWMgdmFsdWVzLgogICAgIiIiCgogICAgZGVmIF9jb21wdXRlX21ldHJpY3MoZXZhbF9wcmVkKToKICAgICAgICBsb2dpdHMsIGxhYmVscyA9IGV2YWxfcHJlZAogICAgICAgIHByZWRpY3Rpb25zID0gbnAuYXJnbWF4KGxvZ2l0cywgYXhpcz0tMSkKICAgICAgICBtZXRyaWNfZGljdF9yZXN1bHRzID0ge30KICAgICAgICBmb3IgbWV0cmljIGluIG1ldHJpY3M6CiAgICAgICAgICAgIGxvYWRfbWV0ID0gbG9hZF9tZXRyaWMobWV0cmljKQogICAgICAgICAgICBtZXRyaWNfcmVzID0gbG9hZF9tZXQuY29tcHV0ZShwcmVkaWN0aW9ucz1wcmVkaWN0aW9ucywgcmVmZXJlbmNlcz1sYWJlbHMpWwogICAgICAgICAgICAgICAgbWV0cmljCiAgICAgICAgICAgIF0KICAgICAgICAgICAgbWV0cmljX2RpY3RfcmVzdWx0c1ttZXRyaWNdID0gbWV0cmljX3JlcwoKICAgICAgICByZXR1cm4gbWV0cmljX2RpY3RfcmVzdWx0cwoKICAgIHJldHVybiBfY29tcHV0ZV9tZXRyaWNzCgoKZGVmIF9lZGl0X2NvbHVtbnMoCiAgICBkYXRhc2V0OiBEYXRhc2V0LAogICAgZHJvcF9jb2x1bW5zOiBMaXN0W3N0cl0gPSBOb25lLAogICAgcmVuYW1lX2NvbHVtbnM6IFtzdHIsIHN0cl0gPSBOb25lLAopIC0+IERhdGFzZXQ6CiAgICAiIiIKICAgIERyb3AgYW5kIHJlbmFtZXMgdGhhdCBjb2x1bW5zIG9mIHRoZSBnaXZlbiBkYXRhc2V0CiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICBEYXRhc2V0IHRvIHByb2Nlc3MKICAgIDpwYXJhbSBkcm9wX2NvbHVtbnM6ICAgIFRoZSBjb2x1bW5zIHRvIGRyb3AgZnJvbSB0aGUgZGF0YXNldC4KICAgIDpwYXJhbSByZW5hbWVfY29sdW1uczogIERpY3Qgb2YgY29sdW1ucyBybyByZW5hbWUgOiB7PG9sZF9uYW1lPjogPG5ld19uYW1lPiwgLi4ufQoKICAgIDpyZXR1cm5zOiBUaGUgZGF0YXNldCBhZnRlciB0aGUgZGVzaXJlZCBwcm9jZXNzCiAgICAiIiIKICAgIGlmIGRyb3BfY29sdW1uczoKICAgICAgICBkYXRhc2V0ID0gZGF0YXNldC5yZW1vdmVfY29sdW1ucyhkcm9wX2NvbHVtbnMpCiAgICBpZiByZW5hbWVfY29sdW1uczoKICAgICAgICBkYXRhc2V0ID0gZGF0YXNldC5yZW5hbWVfY29sdW1ucyhyZW5hbWVfY29sdW1ucykKICAgIHJldHVybiBkYXRhc2V0CgoKZGVmIF9wcmVwYXJlX2RhdGFzZXQoCiAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgIGRhdGFzZXRfbmFtZTogc3RyLAogICAgbGFiZWxfbmFtZTogc3RyID0gTm9uZSwKICAgIGRyb3BfY29sdW1uczogT3B0aW9uYWxbTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBudW1fb2ZfdHJhaW5fc2FtcGxlczogaW50ID0gTm9uZSwKICAgIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZTogZmxvYXQgPSBOb25lLAogICAgcmFuZG9tX3N0YXRlOiBpbnQgPSBOb25lLAopIC0+IFR1cGxlW0RhdGFzZXQsIERhdGFzZXRdOgogICAgIiIiCiAgICBMb2FkaW5nIHRoZSBkYXRhc2V0IGFuZCBlZGl0aW5nIHRoZSBjb2x1bW5zCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgICAgICAgICBNTFJ1biBjb250ZXgKICAgIDpwYXJhbSBkYXRhc2V0X25hbWU6ICAgICAgICAgICAgVGhlIG5hbWUgb2YgdGhlIGRhdGFzZXQgdG8gZ2V0IGZyb20gdGhlIEh1Z2dpbmdGYWNlIGh1YgogICAgOnBhcmFtIGxhYmVsX25hbWU6ICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsIG9mIHRoZSBjb2x1bW4gaW4gdGhlIGRhdGFzZXQuCiAgICA6cGFyYW0gZHJvcF9jb2x1bW5zOiAgICAgICAgICAgIFRoZSBjb2x1bW5zIHRvIGRyb3AgZnJvbSB0aGUgZGF0YXNldC4KICAgIDpwYXJhbSBudW1fb2ZfdHJhaW5fc2FtcGxlczogICAgTWF4IG51bWJlciBvZiB0cmFpbmluZyBzYW1wbGVzLCBmb3IgZGVidWdnaW5nLgogICAgOnBhcmFtIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZTogICBTaG91bGQgYmUgYmV0d2VlbiAwLjAgYW5kIDEuMCBhbmQgcmVwcmVzZW50IHRoZSBwcm9wb3J0aW9uIG9mIHRoZSBkYXRhc2V0IHRvIGluY2x1ZGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW4gdGhlIHRlc3Qgc3BsaXQuCiAgICA6cGFyYW0gcmFuZG9tX3N0YXRlOiAgICAgICAgICAgIFJhbmRvbSBzdGF0ZSBmb3IgdHJhaW5fdGVzdF9zcGxpdAoKICAgICIiIgoKICAgIGNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgZiJMb2FkaW5nIGFuZCBlZGl0aW5nIHtkYXRhc2V0X25hbWV9IGRhdGFzZXQgZnJvbSBIdWdnaW5nIEZhY2UgaHViIgogICAgKQogICAgcmVuYW1lX2NvbHMgPSB7bGFiZWxfbmFtZTogImxhYmVscyJ9CgogICAgIyBMb2FkaW5nIGFuZCBlZGl0aW5nIGRhdGFzZXQ6CiAgICBkYXRhc2V0ID0gbG9hZF9kYXRhc2V0KGRhdGFzZXRfbmFtZSkKCiAgICAjIHRyYWluIHNldAogICAgdHJhaW5fZGF0YXNldCA9IGRhdGFzZXRbInRyYWluIl0KICAgIGlmIG51bV9vZl90cmFpbl9zYW1wbGVzOgogICAgICAgIHRyYWluX2RhdGFzZXQgPSB0cmFpbl9kYXRhc2V0LnNodWZmbGUoc2VlZD1yYW5kb21fc3RhdGUpLnNlbGVjdCgKICAgICAgICAgICAgbGlzdChyYW5nZShudW1fb2ZfdHJhaW5fc2FtcGxlcykpCiAgICAgICAgKQogICAgdHJhaW5fZGF0YXNldCA9IF9lZGl0X2NvbHVtbnModHJhaW5fZGF0YXNldCwgZHJvcF9jb2x1bW5zLCByZW5hbWVfY29scykKCiAgICAjIHRlc3Qgc2V0CiAgICB0ZXN0X2RhdGFzZXQgPSBkYXRhc2V0WyJ0ZXN0Il0KICAgIGlmIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZSBvciBudW1fb2ZfdHJhaW5fc2FtcGxlczoKICAgICAgICB0cmFpbl90ZXN0X3NwbGl0X3NpemUgPSB0cmFpbl90ZXN0X3NwbGl0X3NpemUgb3IgMC4yCiAgICAgICAgbnVtX29mX3Rlc3Rfc2FtcGxlcyA9IGludCgKICAgICAgICAgICAgKHRyYWluX2RhdGFzZXQubnVtX3Jvd3MgKiB0cmFpbl90ZXN0X3NwbGl0X3NpemUpCiAgICAgICAgICAgIC8vICgxIC0gdHJhaW5fdGVzdF9zcGxpdF9zaXplKQogICAgICAgICkKICAgICAgICB0ZXN0X2RhdGFzZXQgPSB0ZXN0X2RhdGFzZXQuc2h1ZmZsZShzZWVkPXJhbmRvbV9zdGF0ZSkuc2VsZWN0KAogICAgICAgICAgICBsaXN0KHJhbmdlKG51bV9vZl90ZXN0X3NhbXBsZXMpKQogICAgICAgICkKICAgIHRlc3RfZGF0YXNldCA9IF9lZGl0X2NvbHVtbnModGVzdF9kYXRhc2V0LCBkcm9wX2NvbHVtbnMsIHJlbmFtZV9jb2xzKQoKICAgIHJldHVybiB0cmFpbl9kYXRhc2V0LCB0ZXN0X2RhdGFzZXQKCgpkZWYgdHJhaW4oCiAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgIGhmX2RhdGFzZXQ6IHN0ciA9IE5vbmUsCiAgICBkYXRhc2V0OiBEYXRhSXRlbSA9IE5vbmUsCiAgICB0ZXN0X3NldDogRGF0YUl0ZW0gPSBOb25lLAogICAgZHJvcF9jb2x1bW5zOiBPcHRpb25hbFtMaXN0W3N0cl1dID0gTm9uZSwKICAgIHByZXRyYWluZWRfdG9rZW5pemVyOiBzdHIgPSBOb25lLAogICAgcHJldHJhaW5lZF9tb2RlbDogc3RyID0gTm9uZSwKICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgbW9kZWxfbmFtZTogc3RyID0gImh1Z2dpbmdmYWNlLW1vZGVsIiwKICAgIGxhYmVsX25hbWU6IHN0ciA9ICJsYWJlbHMiLAogICAgdGV4dF9jb2w6IHN0ciA9ICJ0ZXh0IiwKICAgIG51bV9vZl90cmFpbl9zYW1wbGVzOiBpbnQgPSBOb25lLAogICAgdHJhaW5fdGVzdF9zcGxpdF9zaXplOiBmbG9hdCA9IE5vbmUsCiAgICBtZXRyaWNzOiBMaXN0W3N0cl0gPSBOb25lLAogICAgcmFuZG9tX3N0YXRlOiBpbnQgPSBOb25lLAopOgogICAgIiIiCiAgICBUcmFpbmluZyBhbmQgZXZhbHVhdGluZyBhIHByZXRyYWluZWQgbW9kZWwgd2l0aCBhIHByZXRyYWluZWQgdG9rZW5pemVyIG92ZXIgYSBkYXRhc2V0LgogICAgVGhlIGRhdGFzZXQgY2FuIGJlIGVpdGhlciBiZSB0aGUgbmFtZSBvZiB0aGUgZGF0YXNldCB0aGF0IGNvbnRhaW5zIGluIHRoZSBIdWdnaW5nRmFjZSBodWIsCiAgICBvciBhIFVSSSBvciBhIEZlYXR1cmVWZWN0b3IKCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQKICAgIDpwYXJhbSBoZl9kYXRhc2V0OiAgICAgICAgICAgICAgVGhlIG5hbWUgb2YgdGhlIGRhdGFzZXQgdG8gZ2V0IGZyb20gdGhlIEh1Z2dpbmdGYWNlIGh1YgogICAgOnBhcmFtIGRhdGFzZXQ6ICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byB0cmFpbiB0aGUgbW9kZWwgb24uIENhbiBiZSBlaXRoZXIgYSBVUkkgb3IgYSBGZWF0dXJlVmVjdG9yCiAgICA6cGFyYW0gdGVzdF9zZXQ6ICAgICAgICAgICAgICAgIFRoZSB0ZXN0IHNldCB0byB0cmFpbiB0aGUgbW9kZWwgd2l0aC4KICAgIDpwYXJhbSBkcm9wX2NvbHVtbnM6ICAgICAgICAgICAgVGhlIGNvbHVtbnMgdG8gZHJvcCBmcm9tIHRoZSBkYXRhc2V0LgogICAgOnBhcmFtIHByZXRyYWluZWRfdG9rZW5pemVyOiAgICBUaGUgbmFtZSBvZiB0aGUgcHJldHJhaW5lZCB0b2tlbml6ZXIgZnJvbSB0aGUgSHVnZ2luZ0ZhY2UgaHViLgogICAgOnBhcmFtIHByZXRyYWluZWRfbW9kZWw6ICAgICAgICBUaGUgbmFtZSBvZiB0aGUgcHJldHJhaW5lZCBtb2RlbCBmcm9tIHRoZSBIdWdnaW5nRmFjZSBodWIuCiAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICAgICAgICAgIFRoZSBtb2RlbCdzIG5hbWUgdG8gdXNlIGZvciBzdG9yaW5nIHRoZSBtb2RlbCBhcnRpZmFjdCwgZGVmYXVsdCB0byAnbW9kZWwnCiAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICAgICAgICAgIFRoZSBjbGFzcyBvZiB0aGUgbW9kZWwsIGUuZy4gYHRyYW5zZm9ybWVycy5BdXRvTW9kZWxGb3JTZXF1ZW5jZUNsYXNzaWZpY2F0aW9uYAogICAgOnBhcmFtIGxhYmVsX25hbWU6ICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsIG9mIHRoZSBjb2x1bW4gaW4gdGhlIGRhdGFzZXQuCiAgICA6cGFyYW0gdGV4dF9jb2w6ICAgICAgICAgICAgICAgIFRoZSBpbnB1dCB0ZXh0IGNvbHVtbiB1biB0aGUgZGF0YXNldC4KICAgIDpwYXJhbSBudW1fb2ZfdHJhaW5fc2FtcGxlczogICAgTWF4IG51bWJlciBvZiB0cmFpbmluZyBzYW1wbGVzLCBmb3IgZGVidWdnaW5nLgogICAgOnBhcmFtIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZTogICBTaG91bGQgYmUgYmV0d2VlbiAwLjAgYW5kIDEuMCBhbmQgcmVwcmVzZW50IHRoZSBwcm9wb3J0aW9uIG9mIHRoZSBkYXRhc2V0IHRvIGluY2x1ZGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW4gdGhlIHRlc3Qgc3BsaXQuCiAgICA6cGFyYW0gbWV0cmljczogICAgICAgICAgICAgICAgIExpc3Qgb2YgZGlmZmVyZW50IG1ldHJpY3MgZm9yIGV2YWx1YXRlIHRoZSBtb2RlbCBzdWNoIGFzIGYxLCBhY2N1cmFjeSBldGMuCiAgICA6cGFyYW0gcmFuZG9tX3N0YXRlOiAgICAgICAgICAgIFJhbmRvbSBzdGF0ZSBmb3IgdHJhaW5fdGVzdF9zcGxpdAogICAgIiIiCgogICAgaWYgdHJhaW5fdGVzdF9zcGxpdF9zaXplIGlzIE5vbmUgYW5kIHRlc3Rfc2V0IGlzIE5vbmU6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygKICAgICAgICAgICAgIid0cmFpbl90ZXN0X3NwbGl0X3NpemUnIGlzIG5vdCBwcm92aWRlZCwgc2V0dGluZyB0cmFpbl90ZXN0X3NwbGl0X3NpemUgdG8gMC4yIgogICAgICAgICkKICAgICAgICB0cmFpbl90ZXN0X3NwbGl0X3NpemUgPSAwLjIKCiAgICAjIENyZWF0aW5nIHRva2VuaXplcjoKICAgIHRva2VuaXplciA9IEF1dG9Ub2tlbml6ZXIuZnJvbV9wcmV0cmFpbmVkKHByZXRyYWluZWRfdG9rZW5pemVyKQoKICAgIGRlZiBwcmVwcm9jZXNzX2Z1bmN0aW9uKGV4YW1wbGVzKToKICAgICAgICByZXR1cm4gdG9rZW5pemVyKGV4YW1wbGVzW3RleHRfY29sXSwgdHJ1bmNhdGlvbj1UcnVlKQoKICAgICMgcHJlcGFyZSBkYXRhIGZvciB0cmFpbmluZwogICAgaWYgaGZfZGF0YXNldDoKICAgICAgICB0cmFpbl9kYXRhc2V0LCB0ZXN0X2RhdGFzZXQgPSBfcHJlcGFyZV9kYXRhc2V0KAogICAgICAgICAgICBjb250ZXh0LAogICAgICAgICAgICBoZl9kYXRhc2V0LAogICAgICAgICAgICBsYWJlbF9uYW1lLAogICAgICAgICAgICBkcm9wX2NvbHVtbnMsCiAgICAgICAgICAgIG51bV9vZl90cmFpbl9zYW1wbGVzLAogICAgICAgICAgICB0cmFpbl90ZXN0X3NwbGl0X3NpemUsCiAgICAgICAgICAgIHJhbmRvbV9zdGF0ZT1yYW5kb21fc3RhdGUsCiAgICAgICAgKQogICAgZWxpZiBkYXRhc2V0OgogICAgICAgICMgR2V0IERhdGFGcmFtZSBieSBVUkwgb3IgYnkgRmVhdHVyZVZlY3RvcjoKICAgICAgICB0cmFpbl9kYXRhc2V0LCBsYWJlbF9uYW1lID0gX2dldF9kYXRhZnJhbWUoCiAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgZGF0YXNldD1kYXRhc2V0LAogICAgICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX25hbWUsCiAgICAgICAgICAgIGRyb3BfY29sdW1ucz1kcm9wX2NvbHVtbnMsCiAgICAgICAgKQogICAgICAgIGlmIHRlc3Rfc2V0OgogICAgICAgICAgICB0ZXN0X2RhdGFzZXQsIF8gPSBfZ2V0X2RhdGFmcmFtZSgKICAgICAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgIGRhdGFzZXQ9dGVzdF9zZXQsCiAgICAgICAgICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX25hbWUsCiAgICAgICAgICAgICAgICBkcm9wX2NvbHVtbnM9ZHJvcF9jb2x1bW5zLAogICAgICAgICAgICApCiAgICAgICAgZWxzZToKICAgICAgICAgICAgdHJhaW5fZGF0YXNldCwgdGVzdF9kYXRhc2V0ID0gdHJhaW5fdGVzdF9zcGxpdCgKICAgICAgICAgICAgICAgIHRyYWluX2RhdGFzZXQsCiAgICAgICAgICAgICAgICB0ZXN0X3NpemU9dHJhaW5fdGVzdF9zcGxpdF9zaXplLAogICAgICAgICAgICAgICAgcmFuZG9tX3N0YXRlPXJhbmRvbV9zdGF0ZSwKICAgICAgICAgICAgKQogICAgICAgIHRyYWluX2RhdGFzZXQgPSBEYXRhc2V0LmZyb21fcGFuZGFzKHRyYWluX2RhdGFzZXQpCiAgICAgICAgdGVzdF9kYXRhc2V0ID0gRGF0YXNldC5mcm9tX3BhbmRhcyh0ZXN0X2RhdGFzZXQpCiAgICBlbHNlOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICAiVHJhaW5pbmcgZGF0YSB3YXMgbm90IHByb3ZpZGVkLiBBIHRyYWluaW5nIGRhdGFzZXQgaXMgbWFuZGF0b3J5IGZvciB0cmFpbmluZy4iCiAgICAgICAgICAgICIgUGxlYXNlIHByb3ZpZGUgYSB0cmFpbmluZyBzZXQgdXNpbmcgb25lIG9mIHRoZSBhcmd1bWVudHMgJ2hmX2RhdGFzZXQnIG9yICdkYXRhc2V0Jy4iCiAgICAgICAgKQoKICAgICMgTWFwcGluZyBkYXRhc2V0cyB3aXRoIHRoZSB0b2tlbml6ZXI6CiAgICB0b2tlbml6ZWRfdHJhaW4gPSB0cmFpbl9kYXRhc2V0Lm1hcChwcmVwcm9jZXNzX2Z1bmN0aW9uLCBiYXRjaGVkPVRydWUpCiAgICB0b2tlbml6ZWRfdGVzdCA9IHRlc3RfZGF0YXNldC5tYXAocHJlcHJvY2Vzc19mdW5jdGlvbiwgYmF0Y2hlZD1UcnVlKQoKICAgICMgQ3JlYXRpbmcgZGF0YSBjb2xsYXRvciBmb3IgYmF0Y2hpbmc6CiAgICBkYXRhX2NvbGxhdG9yID0gRGF0YUNvbGxhdG9yV2l0aFBhZGRpbmcodG9rZW5pemVyPXRva2VuaXplcikKCiAgICAjIFBhcnNpbmcga3dhcmdzOgogICAgdHJhaW5fa3dhcmdzID0gX2dldF9zdWJfZGljdF9ieV9wcmVmaXgoCiAgICAgICAgc3JjPWNvbnRleHQucGFyYW1ldGVycywgcHJlZml4X2tleT1LV0FyZ3NQcmVmaXhlcy5UUkFJTgogICAgKQogICAgbW9kZWxfY2xhc3Nfa3dhcmdzID0gX2dldF9zdWJfZGljdF9ieV9wcmVmaXgoCiAgICAgICAgc3JjPWNvbnRleHQucGFyYW1ldGVycywgcHJlZml4X2tleT1LV0FyZ3NQcmVmaXhlcy5NT0RFTF9DTEFTUwogICAgKQoKICAgICMgTG9hZGluZyBvdXIgcHJldHJhaW5lZCBtb2RlbDoKICAgIG1vZGVsX2NsYXNzX2t3YXJnc1sicHJldHJhaW5lZF9tb2RlbF9uYW1lX29yX3BhdGgiXSA9ICgKICAgICAgICBtb2RlbF9jbGFzc19rd2FyZ3MuZ2V0KCJwcmV0cmFpbmVkX21vZGVsX25hbWVfb3JfcGF0aCIpIG9yIHByZXRyYWluZWRfbW9kZWwKICAgICkKICAgIHRyYWluX2t3YXJnc1siaHViX3Rva2VuIl0gPSB0cmFpbl9rd2FyZ3MuZ2V0KCJodWJfdG9rZW4iKSBvciBwcmV0cmFpbmVkX3Rva2VuaXplcgogICAgaWYgbm90IG1vZGVsX2NsYXNzX2t3YXJnc1sicHJldHJhaW5lZF9tb2RlbF9uYW1lX29yX3BhdGgiXToKICAgICAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5SdW50aW1lRXJyb3IoCiAgICAgICAgICAgICJNdXN0IHByb3ZpZGUgcHJldHJhaW5lZF9tb2RlbCBuYW1lIGFzICIKICAgICAgICAgICAgImZ1bmN0aW9uIGFyZ3VtZW50IG9yIGluIGV4dHJhIHBhcmFtcyIKICAgICAgICApCiAgICBtb2RlbCA9IGNyZWF0ZV9jbGFzcyhtb2RlbF9jbGFzcykuZnJvbV9wcmV0cmFpbmVkKCoqbW9kZWxfY2xhc3Nfa3dhcmdzKQoKICAgICMgUHJlcGFyaW5nIHRyYWluaW5nIGFyZ3VtZW50czoKICAgIHRyYWluaW5nX2FyZ3MgPSBUcmFpbmluZ0FyZ3VtZW50cygKICAgICAgICAqKnRyYWluX2t3YXJncywKICAgICkKCiAgICBjb21wdXRlX21ldHJpY3MgPSBfY3JlYXRlX2NvbXB1dGVfbWV0cmljcyhtZXRyaWNzKSBpZiBtZXRyaWNzIGVsc2UgTm9uZQogICAgdHJhaW5lciA9IFRyYWluZXIoCiAgICAgICAgbW9kZWw9bW9kZWwsCiAgICAgICAgYXJncz10cmFpbmluZ19hcmdzLAogICAgICAgIHRyYWluX2RhdGFzZXQ9dG9rZW5pemVkX3RyYWluLAogICAgICAgIGV2YWxfZGF0YXNldD10b2tlbml6ZWRfdGVzdCwKICAgICAgICB0b2tlbml6ZXI9dG9rZW5pemVyLAogICAgICAgIGRhdGFfY29sbGF0b3I9ZGF0YV9jb2xsYXRvciwKICAgICAgICBjb21wdXRlX21ldHJpY3M9Y29tcHV0ZV9tZXRyaWNzLAogICAgKQoKICAgIGFwcGx5X21scnVuKHRyYWluZXIsIG1vZGVsX25hbWU9bW9kZWxfbmFtZSkKCiAgICAjIEFwcGx5IHRyYWluaW5nIHdpdGggZXZhbHVhdGlvbjoKICAgIGNvbnRleHQubG9nZ2VyLmluZm8oZiJ0cmFpbmluZyAne21vZGVsX25hbWV9JyIpCiAgICB0cmFpbmVyLnRyYWluKCkKCgpkZWYgX2dldF9tb2RlbF9kaXIobW9kZWxfdXJpOiBzdHIpOgogICAgbW9kZWxfZmlsZSwgXywgXyA9IG1scnVuLmFydGlmYWN0cy5nZXRfbW9kZWwobW9kZWxfdXJpKQogICAgbW9kZWxfZGlyID0gdGVtcGZpbGUuZ2V0dGVtcGRpcigpCiAgICAjIFVuemlwIHRoZSBNb2RlbDoKICAgIHdpdGggemlwZmlsZS5aaXBGaWxlKG1vZGVsX2ZpbGUsICJyIikgYXMgemlwX2ZpbGU6CiAgICAgICAgemlwX2ZpbGUuZXh0cmFjdGFsbChtb2RlbF9kaXIpCgogICAgcmV0dXJuIG1vZGVsX2RpcgoKCmRlZiBvcHRpbWl6ZSgKICAgIG1vZGVsX3BhdGg6IHN0ciwKICAgIG1vZGVsX25hbWU6IHN0ciA9ICJvcHRpbWl6ZWRfbW9kZWwiLAogICAgdGFyZ2V0X2Rpcjogc3RyID0gIi4vb3B0aW1pemVkIiwKICAgIG9wdGltaXphdGlvbl9sZXZlbDogaW50ID0gMSwKKToKICAgICIiIgogICAgT3B0aW1pemluZyB0aGUgdHJhbnNmb3JtZXIgbW9kZWwgdXNpbmcgT05OWCBvcHRpbWl6YXRpb24uCgoKICAgIDpwYXJhbSBtb2RlbF9wYXRoOiAgICAgICAgICBUaGUgcGF0aCBvZiB0aGUgbW9kZWwgdG8gb3B0aW1pemUuCiAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICAgICAgTmFtZSBvZiB0aGUgb3B0aW1pemVkIG1vZGVsLgogICAgOnBhcmFtIHRhcmdldF9kaXI6ICAgICAgICAgIFRoZSBkaXJlY3RvcnkgdG8gc2F2ZSB0aGUgT05OWCBtb2RlbC4KICAgIDpwYXJhbSBvcHRpbWl6YXRpb25fbGV2ZWw6ICBPcHRpbWl6YXRpb24gbGV2ZWwgcGVyZm9ybWVkIGJ5IE9OTlggUnVudGltZSBvZiB0aGUgbG9hZGVkIGdyYXBoLiAoZGVmYXVsdCBpcyAxKQogICAgIiIiCiAgICAjIFdlIGltcG9ydCB0aGVzZSBpbiB0aGUgZnVuY3Rpb24gc2NvcGUgc28gT05OWCB3b24ndCBiZSBtYW5kYXRvcnkgZm9yIHRoZSBvdGhlciBoYW5kbGVyczoKICAgIGZyb20gb3B0aW11bS5vbm54cnVudGltZSBpbXBvcnQgT1JUTW9kZWxGb3JTZXF1ZW5jZUNsYXNzaWZpY2F0aW9uLCBPUlRPcHRpbWl6ZXIKICAgIGZyb20gb3B0aW11bS5vbm54cnVudGltZS5jb25maWd1cmF0aW9uIGltcG9ydCBPcHRpbWl6YXRpb25Db25maWcKCiAgICBtb2RlbF9kaXIgPSBfZ2V0X21vZGVsX2Rpcihtb2RlbF91cmk9bW9kZWxfcGF0aCkKICAgICMgQ3JlYXRpbmcgY29uZmlndXJhdGlvbiBmb3Igb3B0aW1pemF0aW9uIHN0ZXA6CiAgICBvcHRpbWl6YXRpb25fY29uZmlnID0gT3B0aW1pemF0aW9uQ29uZmlnKG9wdGltaXphdGlvbl9sZXZlbD1vcHRpbWl6YXRpb25fbGV2ZWwpCgogICAgIyBDb252ZXJ0aW5nIG91ciBwcmV0cmFpbmVkIG1vZGVsIHRvIGFuIE9OTlgtUnVudGltZSBtb2RlbDoKICAgIG9ydF9tb2RlbCA9IE9SVE1vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbi5mcm9tX3ByZXRyYWluZWQoCiAgICAgICAgbW9kZWxfZGlyLCBmcm9tX3RyYW5zZm9ybWVycz1UcnVlCiAgICApCgogICAgIyBDcmVhdGluZyBhbiBPTk5YLVJ1bnRpbWUgb3B0aW1pemVyIGZyb20gT05OWCBtb2RlbDoKICAgIG9wdGltaXplciA9IE9SVE9wdGltaXplci5mcm9tX3ByZXRyYWluZWQob3J0X21vZGVsKQoKICAgIGFwcGx5X21scnVuKG9wdGltaXplciwgbW9kZWxfbmFtZT1tb2RlbF9uYW1lKQogICAgIyBPcHRpbWl6aW5nIGFuZCBzYXZpbmcgdGhlIE9OTlggbW9kZWw6CiAgICBvcHRpbWl6ZXIub3B0aW1pemUoc2F2ZV9kaXI9dGFyZ2V0X2Rpciwgb3B0aW1pemF0aW9uX2NvbmZpZz1vcHRpbWl6YXRpb25fY29uZmlnKQo=
+ base_image: mlrun/mlrun
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - onnx~=1.14.1
+ - onnxruntime~=1.16.1
+ - optimum~=1.6.4
+ - transformers~=4.26.1
+ - datasets~=2.10.1
+ - scikit-learn~=1.0.2
+ entry_points:
+ add_interface:
+ name: add_interface
+ doc: 'Enrich the object with this interface properties, methods and functions,
+ so it will have this TensorFlow.Keras
+
+ MLRuns features.'
+ parameters:
+ - name: cls
+ - name: obj
+ type: Trainer
+ doc: The object to enrich his interface.
+ - name: restoration
+ type: MLRunInterfaceRestorationType
+ doc: Restoration information tuple as returned from 'remove_interface' in
+ order to add the interface in a certain state.
+ default: null
+ outputs: []
+ lineno: 146
+ has_varargs: false
+ has_kwargs: false
+ mlrun_optimize:
+ name: mlrun_optimize
+ doc: 'MLRun''s tf.keras.Model.fit wrapper. It will setup the optimizer when
+ using horovod. The optimizer must be
+
+ passed in a keyword argument and when using horovod, it must be passed as
+ an Optimizer instance, not a string.
+
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow
+ the instructions above.'
+ parameters:
+ - name: cls
+ outputs: []
+ lineno: 79
+ has_varargs: false
+ has_kwargs: false
+ wrapper:
+ name: wrapper
+ doc: ''
+ parameters:
+ - name: self
+ type: Trainer
+ outputs: []
+ lineno: 173
+ has_varargs: true
+ has_kwargs: true
+ enable_auto_logging:
+ name: enable_auto_logging
+ doc: ''
+ parameters:
+ - name: self
+ - name: context
+ type: MLClientCtx
+ - name: model_name
+ type: str
+ default: model
+ - name: tag
+ type: str
+ default: ''
+ - name: labels
+ type: Dict[str, str]
+ default: null
+ - name: extra_data
+ type: dict
+ default: null
+ outputs: []
+ lineno: 114
+ has_varargs: false
+ has_kwargs: false
+ mlrun_train:
+ name: mlrun_train
+ doc: 'MLRuns tf.keras.Model.fit wrapper. It will setup the optimizer when using
+ horovod. The optimizer must be
+
+ passed in a keyword argument and when using horovod, it must be passed as
+ an Optimizer instance, not a string.
+
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow
+ the instructions above.'
+ parameters:
+ - name: cls
+ outputs: []
+ lineno: 164
+ has_varargs: false
+ has_kwargs: false
+ on_epoch_begin:
+ name: on_epoch_begin
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 220
+ has_varargs: false
+ has_kwargs: true
+ on_epoch_end:
+ name: on_epoch_end
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 229
+ has_varargs: false
+ has_kwargs: true
+ on_log:
+ name: on_log
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ - name: logs
+ type: Dict[str, float]
+ default: null
+ outputs: []
+ lineno: 238
+ has_varargs: false
+ has_kwargs: true
+ on_train_begin:
+ name: on_train_begin
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 262
+ has_varargs: false
+ has_kwargs: true
+ on_train_end:
+ name: on_train_end
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ - name: model
+ type: PreTrainedModel
+ default: null
+ - name: tokenizer
+ type: PreTrainedTokenizer
+ default: null
+ outputs: []
+ lineno: 271
+ has_varargs: false
+ has_kwargs: true
+ on_evaluate:
+ name: on_evaluate
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 322
+ has_varargs: false
+ has_kwargs: true
+ apply_mlrun:
+ name: apply_mlrun
+ doc: Wrap the given model with MLRun's interface providing it with mlrun's additional
+ features.
+ parameters:
+ - name: huggingface_object
+ doc: The model to wrap. Can be loaded from the model path given as well.
+ - name: model_name
+ type: str
+ doc: 'The model name to use for storing the model artifact. Default: "model".'
+ default: null
+ - name: tag
+ type: str
+ doc: The model's tag to log with.
+ default: ''
+ - name: context
+ type: MLClientCtx
+ doc: MLRun context to work with. If no context is given it will be retrieved
+ via 'mlrun.get_or_create_ctx(None)'
+ default: null
+ - name: auto_log
+ type: bool
+ doc: 'Whether to enable MLRun''s auto logging. Default: True.'
+ default: true
+ - name: labels
+ type: Dict[str, str]
+ default: null
+ - name: extra_data
+ type: dict
+ default: null
+ outputs: []
+ lineno: 421
+ has_varargs: false
+ has_kwargs: true
+ train:
+ name: train
+ doc: 'Training and evaluating a pretrained model with a pretrained tokenizer
+ over a dataset.
+
+ The dataset can be either be the name of the dataset that contains in the
+ HuggingFace hub,
+
+ or a URI or a FeatureVector'
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: MLRun context
+ - name: hf_dataset
+ type: str
+ doc: The name of the dataset to get from the HuggingFace hub
+ default: null
+ - name: dataset
+ type: DataItem
+ doc: The dataset to train the model on. Can be either a URI or a FeatureVector
+ default: null
+ - name: test_set
+ type: DataItem
+ doc: The test set to train the model with.
+ default: null
+ - name: drop_columns
+ type: Optional[List[str]]
+ doc: The columns to drop from the dataset.
+ default: null
+ - name: pretrained_tokenizer
+ type: str
+ doc: The name of the pretrained tokenizer from the HuggingFace hub.
+ default: null
+ - name: pretrained_model
+ type: str
+ doc: The name of the pretrained model from the HuggingFace hub.
+ default: null
+ - name: model_class
+ type: str
+ doc: The class of the model, e.g. `transformers.AutoModelForSequenceClassification`
+ default: null
+ - name: model_name
+ type: str
+ doc: The model's name to use for storing the model artifact, default to 'model'
+ default: huggingface-model
+ - name: label_name
+ type: str
+ doc: The target label of the column in the dataset.
+ default: labels
+ - name: text_col
+ type: str
+ doc: The input text column un the dataset.
+ default: text
+ - name: num_of_train_samples
+ type: int
+ doc: Max number of training samples, for debugging.
+ default: null
+ - name: train_test_split_size
+ type: float
+ doc: Should be between 0.0 and 1.0 and represent the proportion of the dataset
+ to include in the test split.
+ default: null
+ - name: metrics
+ type: List[str]
+ doc: List of different metrics for evaluate the model such as f1, accuracy
+ etc.
+ default: null
+ - name: random_state
+ type: int
+ doc: Random state for train_test_split
+ default: null
+ outputs: []
+ lineno: 647
+ has_varargs: false
+ has_kwargs: false
+ preprocess_function:
+ name: preprocess_function
+ doc: ''
+ parameters:
+ - name: examples
+ outputs: []
+ lineno: 696
+ has_varargs: false
+ has_kwargs: false
+ optimize:
+ name: optimize
+ doc: Optimizing the transformer model using ONNX optimization.
+ parameters:
+ - name: model_path
+ type: str
+ doc: The path of the model to optimize.
+ - name: model_name
+ type: str
+ doc: Name of the optimized model.
+ default: optimized_model
+ - name: target_dir
+ type: str
+ doc: The directory to save the ONNX model.
+ default: ./optimized
+ - name: optimization_level
+ type: int
+ doc: Optimization level performed by ONNX Runtime of the loaded graph. (default
+ is 1)
+ default: 1
+ outputs: []
+ lineno: 799
+ has_varargs: false
+ has_kwargs: false
+ description: Automatic train and optimize functions for HuggingFace framework
+ default_handler: train
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/src/hugging_face_classifier_trainer.ipynb b/functions/master/hugging_face_classifier_trainer/0.3.0/src/hugging_face_classifier_trainer.ipynb
new file mode 100644
index 00000000..2768d2dc
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/src/hugging_face_classifier_trainer.ipynb
@@ -0,0 +1,2533 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ " \n",
+ "# MLRun Hugging Face Classifier Trainer Tutorial"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "This notebook shows how to use the handlers of the Hugging Face classifier trainer.\n",
+ "the following handlers are:\n",
+ "- `train`\n",
+ "- `optimize`\n",
+ "\n",
+ "All you need is simply **HF model type** and a **HF dataset name**."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Requirement already satisfied: onnx~=1.14.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 1)) (1.14.1)\n",
+ "Requirement already satisfied: onnxruntime==1.16.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 2)) (1.16.1)\n",
+ "Requirement already satisfied: optimum~=1.6.4 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 3)) (1.6.4)\n",
+ "Requirement already satisfied: transformers~=4.26.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 4)) (4.26.1)\n",
+ "Requirement already satisfied: datasets~=2.10.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 5)) (2.10.1)\n",
+ "Requirement already satisfied: scikit-learn~=1.0.2 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 6)) (1.0.2)\n",
+ "Requirement already satisfied: coloredlogs in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (15.0.1)\n",
+ "Requirement already satisfied: flatbuffers in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.12)\n",
+ "Requirement already satisfied: numpy>=1.21.6 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.23.5)\n",
+ "Requirement already satisfied: packaging in /conda/envs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (21.3)\n",
+ "Requirement already satisfied: protobuf in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (3.20.2)\n",
+ "Requirement already satisfied: sympy in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.12)\n",
+ "Requirement already satisfied: typing-extensions>=3.6.2.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from onnx~=1.14.1->-r requirements.txt (line 1)) (4.7.1)\n",
+ "Requirement already satisfied: torch>=1.9 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from optimum~=1.6.4->-r requirements.txt (line 3)) (2.1.2)\n",
+ "Requirement already satisfied: huggingface-hub>=0.8.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from optimum~=1.6.4->-r requirements.txt (line 3)) (0.20.1)\n",
+ "Requirement already satisfied: filelock in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (3.13.1)\n",
+ "Requirement already satisfied: pyyaml>=5.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (5.4.1)\n",
+ "Requirement already satisfied: regex!=2019.12.17 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (2023.12.25)\n",
+ "Requirement already satisfied: requests in /conda/envs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (2.31.0)\n",
+ "Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (0.13.3)\n",
+ "Requirement already satisfied: tqdm>=4.27 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (4.65.0)\n",
+ "Requirement already satisfied: pyarrow>=6.0.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (11.0.0)\n",
+ "Requirement already satisfied: dill<0.3.7,>=0.3.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (0.3.6)\n",
+ "Requirement already satisfied: pandas in /conda/envs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (1.4.4)\n",
+ "Requirement already satisfied: xxhash in /conda/envs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (3.3.0)\n",
+ "Requirement already satisfied: multiprocess in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (0.70.14)\n",
+ "Requirement already satisfied: fsspec>=2021.11.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from fsspec[http]>=2021.11.1->datasets~=2.10.1->-r requirements.txt (line 5)) (2023.9.2)\n",
+ "Requirement already satisfied: aiohttp in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (3.9.1)\n",
+ "Requirement already satisfied: responses<0.19 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (0.18.0)\n",
+ "Requirement already satisfied: scipy>=1.1.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r requirements.txt (line 6)) (1.11.4)\n",
+ "Requirement already satisfied: joblib>=0.11 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r requirements.txt (line 6)) (1.3.2)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r requirements.txt (line 6)) (3.2.0)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (19.1.0)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (6.0.4)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (1.9.2)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (1.4.0)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (1.3.1)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (4.0.3)\n",
+ "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from packaging->onnxruntime==1.16.1->-r requirements.txt (line 2)) (3.1.1)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (2.1.1)\n",
+ "Requirement already satisfied: idna<4,>=2.5 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (3.4)\n",
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (1.26.16)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (2023.7.22)\n",
+ "Requirement already satisfied: networkx in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (3.2.1)\n",
+ "Requirement already satisfied: jinja2 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (3.1.3)\n",
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)\n",
+ "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (8.9.2.26)\n",
+ "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.3.1)\n",
+ "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (11.0.2.54)\n",
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (10.3.2.106)\n",
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (11.4.5.107)\n",
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.0.106)\n",
+ "Requirement already satisfied: nvidia-nccl-cu12==2.18.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (2.18.1)\n",
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)\n",
+ "Requirement already satisfied: triton==2.1.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (2.1.0)\n",
+ "Requirement already satisfied: nvidia-nvjitlink-cu12 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.3.101)\n",
+ "Requirement already satisfied: sentencepiece!=0.1.92,>=0.1.91 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers[sentencepiece]>=4.26.0->optimum~=1.6.4->-r requirements.txt (line 3)) (0.2.0)\n",
+ "Requirement already satisfied: humanfriendly>=9.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from coloredlogs->onnxruntime==1.16.1->-r requirements.txt (line 2)) (9.2)\n",
+ "Requirement already satisfied: python-dateutil>=2.8.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from pandas->datasets~=2.10.1->-r requirements.txt (line 5)) (2.8.2)\n",
+ "Requirement already satisfied: pytz>=2020.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from pandas->datasets~=2.10.1->-r requirements.txt (line 5)) (2023.3.post1)\n",
+ "Requirement already satisfied: mpmath>=0.19 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from sympy->onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.3.0)\n",
+ "Requirement already satisfied: six>=1.5 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas->datasets~=2.10.1->-r requirements.txt (line 5)) (1.16.0)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from jinja2->torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (2.1.3)\n",
+ "Note: you may need to restart the kernel to use updated packages.\n"
+ ]
+ }
+ ],
+ "source": [
+ "%pip install -r requirements.txt"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import mlrun"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:10:17,091 [info] Project loaded successfully: {'project_name': 'hugging-face-trainer'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "project = mlrun.get_or_create_project('hugging-face-trainer', context=\"./\", user_project=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### **Importing the hugging_face_classifier_trainer function from the Marketplace**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "hugging_face_classifier_trainer = mlrun.import_function(\"hub://hugging_face_classifier_trainer\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### **Training a model**\n",
+ "\n",
+ "Choosing the `train` handler"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### Define task parameters¶\n",
+ "* Class parameters should contain the prefix `CLASS_`\n",
+ "* Train parameters should contain the prefix `TRAIN_`"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "model_class = \"transformers.AutoModelForSequenceClassification\"\n",
+ "additional_parameters = {\n",
+ " \"TRAIN_output_dir\": \"finetuning-sentiment-model-3000-samples\",\n",
+ " \"TRAIN_learning_rate\": 2e-5,\n",
+ " \"TRAIN_per_device_train_batch_size\": 16,\n",
+ " \"TRAIN_per_device_eval_batch_size\": 16,\n",
+ " \"TRAIN_num_train_epochs\": 3,\n",
+ " \"TRAIN_weight_decay\": 0.01,\n",
+ " \"TRAIN_push_to_hub\": False,\n",
+ " \"TRAIN_evaluation_strategy\": \"epoch\",\n",
+ " \"TRAIN_eval_steps\": 1,\n",
+ " \"TRAIN_logging_steps\": 1,\n",
+ " \"CLASS_num_labels\": 2\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### Running the Training job with the \"train\" handler"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ },
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:10:21,025 [info] Storing function: {'name': 'hugging-face-classifier-trainer-train', 'uid': '514d8d5530c842238b1cc81983cd943e', 'db': 'http://mlrun-api:8080'}\n",
+ "> 2024-03-24 17:11:03,727 [info] 'train_test_split_size' is not provided, setting train_test_split_size to 0.2\n",
+ "> 2024-03-24 17:11:03,882 [info] Loading and editing Shayanvsf/US_Airline_Sentiment dataset from Hugging Face hub\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Found cached dataset parquet (/igz/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "f43b1388d0b344888323bec590baadee",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ " 0%| | 0/3 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Loading cached shuffled indices for dataset at /igz/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-ec18d1773cfb9bb5.arrow\n",
+ "Loading cached shuffled indices for dataset at /igz/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-e0c54c494a578ee6.arrow\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/100 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Map: 0%| | 0/24 [00:00, ? examples/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_layer_norm.bias', 'vocab_layer_norm.weight']\n",
+ "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
+ "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
+ "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'classifier.weight', 'pre_classifier.weight', 'classifier.bias']\n",
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:11:08,938 [info] training 'huggingface-model'\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
+ "***** Running training *****\n",
+ " Num examples = 100\n",
+ " Num Epochs = 3\n",
+ " Instantaneous batch size per device = 16\n",
+ " Total train batch size (w. parallel, distributed & accumulation) = 16\n",
+ " Gradient Accumulation steps = 1\n",
+ " Total optimization steps = 21\n",
+ " Number of trainable parameters = 66955010\n",
+ "You're using a DistilBertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " \n",
+ "
\n",
+ " [21/21 00:15, Epoch 3/3]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Epoch \n",
+ " Training Loss \n",
+ " Validation Loss \n",
+ " Accuracy \n",
+ " F1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 0.738900 \n",
+ " 0.515311 \n",
+ " 0.791667 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 0.525900 \n",
+ " 0.481563 \n",
+ " 0.791667 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.490800 \n",
+ " 0.471675 \n",
+ " 0.791667 \n",
+ " 0.000000 \n",
+ " \n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 24\n",
+ " Batch size = 16\n",
+ "/tmp/tmp0c1aawrq.py:561: FutureWarning:\n",
+ "\n",
+ "load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
+ "\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 24\n",
+ " Batch size = 16\n",
+ "The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 24\n",
+ " Batch size = 16\n",
+ "\n",
+ "\n",
+ "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
+ "\n",
+ "\n",
+ "tokenizer config file saved in /tmp/tokenizer/tokenizer_config.json\n",
+ "Special tokens file saved in /tmp/tokenizer/special_tokens_map.json\n",
+ "Configuration saved in /tmp/model/config.json\n",
+ "Model weights saved in /tmp/model/pytorch_model.bin\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " hugging-face-trainer-avia \n",
+ " \n",
+ " 0 \n",
+ " Mar 24 17:10:21 \n",
+ " completed \n",
+ " hugging-face-classifier-trainer-train \n",
+ " v3io_user=avia
kind=local
owner=avia
host=jupyter-avia-6454bdd4c5-xz8cg
\n",
+ " \n",
+ " hf_dataset=Shayanvsf/US_Airline_Sentiment
drop_columns=['airline_sentiment_confidence', 'negativereason_confidence']
pretrained_tokenizer=distilbert-base-uncased
pretrained_model=distilbert-base-uncased
model_class=transformers.AutoModelForSequenceClassification
label_name=airline_sentiment
num_of_train_samples=100
metrics=['accuracy', 'f1']
random_state=42
TRAIN_output_dir=finetuning-sentiment-model-3000-samples
TRAIN_learning_rate=2e-05
TRAIN_per_device_train_batch_size=16
TRAIN_per_device_eval_batch_size=16
TRAIN_num_train_epochs=3
TRAIN_weight_decay=0.01
TRAIN_push_to_hub=False
TRAIN_evaluation_strategy=epoch
TRAIN_eval_steps=1
TRAIN_logging_steps=1
CLASS_num_labels=2
\n",
+ " loss=0.4908
learning_rate=0.0
eval_loss=0.47167453169822693
eval_accuracy=0.7916666666666666
eval_f1=0.0
eval_runtime=0.5186
eval_samples_per_second=46.276
eval_steps_per_second=3.856
train_runtime=17.6054
train_samples_per_second=17.04
train_steps_per_second=1.193
total_flos=3327208489680.0
\n",
+ " loss_plot
learning_rate_plot
eval_loss_plot
eval_accuracy_plot
eval_f1_plot
eval_runtime_plot
eval_samples_per_second_plot
eval_steps_per_second_plot
tokenizer
model
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:12:01,880 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-train'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_run = hugging_face_classifier_trainer.run(params={\n",
+ " \"hf_dataset\": \"Shayanvsf/US_Airline_Sentiment\",\n",
+ " \"drop_columns\": [\n",
+ " \"airline_sentiment_confidence\",\n",
+ " \"negativereason_confidence\",\n",
+ " ],\n",
+ " \"pretrained_tokenizer\": \"distilbert-base-uncased\",\n",
+ " \"pretrained_model\": \"distilbert-base-uncased\",\n",
+ " \"model_class\": \"transformers.AutoModelForSequenceClassification\",\n",
+ " \"label_name\": \"airline_sentiment\",\n",
+ " \"num_of_train_samples\": 100,\n",
+ " \"metrics\": [\"accuracy\", \"f1\"],\n",
+ " \"random_state\": 42,\n",
+ " **additional_parameters\n",
+ " },\n",
+ " handler=\"train\",\n",
+ " local=True,\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### The result of the train run"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'loss': 0.4908,\n",
+ " 'learning_rate': 0.0,\n",
+ " 'eval_loss': 0.47167453169822693,\n",
+ " 'eval_accuracy': 0.7916666666666666,\n",
+ " 'eval_f1': 0.0,\n",
+ " 'eval_runtime': 0.5186,\n",
+ " 'eval_samples_per_second': 46.276,\n",
+ " 'eval_steps_per_second': 3.856,\n",
+ " 'train_runtime': 17.6054,\n",
+ " 'train_samples_per_second': 17.04,\n",
+ " 'train_steps_per_second': 1.193,\n",
+ " 'total_flos': 3327208489680.0,\n",
+ " 'loss_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/loss_plot.html',\n",
+ " 'learning_rate_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/learning_rate_plot.html',\n",
+ " 'eval_loss_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_loss_plot.html',\n",
+ " 'eval_accuracy_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_accuracy_plot.html',\n",
+ " 'eval_f1_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_f1_plot.html',\n",
+ " 'eval_runtime_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_runtime_plot.html',\n",
+ " 'eval_samples_per_second_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_samples_per_second_plot.html',\n",
+ " 'eval_steps_per_second_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_steps_per_second_plot.html',\n",
+ " 'tokenizer': 'store://artifacts/hugging-face-trainer-avia/hugging-face-classifier-trainer-train_tokenizer@514d8d5530c842238b1cc81983cd943e',\n",
+ " 'model': 'store://artifacts/hugging-face-trainer-avia/huggingface-model@514d8d5530c842238b1cc81983cd943e'}"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "train_run.outputs"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "train_run.artifact('loss_plot').show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### Getting the model for evaluating and predicting"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "model_path = train_run.outputs['model']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### **Optimize the model**\n",
+ "\n",
+ "Choosing the `optimize` handler\n",
+ "\n",
+ "The result of using this handled is an onnx optimized model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:12:02,020 [info] Storing function: {'name': 'hugging-face-classifier-trainer-optimize', 'uid': 'fbee1ead18444824a4b5c0308a677bf4', 'db': 'http://mlrun-api:8080'}\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/optimum/onnxruntime/configuration.py:726: FutureWarning:\n",
+ "\n",
+ "disable_embed_layer_norm will be deprecated soon, use disable_embed_layer_norm_fusion instead, disable_embed_layer_norm_fusion is set to True.\n",
+ "\n",
+ "loading configuration file /tmp/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/config.json\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "loading configuration file /tmp/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "loading weights file /tmp/pytorch_model.bin\n",
+ "All model checkpoint weights were used when initializing DistilBertForSequenceClassification.\n",
+ "\n",
+ "All the weights of DistilBertForSequenceClassification were initialized from the model checkpoint at /tmp.\n",
+ "If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertForSequenceClassification for predictions without further training.\n",
+ "/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/transformers/models/distilbert/modeling_distilbert.py:218: TracerWarning:\n",
+ "\n",
+ "torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.\n",
+ "\n",
+ "Configuration saved in /tmp/tmp79wjp8m8/config.json\n",
+ "Could not locate the tokenizer configuration file, will try to use the model config instead.\n",
+ "loading configuration file /tmp/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "loading configuration file /tmp/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "Could not locate the tokenizer configuration file, will try to use the model config instead.\n",
+ "loading configuration file /tmp/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "Could not locate the tokenizer configuration file, will try to use the model config instead.\n",
+ "loading configuration file /tmp/tmp79wjp8m8/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/tmp79wjp8m8\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "loading configuration file /tmp/tmp79wjp8m8/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/tmp79wjp8m8\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "Could not locate the tokenizer configuration file, will try to use the model config instead.\n",
+ "loading configuration file /tmp/tmp79wjp8m8/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/tmp79wjp8m8\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "Configuration saved in optimized/config.json\n",
+ "Could not locate the tokenizer configuration file, will try to use the model config instead.\n",
+ "loading configuration file /tmp/tmp79wjp8m8/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/tmp79wjp8m8\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "loading configuration file /tmp/tmp79wjp8m8/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/tmp79wjp8m8\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "Could not locate the tokenizer configuration file, will try to use the model config instead.\n",
+ "loading configuration file /tmp/tmp79wjp8m8/config.json\n",
+ "Model config DistilBertConfig {\n",
+ " \"_name_or_path\": \"/tmp/tmp79wjp8m8\",\n",
+ " \"activation\": \"gelu\",\n",
+ " \"architectures\": [\n",
+ " \"DistilBertForSequenceClassification\"\n",
+ " ],\n",
+ " \"attention_dropout\": 0.1,\n",
+ " \"dim\": 768,\n",
+ " \"dropout\": 0.1,\n",
+ " \"hidden_dim\": 3072,\n",
+ " \"initializer_range\": 0.02,\n",
+ " \"max_position_embeddings\": 512,\n",
+ " \"model_type\": \"distilbert\",\n",
+ " \"n_heads\": 12,\n",
+ " \"n_layers\": 6,\n",
+ " \"pad_token_id\": 0,\n",
+ " \"problem_type\": \"single_label_classification\",\n",
+ " \"qa_dropout\": 0.1,\n",
+ " \"seq_classif_dropout\": 0.2,\n",
+ " \"sinusoidal_pos_embds\": false,\n",
+ " \"tie_weights_\": true,\n",
+ " \"torch_dtype\": \"float32\",\n",
+ " \"transformers_version\": \"4.26.1\",\n",
+ " \"vocab_size\": 30522\n",
+ "}\n",
+ "\n",
+ "Failed to remove node input: \"/distilbert/transformer/layer.0/attention/Transpose_output_0\"\n",
+ "input: \"/distilbert/transformer/layer.0/attention/Constant_11_output_0\"\n",
+ "output: \"/distilbert/transformer/layer.0/attention/Div_output_0\"\n",
+ "name: \"/distilbert/transformer/layer.0/attention/Div\"\n",
+ "op_type: \"Div\"\n",
+ "\n",
+ "Failed to remove node input: \"/distilbert/transformer/layer.1/attention/Transpose_output_0\"\n",
+ "input: \"/distilbert/transformer/layer.1/attention/Constant_11_output_0\"\n",
+ "output: \"/distilbert/transformer/layer.1/attention/Div_output_0\"\n",
+ "name: \"/distilbert/transformer/layer.1/attention/Div\"\n",
+ "op_type: \"Div\"\n",
+ "\n",
+ "Failed to remove node input: \"/distilbert/transformer/layer.2/attention/Transpose_output_0\"\n",
+ "input: \"/distilbert/transformer/layer.2/attention/Constant_11_output_0\"\n",
+ "output: \"/distilbert/transformer/layer.2/attention/Div_output_0\"\n",
+ "name: \"/distilbert/transformer/layer.2/attention/Div\"\n",
+ "op_type: \"Div\"\n",
+ "\n",
+ "Failed to remove node input: \"/distilbert/transformer/layer.3/attention/Transpose_output_0\"\n",
+ "input: \"/distilbert/transformer/layer.3/attention/Constant_11_output_0\"\n",
+ "output: \"/distilbert/transformer/layer.3/attention/Div_output_0\"\n",
+ "name: \"/distilbert/transformer/layer.3/attention/Div\"\n",
+ "op_type: \"Div\"\n",
+ "\n",
+ "Failed to remove node input: \"/distilbert/transformer/layer.4/attention/Transpose_output_0\"\n",
+ "input: \"/distilbert/transformer/layer.4/attention/Constant_11_output_0\"\n",
+ "output: \"/distilbert/transformer/layer.4/attention/Div_output_0\"\n",
+ "name: \"/distilbert/transformer/layer.4/attention/Div\"\n",
+ "op_type: \"Div\"\n",
+ "\n",
+ "Failed to remove node input: \"/distilbert/transformer/layer.5/attention/Transpose_output_0\"\n",
+ "input: \"/distilbert/transformer/layer.5/attention/Constant_11_output_0\"\n",
+ "output: \"/distilbert/transformer/layer.5/attention/Div_output_0\"\n",
+ "name: \"/distilbert/transformer/layer.5/attention/Div\"\n",
+ "op_type: \"Div\"\n",
+ "\n",
+ "Configuration saved in optimized/config.json\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " hugging-face-trainer-avia \n",
+ " \n",
+ " 0 \n",
+ " Mar 24 17:12:02 \n",
+ " completed \n",
+ " hugging-face-classifier-trainer-optimize \n",
+ " v3io_user=avia
kind=local
owner=avia
host=jupyter-avia-6454bdd4c5-xz8cg
\n",
+ " \n",
+ " model_path=store://artifacts/hugging-face-trainer-avia/huggingface-model@514d8d5530c842238b1cc81983cd943e
\n",
+ " \n",
+ " model
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:12:22,721 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-optimize'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "optimize_run = hugging_face_classifier_trainer.run(params={\n",
+ " \"model_path\": str(model_path)\n",
+ " },\n",
+ " handler=\"optimize\",\n",
+ " local=True,\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'model': 'store://artifacts/hugging-face-trainer-avia/optimized_model@fbee1ead18444824a4b5c0308a677bf4'}"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "optimize_run.outputs"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### **Running the training remotely**\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/mlrun/projects/operations.py:276: OverwriteBuildParamsWarning:\n",
+ "\n",
+ "The `overwrite_build_params` parameter default will change from 'False' to 'True' in 1.8.0.\n",
+ "\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:14:22,792 [info] Started building image: .mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer:latest\n",
+ "\u001b[36mINFO\u001b[0m[0000] Retrieving image manifest mlrun/mlrun:1.6.1 \n",
+ "\u001b[36mINFO\u001b[0m[0000] Retrieving image mlrun/mlrun:1.6.1 from registry index.docker.io \n",
+ "\u001b[36mINFO\u001b[0m[0000] Built cross stage deps: map[] \n",
+ "\u001b[36mINFO\u001b[0m[0000] Retrieving image manifest mlrun/mlrun:1.6.1 \n",
+ "\u001b[36mINFO\u001b[0m[0000] Returning cached image manifest \n",
+ "\u001b[36mINFO\u001b[0m[0000] Executing 0 build triggers \n",
+ "\u001b[36mINFO\u001b[0m[0000] Building stage 'mlrun/mlrun:1.6.1' [idx: '0', base-idx: '-1'] \n",
+ "\u001b[36mINFO\u001b[0m[0000] Unpacking rootfs as cmd RUN echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt requires it. \n",
+ "\u001b[36mINFO\u001b[0m[0047] RUN echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt \n",
+ "\u001b[36mINFO\u001b[0m[0047] Initializing snapshotter ... \n",
+ "\u001b[36mINFO\u001b[0m[0047] Taking snapshot of full filesystem... \n",
+ "\u001b[36mINFO\u001b[0m[0074] Cmd: /bin/sh \n",
+ "\u001b[36mINFO\u001b[0m[0074] Args: [-c echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt] \n",
+ "\u001b[36mINFO\u001b[0m[0074] Running: [/bin/sh -c echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt] \n",
+ "Installing /empty/requirements.txt...\n",
+ "mlrun[complete]==1.6.1\n",
+ "onnx~=1.14.1\n",
+ "onnxruntime~=1.16.1\n",
+ "optimum~=1.6.4\n",
+ "transformers~=4.26.1\n",
+ "datasets~=2.10.1\n",
+ "scikit-learn~=1.0.2\n",
+ "\u001b[36mINFO\u001b[0m[0074] Taking snapshot of full filesystem... \n",
+ "\u001b[36mINFO\u001b[0m[0078] No files were changed, appending empty layer to config. No layer added to image. \n",
+ "\u001b[36mINFO\u001b[0m[0078] RUN python -m pip install -r /empty/requirements.txt \n",
+ "\u001b[36mINFO\u001b[0m[0078] Cmd: /bin/sh \n",
+ "\u001b[36mINFO\u001b[0m[0078] Args: [-c python -m pip install -r /empty/requirements.txt] \n",
+ "\u001b[36mINFO\u001b[0m[0078] Running: [/bin/sh -c python -m pip install -r /empty/requirements.txt] \n",
+ "Requirement already satisfied: mlrun[complete]==1.6.1 in /opt/conda/lib/python3.9/site-packages (from -r /empty/requirements.txt (line 1)) (1.6.1)\n",
+ "Collecting onnx~=1.14.1 (from -r /empty/requirements.txt (line 2))\n",
+ " Obtaining dependency information for onnx~=1.14.1 from https://files.pythonhosted.org/packages/ff/24/0e522fdcadf0e15fc304145a5b6e5d7246d7f2c507fd9bfe6e1fafb2aa95/onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB)\n",
+ "Collecting onnxruntime~=1.16.1 (from -r /empty/requirements.txt (line 3))\n",
+ " Obtaining dependency information for onnxruntime~=1.16.1 from https://files.pythonhosted.org/packages/de/ab/ed3ae0d649cee41e870f8b1653cf4a1c1fc321e0ded4e3e1a3d4a25c0131/onnxruntime-1.16.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading onnxruntime-1.16.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.3 kB)\n",
+ "Collecting optimum~=1.6.4 (from -r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for optimum~=1.6.4 from https://files.pythonhosted.org/packages/31/72/a7e3b2c57d6368c5f4bb6fba54a85cbf07d25c385a2db3f1a638f3c0ddb2/optimum-1.6.4-py3-none-any.whl.metadata\n",
+ " Downloading optimum-1.6.4-py3-none-any.whl.metadata (17 kB)\n",
+ "Collecting transformers~=4.26.1 (from -r /empty/requirements.txt (line 5))\n",
+ " Obtaining dependency information for transformers~=4.26.1 from https://files.pythonhosted.org/packages/1e/e2/60c3f4691b16d126ee9cfe28f598b13c424b60350ab339aba81aef054b8f/transformers-4.26.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.26.1-py3-none-any.whl.metadata (100 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.3/100.3 kB 6.2 MB/s eta 0:00:00\n",
+ "Collecting datasets~=2.10.1 (from -r /empty/requirements.txt (line 6))\n",
+ " Obtaining dependency information for datasets~=2.10.1 from https://files.pythonhosted.org/packages/fe/17/5825fdf034ff1a315becdbb9b6fe5a2bd9d8e724464535f18809593bf9c2/datasets-2.10.1-py3-none-any.whl.metadata\n",
+ " Downloading datasets-2.10.1-py3-none-any.whl.metadata (20 kB)\n",
+ "Collecting scikit-learn~=1.0.2 (from -r /empty/requirements.txt (line 7))\n",
+ " Obtaining dependency information for scikit-learn~=1.0.2 from https://files.pythonhosted.org/packages/57/aa/483fbe6b5314bce2d49801e6cec1f2139a9c220d0d51494788fff47233b3/scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (10 kB)\n",
+ "Requirement already satisfied: urllib3<1.27,>=1.26.9 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.26.18)\n",
+ "Requirement already satisfied: GitPython>=3.1.41,~=3.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.1.42)\n",
+ "Requirement already satisfied: aiohttp~=3.9 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.9.3)\n",
+ "Requirement already satisfied: aiohttp-retry~=2.8 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.3)\n",
+ "Requirement already satisfied: click~=8.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (8.1.7)\n",
+ "Requirement already satisfied: kfp~=1.8 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.22)\n",
+ "Requirement already satisfied: nest-asyncio~=1.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.6.0)\n",
+ "Requirement already satisfied: ipython~=8.10 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (8.18.1)\n",
+ "Requirement already satisfied: nuclio-jupyter~=0.9.15 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.16)\n",
+ "Requirement already satisfied: numpy<1.27.0,>=1.16.5 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.26.4)\n",
+ "Requirement already satisfied: pandas<2.2,>=1.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1.4)\n",
+ "Requirement already satisfied: pyarrow<15,>=10.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (14.0.2)\n",
+ "Requirement already satisfied: pyyaml~=5.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.4.1)\n",
+ "Requirement already satisfied: requests~=2.31 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.31.0)\n",
+ "Requirement already satisfied: tabulate~=0.8.6 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.8.10)\n",
+ "Requirement already satisfied: v3io~=0.5.21 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.23)\n",
+ "Requirement already satisfied: pydantic>=1.10.8,~=1.10 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.10.14)\n",
+ "Requirement already satisfied: mergedeep~=1.3 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.4)\n",
+ "Requirement already satisfied: v3io-frames~=0.10.12 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.10.13)\n",
+ "Requirement already satisfied: semver~=3.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.2)\n",
+ "Requirement already satisfied: dependency-injector~=4.41 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.41.0)\n",
+ "Requirement already satisfied: fsspec==2023.9.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.2)\n",
+ "Requirement already satisfied: v3iofs~=0.1.17 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.18)\n",
+ "Requirement already satisfied: storey~=1.6.18 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.6.18)\n",
+ "Requirement already satisfied: inflection~=0.5.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.1)\n",
+ "Requirement already satisfied: python-dotenv~=0.17.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.17.1)\n",
+ "Requirement already satisfied: setuptools~=68.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (68.2.2)\n",
+ "Requirement already satisfied: deprecated~=1.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.14)\n",
+ "Requirement already satisfied: jinja2>=3.1.3,~=3.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.1.3)\n",
+ "Requirement already satisfied: anyio~=3.7 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.7.1)\n",
+ "Requirement already satisfied: orjson~=3.9 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.9.15)\n",
+ "Requirement already satisfied: adlfs==2023.9.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.0)\n",
+ "Requirement already satisfied: aiobotocore<2.8,>=2.5.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.5.4)\n",
+ "Requirement already satisfied: avro~=1.11 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.11.3)\n",
+ "Requirement already satisfied: azure-core~=1.24 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.30.0)\n",
+ "Requirement already satisfied: azure-identity~=1.5 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.15.0)\n",
+ "Requirement already satisfied: azure-keyvault-secrets~=4.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.8.0)\n",
+ "Requirement already satisfied: boto3<1.29.0,>=1.28.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.28.17)\n",
+ "Requirement already satisfied: dask~=2023.9.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.3)\n",
+ "Requirement already satisfied: databricks-sdk~=0.13.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.13.0)\n",
+ "Requirement already satisfied: distributed~=2023.9.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.3)\n",
+ "Requirement already satisfied: gcsfs==2023.9.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.2)\n",
+ "Requirement already satisfied: google-cloud-bigquery[bqstorage,pandas]==3.14.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.14.1)\n",
+ "Requirement already satisfied: graphviz~=0.20.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.20.1)\n",
+ "Requirement already satisfied: kafka-python~=2.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.2)\n",
+ "Requirement already satisfied: mlflow~=2.8 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.10.2)\n",
+ "Requirement already satisfied: msrest~=0.6.21 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.21)\n",
+ "Requirement already satisfied: plotly<5.12.0,~=5.4 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.11.0)\n",
+ "Requirement already satisfied: pyopenssl>=23 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (24.0.0)\n",
+ "Requirement already satisfied: redis~=4.3 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.6.0)\n",
+ "Requirement already satisfied: s3fs==2023.9.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.2)\n",
+ "Requirement already satisfied: sqlalchemy~=1.4 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.51)\n",
+ "Requirement already satisfied: azure-datalake-store<0.1,>=0.0.46 in /opt/conda/lib/python3.9/site-packages (from adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.0.53)\n",
+ "Requirement already satisfied: azure-storage-blob>=12.12.0 in /opt/conda/lib/python3.9/site-packages (from adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (12.19.0)\n",
+ "Requirement already satisfied: decorator>4.1.2 in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.1.1)\n",
+ "Requirement already satisfied: google-auth>=1.2 in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.28.1)\n",
+ "Requirement already satisfied: google-auth-oauthlib in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)\n",
+ "Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.14.0)\n",
+ "Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.17.1)\n",
+ "Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.6.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.1)\n",
+ "Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.7.0)\n",
+ "Requirement already satisfied: packaging>=20.0.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (23.1)\n",
+ "Requirement already satisfied: python-dateutil<3.0dev,>=2.7.2 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.2)\n",
+ "Requirement already satisfied: db-dtypes<2.0.0dev,>=0.3.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)\n",
+ "Requirement already satisfied: google-cloud-bigquery-storage<3.0.0dev,>=2.6.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.24.0)\n",
+ "Requirement already satisfied: grpcio<2.0dev,>=1.47.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.62.0)\n",
+ "Requirement already satisfied: protobuf>=3.20.2 in /opt/conda/lib/python3.9/site-packages (from onnx~=1.14.1->-r /empty/requirements.txt (line 2)) (3.20.3)\n",
+ "Requirement already satisfied: typing-extensions>=3.6.2.1 in /opt/conda/lib/python3.9/site-packages (from onnx~=1.14.1->-r /empty/requirements.txt (line 2)) (4.10.0)\n",
+ "Collecting coloredlogs (from onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))\n",
+ " Obtaining dependency information for coloredlogs from https://files.pythonhosted.org/packages/a7/06/3d6badcf13db419e25b07041d9c7b4a2c331d3f4e7134445ec5df57714cd/coloredlogs-15.0.1-py2.py3-none-any.whl.metadata\n",
+ " Downloading coloredlogs-15.0.1-py2.py3-none-any.whl.metadata (12 kB)\n",
+ "Collecting flatbuffers (from onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))\n",
+ " Obtaining dependency information for flatbuffers from https://files.pythonhosted.org/packages/bf/45/c961e3cb6ddad76b325c163d730562bb6deb1ace5acbed0306f5fbefb90e/flatbuffers-24.3.7-py2.py3-none-any.whl.metadata\n",
+ " Downloading flatbuffers-24.3.7-py2.py3-none-any.whl.metadata (849 bytes)\n",
+ "Collecting sympy (from onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))\n",
+ " Obtaining dependency information for sympy from https://files.pythonhosted.org/packages/d2/05/e6600db80270777c4a64238a98d442f0fd07cc8915be2a1c16da7f2b9e74/sympy-1.12-py3-none-any.whl.metadata\n",
+ " Downloading sympy-1.12-py3-none-any.whl.metadata (12 kB)\n",
+ "Collecting transformers[sentencepiece]>=4.26.0 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/0a/fd/280f4385e76f3c1890efc15fa93f7206134fefad6351397e1bfab6d0d0de/transformers-4.39.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.39.1-py3-none-any.whl.metadata (134 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 134.8/134.8 kB 40.1 MB/s eta 0:00:00\n",
+ "Collecting torch>=1.9 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for torch>=1.9 from https://files.pythonhosted.org/packages/98/04/95a12556d068786d6505c609daf2805bed91c9210c5185499a7c121eba47/torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl.metadata\n",
+ " Downloading torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl.metadata (25 kB)\n",
+ "Collecting numpy<1.27.0,>=1.16.5 (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1))\n",
+ " Obtaining dependency information for numpy<1.27.0,>=1.16.5 from https://files.pythonhosted.org/packages/4c/b9/038abd6fbd67b05b03cb1af590cfc02b7f1e5a37af7ac6a868f5093c29f5/numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.3 kB)\n",
+ "Collecting huggingface-hub>=0.8.0 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for huggingface-hub>=0.8.0 from https://files.pythonhosted.org/packages/ab/28/d4b691840d73126d4c9845f8a22dad033ac872509b6d3a0d93b456eef424/huggingface_hub-0.21.4-py3-none-any.whl.metadata\n",
+ " Downloading huggingface_hub-0.21.4-py3-none-any.whl.metadata (13 kB)\n",
+ "Collecting filelock (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))\n",
+ " Obtaining dependency information for filelock from https://files.pythonhosted.org/packages/81/54/84d42a0bee35edba99dee7b59a8d4970eccdd44b99fe728ed912106fc781/filelock-3.13.1-py3-none-any.whl.metadata\n",
+ " Downloading filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB)\n",
+ "Collecting regex!=2019.12.17 (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))\n",
+ " Obtaining dependency information for regex!=2019.12.17 from https://files.pythonhosted.org/packages/05/9e/80c20f1151432a6025690c9c2037053039b028a7b236fa81d7e7ac9dec60/regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 40.9/40.9 kB 217.5 MB/s eta 0:00:00\n",
+ "Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))\n",
+ " Obtaining dependency information for tokenizers!=0.11.3,<0.14,>=0.11.1 from https://files.pythonhosted.org/packages/d6/27/07a337087dd507170a1b20fed3bbf8da81401185a7130a6e74e440c52040/tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\n",
+ "Requirement already satisfied: tqdm>=4.27 in /opt/conda/lib/python3.9/site-packages (from transformers~=4.26.1->-r /empty/requirements.txt (line 5)) (4.65.0)\n",
+ "Collecting dill<0.3.7,>=0.3.0 (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))\n",
+ " Obtaining dependency information for dill<0.3.7,>=0.3.0 from https://files.pythonhosted.org/packages/be/e3/a84bf2e561beed15813080d693b4b27573262433fced9c1d1fea59e60553/dill-0.3.6-py3-none-any.whl.metadata\n",
+ " Downloading dill-0.3.6-py3-none-any.whl.metadata (9.8 kB)\n",
+ "Requirement already satisfied: xxhash in /opt/conda/lib/python3.9/site-packages (from datasets~=2.10.1->-r /empty/requirements.txt (line 6)) (3.4.1)\n",
+ "Collecting multiprocess (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))\n",
+ " Obtaining dependency information for multiprocess from https://files.pythonhosted.org/packages/da/d9/f7f9379981e39b8c2511c9e0326d212accacb82f12fbfdc1aa2ce2a7b2b6/multiprocess-0.70.16-py39-none-any.whl.metadata\n",
+ " Downloading multiprocess-0.70.16-py39-none-any.whl.metadata (7.2 kB)\n",
+ "Collecting responses<0.19 (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))\n",
+ " Obtaining dependency information for responses<0.19 from https://files.pythonhosted.org/packages/79/f3/2b3a6dc5986303b3dd1bbbcf482022acb2583c428cd23f0b6d37b1a1a519/responses-0.18.0-py3-none-any.whl.metadata\n",
+ " Downloading responses-0.18.0-py3-none-any.whl.metadata (29 kB)\n",
+ "Requirement already satisfied: scipy>=1.1.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r /empty/requirements.txt (line 7)) (1.12.0)\n",
+ "Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r /empty/requirements.txt (line 7)) (1.3.2)\n",
+ "Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r /empty/requirements.txt (line 7)) (3.3.0)\n",
+ "Requirement already satisfied: botocore<1.31.18,>=1.31.17 in /opt/conda/lib/python3.9/site-packages (from aiobotocore<2.8,>=2.5.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.31.17)\n",
+ "Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /opt/conda/lib/python3.9/site-packages (from aiobotocore<2.8,>=2.5.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.16.0)\n",
+ "Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /opt/conda/lib/python3.9/site-packages (from aiobotocore<2.8,>=2.5.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.11.0)\n",
+ "Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.1)\n",
+ "Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (23.2.0)\n",
+ "Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.1)\n",
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.0.5)\n",
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.9.4)\n",
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.0.3)\n",
+ "Requirement already satisfied: idna>=2.8 in /opt/conda/lib/python3.9/site-packages (from anyio~=3.7->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.4)\n",
+ "Requirement already satisfied: sniffio>=1.1 in /opt/conda/lib/python3.9/site-packages (from anyio~=3.7->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.1)\n",
+ "Requirement already satisfied: exceptiongroup in /opt/conda/lib/python3.9/site-packages (from anyio~=3.7->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)\n",
+ "Requirement already satisfied: six>=1.11.0 in /opt/conda/lib/python3.9/site-packages (from azure-core~=1.24->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.16.0)\n",
+ "Requirement already satisfied: cryptography>=2.5 in /opt/conda/lib/python3.9/site-packages (from azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (42.0.2)\n",
+ "Requirement already satisfied: msal<2.0.0,>=1.24.0 in /opt/conda/lib/python3.9/site-packages (from azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.27.0)\n",
+ "Requirement already satisfied: msal-extensions<2.0.0,>=0.3.0 in /opt/conda/lib/python3.9/site-packages (from azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.1.0)\n",
+ "Requirement already satisfied: isodate>=0.6.1 in /opt/conda/lib/python3.9/site-packages (from azure-keyvault-secrets~=4.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.1)\n",
+ "Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /opt/conda/lib/python3.9/site-packages (from boto3<1.29.0,>=1.28.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.1)\n",
+ "Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /opt/conda/lib/python3.9/site-packages (from boto3<1.29.0,>=1.28.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.2)\n",
+ "Requirement already satisfied: cloudpickle>=1.5.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.2.1)\n",
+ "Requirement already satisfied: partd>=1.2.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.1)\n",
+ "Requirement already satisfied: toolz>=0.10.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.12.0)\n",
+ "Requirement already satisfied: importlib-metadata>=4.13.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.0.1)\n",
+ "Requirement already satisfied: locket>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.0)\n",
+ "Requirement already satisfied: msgpack>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.7)\n",
+ "Requirement already satisfied: psutil>=5.7.2 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.9.8)\n",
+ "Requirement already satisfied: sortedcontainers>=2.0.5 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.0)\n",
+ "Requirement already satisfied: tblib>=1.6.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.0)\n",
+ "Requirement already satisfied: tornado>=6.0.4 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.4)\n",
+ "Requirement already satisfied: zict>=3.0.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.0)\n",
+ "Requirement already satisfied: gitdb<5,>=4.0.1 in /opt/conda/lib/python3.9/site-packages (from GitPython>=3.1.41,~=3.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.0.11)\n",
+ "Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.19.1)\n",
+ "Requirement already satisfied: matplotlib-inline in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.6)\n",
+ "Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.43)\n",
+ "Requirement already satisfied: pygments>=2.4.0 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.17.2)\n",
+ "Requirement already satisfied: stack-data in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.3)\n",
+ "Requirement already satisfied: traitlets>=5 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.14.1)\n",
+ "Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.9.0)\n",
+ "Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.9/site-packages (from jinja2>=3.1.3,~=3.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1.5)\n",
+ "Requirement already satisfied: absl-py<2,>=0.9 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.0)\n",
+ "Requirement already satisfied: kubernetes<26,>=8.0.0 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (25.3.0)\n",
+ "Requirement already satisfied: google-api-python-client<2,>=1.7.8 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.12.11)\n",
+ "Requirement already satisfied: requests-toolbelt<1,>=0.8.0 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.10.1)\n",
+ "Requirement already satisfied: kfp-server-api<2.0.0,>=1.1.2 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.5)\n",
+ "Requirement already satisfied: jsonschema<5,>=3.0.1 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.21.1)\n",
+ "Requirement already satisfied: strip-hints<1,>=0.1.8 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.10)\n",
+ "Requirement already satisfied: docstring-parser<1,>=0.7.3 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.15)\n",
+ "Requirement already satisfied: kfp-pipeline-spec<0.2.0,>=0.1.16 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.16)\n",
+ "Requirement already satisfied: fire<1,>=0.3.1 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.0)\n",
+ "Requirement already satisfied: uritemplate<4,>=3.0.1 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.1)\n",
+ "Requirement already satisfied: typer<1.0,>=0.3.2 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.0)\n",
+ "Requirement already satisfied: entrypoints<1 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.4)\n",
+ "Requirement already satisfied: pytz<2024 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.4)\n",
+ "Requirement already satisfied: sqlparse<1,>=0.4.0 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.4.4)\n",
+ "Requirement already satisfied: alembic!=1.10.0,<2 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.13.1)\n",
+ "Requirement already satisfied: docker<8,>=4.0.0 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.0.0)\n",
+ "Requirement already satisfied: Flask<4 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.2)\n",
+ "Requirement already satisfied: querystring-parser<2 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.4)\n",
+ "Requirement already satisfied: markdown<4,>=3.3 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.5.2)\n",
+ "Requirement already satisfied: matplotlib<4 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.8.3)\n",
+ "Requirement already satisfied: gunicorn<22 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (21.2.0)\n",
+ "Requirement already satisfied: requests-oauthlib>=0.5.0 in /opt/conda/lib/python3.9/site-packages (from msrest~=0.6.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.1)\n",
+ "Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.9/site-packages (from msrest~=0.6.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2024.2.2)\n",
+ "Requirement already satisfied: nbconvert>=6.4.5 in /opt/conda/lib/python3.9/site-packages (from nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.16.1)\n",
+ "Requirement already satisfied: notebook<7.0.0,>=6.4 in /opt/conda/lib/python3.9/site-packages (from nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.5.6)\n",
+ "Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.9/site-packages (from pandas<2.2,>=1.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2024.1)\n",
+ "Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/lib/python3.9/site-packages (from plotly<5.12.0,~=5.4->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (8.2.3)\n",
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.9/site-packages (from requests~=2.31->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.4)\n",
+ "Requirement already satisfied: greenlet!=0.4.17 in /opt/conda/lib/python3.9/site-packages (from sqlalchemy~=1.4->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.3)\n",
+ "Requirement already satisfied: nuclio-sdk>=0.5.3 in /opt/conda/lib/python3.9/site-packages (from storey~=1.6.18->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.9)\n",
+ "Collecting networkx (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for networkx from https://files.pythonhosted.org/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl.metadata\n",
+ " Downloading networkx-3.2.1-py3-none-any.whl.metadata (5.2 kB)\n",
+ "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cuda-nvrtc-cu12==12.1.105 from https://files.pythonhosted.org/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cuda-runtime-cu12==12.1.105 from https://files.pythonhosted.org/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cuda-cupti-cu12==12.1.105 from https://files.pythonhosted.org/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cudnn-cu12==8.9.2.26 from https://files.pythonhosted.org/packages/ff/74/a2e2be7fb83aaedec84f391f082cf765dfb635e7caa9b49065f73e4835d8/nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cublas-cu12==12.1.3.1 from https://files.pythonhosted.org/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cufft-cu12==11.0.2.54 from https://files.pythonhosted.org/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-curand-cu12==10.3.2.106 from https://files.pythonhosted.org/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n",
+ "Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cusolver-cu12==11.4.5.107 from https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-cusparse-cu12==12.1.0.106 from https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n",
+ "Collecting nvidia-nccl-cu12==2.19.3 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-nccl-cu12==2.19.3 from https://files.pythonhosted.org/packages/38/00/d0d4e48aef772ad5aebcf70b73028f88db6e5640b36c38e90445b7a57c45/nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl.metadata (1.8 kB)\n",
+ "Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-nvtx-cu12==12.1.105 from https://files.pythonhosted.org/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata\n",
+ " Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.7 kB)\n",
+ "Collecting triton==2.2.0 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for triton==2.2.0 from https://files.pythonhosted.org/packages/6a/5c/01d9f062f719581cf6e60053e1a005d666ec67dcb59630fffaa3a3e5c9d8/triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.4 kB)\n",
+ "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for nvidia-nvjitlink-cu12 from https://files.pythonhosted.org/packages/58/d1/d1c80553f9d5d07b6072bc132607d75a0ef3600e28e1890e11c0f55d7346/nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl.metadata\n",
+ " Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n",
+ "INFO: pip is looking at multiple versions of transformers[sentencepiece] to determine which version is compatible with other requirements. This could take a while.\n",
+ "Collecting transformers[sentencepiece]>=4.26.0 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/a4/73/f620d76193954e16db3d5c53a07d956d7b9c800e570758d3bff91906d4a4/transformers-4.39.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.39.0-py3-none-any.whl.metadata (134 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 134.8/134.8 kB 115.9 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/b6/4d/fbe6d89fde59d8107f0a02816c4ac4542a8f9a85559fdf33c68282affcc1/transformers-4.38.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.38.2-py3-none-any.whl.metadata (130 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 130.7/130.7 kB 126.3 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/3e/6b/1b589f7b69aaea8193cf5bc91cf97410284aecd97b6312cdb08baedbdffe/transformers-4.38.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.38.1-py3-none-any.whl.metadata (131 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 131.1/131.1 kB 138.2 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/91/89/5416dc364c7ef0711c564fd61a69b03d1e40eeb5c506c38e53ba8a969e79/transformers-4.38.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.38.0-py3-none-any.whl.metadata (131 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 131.1/131.1 kB 186.3 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/85/f6/c5065913119c41ecad148c34e3a861f719e16b89a522287213698da911fc/transformers-4.37.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.37.2-py3-none-any.whl.metadata (129 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 236.8 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/ad/67/b4d6a51dcaf988cb45b31e26c6e33fb169fe34ba5fb168b086309bd7c028/transformers-4.37.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.37.1-py3-none-any.whl.metadata (129 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 156.4 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/3c/45/52133ce6bce49a099cc865599803bf1fad93de887276f728e56848d77a70/transformers-4.37.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.37.0-py3-none-any.whl.metadata (129 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 102.0 MB/s eta 0:00:00\n",
+ "INFO: pip is still looking at multiple versions of transformers[sentencepiece] to determine which version is compatible with other requirements. This could take a while.\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/20/0a/739426a81f7635b422fbe6cb8d1d99d1235579a6ac8024c13d743efa6847/transformers-4.36.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.36.2-py3-none-any.whl.metadata (126 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.8/126.8 kB 108.8 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/fc/04/0aad491cd98b09236c54ab849863ee85421eeda5138bbf9d33ecc594652b/transformers-4.36.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.36.1-py3-none-any.whl.metadata (126 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.8/126.8 kB 140.6 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/0f/12/d8e27a190ca67811f81deea3183b528d9169f10b74d827e0b9211520ecfa/transformers-4.36.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.36.0-py3-none-any.whl.metadata (126 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.8/126.8 kB 267.8 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/12/dd/f17b11a93a9ca27728e12512d167eb1281c151c4c6881d3ab59eb58f4127/transformers-4.35.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.35.2-py3-none-any.whl.metadata (123 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.5/123.5 kB 130.2 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/92/ba/cfff7e01f7070d9fca3964bf42b2257b86964c3e6763b8d5435436cc1d77/transformers-4.35.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.35.1-py3-none-any.whl.metadata (123 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.1/123.1 kB 183.6 MB/s eta 0:00:00\n",
+ "INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/9a/06/e4ec2a321e57c03b7e9345d709d554a52c33760e5015fdff0919d9459af0/transformers-4.35.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.35.0-py3-none-any.whl.metadata (123 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.1/123.1 kB 177.3 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/c1/bd/f64d67df4d3b05a460f281defe830ffab6d7940b7ca98ec085e94e024781/transformers-4.34.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.34.1-py3-none-any.whl.metadata (121 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.5/121.5 kB 270.5 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/1a/d1/3bba59606141ae808017f6fde91453882f931957f125009417b87a281067/transformers-4.34.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.34.0-py3-none-any.whl.metadata (121 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.5/121.5 kB 133.4 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/98/46/f6a79f944d5c7763a9bc13b2aa6ac72daf43a6551f5fb03bccf0a9c2fec1/transformers-4.33.3-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.33.3-py3-none-any.whl.metadata (119 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 163.1 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/1a/06/3817f9bb923437ead9a794f0ac0d03b8b5e0478ab112db4c413dd37c09da/transformers-4.33.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.33.2-py3-none-any.whl.metadata (119 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 274.9 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/13/30/54b59e73400df3de506ad8630284e9fd63f4b94f735423d55fc342181037/transformers-4.33.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.33.1-py3-none-any.whl.metadata (119 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 274.2 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/e1/9d/4d9fe5c3b820db10773392ac5f4a0c8dab668f70b245ce2ce09785166128/transformers-4.33.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.33.0-py3-none-any.whl.metadata (119 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 185.9 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/83/8d/f65f8138365462ace54458a9e164f4b28ce1141361970190eef36bdef986/transformers-4.32.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.32.1-py3-none-any.whl.metadata (118 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 118.5/118.5 kB 144.4 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/ae/95/283a1c004430bd2a9425d6937fc545dd49a4e4592feb76be0299a14e2378/transformers-4.32.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.32.0-py3-none-any.whl.metadata (118 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 118.5/118.5 kB 150.3 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/21/02/ae8e595f45b6c8edee07913892b3b41f5f5f273962ad98851dc6a564bbb9/transformers-4.31.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.31.0-py3-none-any.whl.metadata (116 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 116.9/116.9 kB 156.7 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/5b/0b/e45d26ccd28568013523e04f325432ea88a442b4e3020b757cf4361f0120/transformers-4.30.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.30.2-py3-none-any.whl.metadata (113 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 113.6/113.6 kB 263.7 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/b8/df/b01b5e67cde3883757c9212455cbb9169385dcab5858b7172199126b756d/transformers-4.30.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.30.1-py3-none-any.whl.metadata (113 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 113.6/113.6 kB 263.8 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/e2/72/1af3d38e98fdcceb3876de4567ac395a66c26976e259fe2d46266e052d61/transformers-4.30.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.30.0-py3-none-any.whl.metadata (113 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 113.6/113.6 kB 266.5 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/17/aa/a89864288afe45abe1ab79f002140a20348140e86836d96096d8f8a3bac0/transformers-4.29.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.29.2-py3-none-any.whl.metadata (112 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 112.3/112.3 kB 272.7 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/e8/b5/ddb16f9de207e6571ab7cc5db0cc538fa2d6d91cf024565496462af4c1ce/transformers-4.29.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.29.1-py3-none-any.whl.metadata (112 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 112.3/112.3 kB 262.3 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/45/e4/4914b11df70954d95a7c36b74bf9010c8594fcec960471479449b0deb4f7/transformers-4.29.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.29.0-py3-none-any.whl.metadata (111 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 111.9/111.9 kB 269.5 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/d8/a7/a6ff727fd5d96d6625f4658944a2ae230f0c75743a9a117fbda013b03d3d/transformers-4.28.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.28.1-py3-none-any.whl.metadata (109 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 110.0/110.0 kB 245.6 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/8b/13/1ce598763b3669d43f192a7911bf2bf730a328012ab8801b93187a4f70d0/transformers-4.28.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.28.0-py3-none-any.whl.metadata (109 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 110.0/110.0 kB 256.3 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/87/f0/2a152ed10ab8601431e87a606d397f7473c5fa4f8162f4ec5bda6ddb2df4/transformers-4.27.4-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.27.4-py3-none-any.whl.metadata (106 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 254.4 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/52/ac/9dc5a17ba60bc354d99250d9d1629f99d76f6729cee438fa91c8cc74bc5d/transformers-4.27.3-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.27.3-py3-none-any.whl.metadata (106 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 251.5 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/73/f0/4a795505387a3e7cd7f0c2a2a87f876658f9a07947a38fb67bffceff9246/transformers-4.27.2-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.27.2-py3-none-any.whl.metadata (106 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 246.1 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/6d/9b/2f536f9e73390209e0b27b74691355dac494b7ec8154f3012fdc6debbae7/transformers-4.27.1-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.27.1-py3-none-any.whl.metadata (106 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 114.0 MB/s eta 0:00:00\n",
+ " Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/4d/3e/1378ed266cf991f5ab5fcb29e953d97d793c7f9242ea5dc52f856415ea3a/transformers-4.27.0-py3-none-any.whl.metadata\n",
+ " Downloading transformers-4.27.0-py3-none-any.whl.metadata (106 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 247.2 MB/s eta 0:00:00\n",
+ "Collecting sentencepiece!=0.1.92,>=0.1.91 (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))\n",
+ " Obtaining dependency information for sentencepiece!=0.1.92,>=0.1.91 from https://files.pythonhosted.org/packages/5f/01/c95e42eb86282b2c79305d3e0b0ca5a743f85a61262bb7130999c70b9374/sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata\n",
+ " Downloading sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB)\n",
+ "Collecting protobuf>=3.20.2 (from onnx~=1.14.1->-r /empty/requirements.txt (line 2))\n",
+ " Obtaining dependency information for protobuf>=3.20.2 from https://files.pythonhosted.org/packages/38/b1/d9b615dceb67ac38e13cbd7680c27182b40154996022cbb244ba1ac7d30f/protobuf-3.20.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.metadata\n",
+ " Downloading protobuf-3.20.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.metadata (679 bytes)\n",
+ "Requirement already satisfied: future>=0.18.2 in /opt/conda/lib/python3.9/site-packages (from v3io~=0.5.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.0)\n",
+ "Requirement already satisfied: ujson>=3 in /opt/conda/lib/python3.9/site-packages (from v3io~=0.5.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.9.0)\n",
+ "Requirement already satisfied: googleapis-common-protos>=1.5.3 in /opt/conda/lib/python3.9/site-packages (from v3io-frames~=0.10.12->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.62.0)\n",
+ "Requirement already satisfied: grpcio-tools!=1.34.0,<1.49,>=1.30 in /opt/conda/lib/python3.9/site-packages (from v3io-frames~=0.10.12->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.48.2)\n",
+ "Collecting humanfriendly>=9.1 (from coloredlogs->onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))\n",
+ " Obtaining dependency information for humanfriendly>=9.1 from https://files.pythonhosted.org/packages/f0/0f/310fb31e39e2d734ccaa2c0fb981ee41f7bd5056ce9bc29b2248bd569169/humanfriendly-10.0-py2.py3-none-any.whl.metadata\n",
+ " Downloading humanfriendly-10.0-py2.py3-none-any.whl.metadata (9.2 kB)\n",
+ "INFO: pip is looking at multiple versions of multiprocess to determine which version is compatible with other requirements. This could take a while.\n",
+ "Collecting multiprocess (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))\n",
+ " Obtaining dependency information for multiprocess from https://files.pythonhosted.org/packages/c6/c9/820b5ab056f4ada76fbe05bd481a948f287957d6cbfd59e2dd2618b408c1/multiprocess-0.70.15-py39-none-any.whl.metadata\n",
+ " Downloading multiprocess-0.70.15-py39-none-any.whl.metadata (7.2 kB)\n",
+ " Obtaining dependency information for multiprocess from https://files.pythonhosted.org/packages/6a/f4/fbeb03ef7abdda54db4a6a75c971b88ab73d724ff09e3275cc1e99f1c946/multiprocess-0.70.14-py39-none-any.whl.metadata\n",
+ " Downloading multiprocess-0.70.14-py39-none-any.whl.metadata (6.6 kB)\n",
+ "Collecting mpmath>=0.19 (from sympy->onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))\n",
+ " Obtaining dependency information for mpmath>=0.19 from https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl.metadata\n",
+ " Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)\n",
+ "Requirement already satisfied: Mako in /opt/conda/lib/python3.9/site-packages (from alembic!=1.10.0,<2->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.2)\n",
+ "Requirement already satisfied: cffi in /opt/conda/lib/python3.9/site-packages (from azure-datalake-store<0.1,>=0.0.46->adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.16.0)\n",
+ "Requirement already satisfied: termcolor in /opt/conda/lib/python3.9/site-packages (from fire<1,>=0.3.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.0)\n",
+ "Requirement already satisfied: Werkzeug>=3.0.0 in /opt/conda/lib/python3.9/site-packages (from Flask<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.1)\n",
+ "Requirement already satisfied: itsdangerous>=2.1.2 in /opt/conda/lib/python3.9/site-packages (from Flask<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1.2)\n",
+ "Requirement already satisfied: blinker>=1.6.2 in /opt/conda/lib/python3.9/site-packages (from Flask<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.7.0)\n",
+ "Requirement already satisfied: smmap<6,>=3.0.1 in /opt/conda/lib/python3.9/site-packages (from gitdb<5,>=4.0.1->GitPython>=3.1.41,~=3.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.0.1)\n",
+ "Requirement already satisfied: httplib2<1dev,>=0.15.0 in /opt/conda/lib/python3.9/site-packages (from google-api-python-client<2,>=1.7.8->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.22.0)\n",
+ "Requirement already satisfied: google-auth-httplib2>=0.0.3 in /opt/conda/lib/python3.9/site-packages (from google-api-python-client<2,>=1.7.8->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.0)\n",
+ "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.3.3)\n",
+ "Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.9/site-packages (from google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.3.0)\n",
+ "Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.9/site-packages (from google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.9)\n",
+ "Requirement already satisfied: proto-plus<2.0.0dev,>=1.22.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery-storage<3.0.0dev,>=2.6.0->google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.23.0)\n",
+ "Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-storage->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.5.0)\n",
+ "Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.9/site-packages (from importlib-metadata>=4.13.0->dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.17.0)\n",
+ "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /opt/conda/lib/python3.9/site-packages (from jedi>=0.16->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.8.3)\n",
+ "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.12.1)\n",
+ "Requirement already satisfied: referencing>=0.28.4 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.33.0)\n",
+ "Requirement already satisfied: rpds-py>=0.7.1 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.18.0)\n",
+ "Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /opt/conda/lib/python3.9/site-packages (from kubernetes<26,>=8.0.0->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.7.0)\n",
+ "Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)\n",
+ "Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.12.1)\n",
+ "Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.49.0)\n",
+ "Requirement already satisfied: kiwisolver>=1.3.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.5)\n",
+ "Requirement already satisfied: pillow>=8 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (10.2.0)\n",
+ "Requirement already satisfied: pyparsing>=2.3.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.1.1)\n",
+ "Requirement already satisfied: importlib-resources>=3.2.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.1.2)\n",
+ "Requirement already satisfied: PyJWT[crypto]<3,>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from msal<2.0.0,>=1.24.0->azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.0)\n",
+ "Requirement already satisfied: portalocker<3,>=1.0 in /opt/conda/lib/python3.9/site-packages (from msal-extensions<2.0.0,>=0.3.0->azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.2)\n",
+ "Requirement already satisfied: beautifulsoup4 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.12.3)\n",
+ "Requirement already satisfied: bleach!=5.0.0 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.1.0)\n",
+ "Requirement already satisfied: defusedxml in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.7.1)\n",
+ "Requirement already satisfied: jupyter-core>=4.7 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.7.1)\n",
+ "Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.3.0)\n",
+ "Requirement already satisfied: mistune<4,>=2.0.3 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.2)\n",
+ "Requirement already satisfied: nbclient>=0.5.0 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.0)\n",
+ "Requirement already satisfied: nbformat>=5.7 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.9.2)\n",
+ "Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.5.1)\n",
+ "Requirement already satisfied: tinycss2 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.1)\n",
+ "Requirement already satisfied: pyzmq<25,>=17 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (24.0.1)\n",
+ "Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (23.1.0)\n",
+ "Requirement already satisfied: jupyter-client<8,>=5.3.4 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.4.9)\n",
+ "Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.0)\n",
+ "Requirement already satisfied: ipykernel in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.29.3)\n",
+ "Requirement already satisfied: Send2Trash>=1.8.0 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.2)\n",
+ "Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.18.0)\n",
+ "Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.20.0)\n",
+ "Requirement already satisfied: nbclassic>=0.4.7 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.0)\n",
+ "Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.9/site-packages (from pexpect>4.3->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.7.0)\n",
+ "Requirement already satisfied: wcwidth in /opt/conda/lib/python3.9/site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.13)\n",
+ "Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.9/site-packages (from requests-oauthlib>=0.5.0->msrest~=0.6.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.2.2)\n",
+ "Requirement already satisfied: wheel in /opt/conda/lib/python3.9/site-packages (from strip-hints<1,>=0.1.8->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.41.2)\n",
+ "Requirement already satisfied: executing>=1.2.0 in /opt/conda/lib/python3.9/site-packages (from stack-data->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.1)\n",
+ "Requirement already satisfied: asttokens>=2.1.0 in /opt/conda/lib/python3.9/site-packages (from stack-data->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.1)\n",
+ "Requirement already satisfied: pure-eval in /opt/conda/lib/python3.9/site-packages (from stack-data->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.2)\n",
+ "Requirement already satisfied: webencodings in /opt/conda/lib/python3.9/site-packages (from bleach!=5.0.0->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.1)\n",
+ "Requirement already satisfied: pycparser in /opt/conda/lib/python3.9/site-packages (from cffi->azure-datalake-store<0.1,>=0.0.46->adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.21)\n",
+ "Requirement already satisfied: grpcio-status<2.0.dev0,>=1.33.2 in /opt/conda/lib/python3.9/site-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.48.2)\n",
+ "Requirement already satisfied: platformdirs>=2.5 in /opt/conda/lib/python3.9/site-packages (from jupyter-core>=4.7->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.10.0)\n",
+ "Requirement already satisfied: jupyter-server>=1.8 in /opt/conda/lib/python3.9/site-packages (from nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.12.5)\n",
+ "Requirement already satisfied: notebook-shim>=0.2.3 in /opt/conda/lib/python3.9/site-packages (from nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.4)\n",
+ "Requirement already satisfied: fastjsonschema in /opt/conda/lib/python3.9/site-packages (from nbformat>=5.7->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.19.1)\n",
+ "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /opt/conda/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.1)\n",
+ "Requirement already satisfied: argon2-cffi-bindings in /opt/conda/lib/python3.9/site-packages (from argon2-cffi->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (21.2.0)\n",
+ "Requirement already satisfied: soupsieve>1.2 in /opt/conda/lib/python3.9/site-packages (from beautifulsoup4->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.5)\n",
+ "Requirement already satisfied: comm>=0.1.1 in /opt/conda/lib/python3.9/site-packages (from ipykernel->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.1)\n",
+ "Requirement already satisfied: debugpy>=1.6.5 in /opt/conda/lib/python3.9/site-packages (from ipykernel->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.1)\n",
+ "Requirement already satisfied: jupyter-events>=0.9.0 in /opt/conda/lib/python3.9/site-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.0)\n",
+ "Requirement already satisfied: jupyter-server-terminals in /opt/conda/lib/python3.9/site-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.2)\n",
+ "Requirement already satisfied: overrides in /opt/conda/lib/python3.9/site-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.7.0)\n",
+ "Requirement already satisfied: python-json-logger>=2.0.4 in /opt/conda/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.7)\n",
+ "Requirement already satisfied: rfc3339-validator in /opt/conda/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.4)\n",
+ "Requirement already satisfied: rfc3986-validator>=0.1.1 in /opt/conda/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.1)\n",
+ "Requirement already satisfied: fqdn in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.5.1)\n",
+ "Requirement already satisfied: isoduration in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (20.11.0)\n",
+ "Requirement already satisfied: jsonpointer>1.13 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1)\n",
+ "Requirement already satisfied: uri-template in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.0)\n",
+ "Requirement already satisfied: webcolors>=1.11 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.13)\n",
+ "Requirement already satisfied: arrow>=0.15.0 in /opt/conda/lib/python3.9/site-packages (from isoduration->jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.0)\n",
+ "Requirement already satisfied: types-python-dateutil>=2.8.10 in /opt/conda/lib/python3.9/site-packages (from arrow>=0.15.0->isoduration->jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.19.20240106)\n",
+ "Downloading onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.6/14.6 MB 274.2 MB/s eta 0:00:00\n",
+ "Downloading onnxruntime-1.16.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.4/6.4 MB 277.9 MB/s eta 0:00:00\n",
+ "Downloading optimum-1.6.4-py3-none-any.whl (227 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 227.8/227.8 kB 291.3 MB/s eta 0:00:00\n",
+ "Downloading transformers-4.26.1-py3-none-any.whl (6.3 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.3/6.3 MB 242.4 MB/s eta 0:00:00\n",
+ "Downloading datasets-2.10.1-py3-none-any.whl (469 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 469.0/469.0 kB 185.9 MB/s eta 0:00:00\n",
+ "Downloading scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.4 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 26.4/26.4 MB 275.9 MB/s eta 0:00:00\n",
+ "Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 110.5/110.5 kB 282.3 MB/s eta 0:00:00\n",
+ "Downloading huggingface_hub-0.21.4-py3-none-any.whl (346 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 346.4/346.4 kB 311.7 MB/s eta 0:00:00\n",
+ "Downloading numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.1/17.1 MB 269.6 MB/s eta 0:00:00\n",
+ "Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 773.4/773.4 kB 311.9 MB/s eta 0:00:00\n",
+ "Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
+ "Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.8/7.8 MB 264.1 MB/s eta 0:00:00\n",
+ "Downloading torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl (755.5 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 755.5/755.5 MB 204.0 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 410.6/410.6 MB 40.3 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/14.1 MB 43.0 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 46.9 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 823.6/823.6 kB 51.0 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.7/731.7 MB 58.2 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.6/121.6 MB 69.0 MB/s eta 0:00:00\n",
+ "Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.5/56.5 MB 36.0 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 MB 52.8 MB/s eta 0:00:00\n",
+ "Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.0/196.0 MB 45.9 MB/s eta 0:00:00\n",
+ "Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.0/166.0 MB 19.6 MB/s eta 0:00:00\n",
+ "Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 27.7 MB/s eta 0:00:00\n",
+ "Downloading triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 167.9/167.9 MB 41.3 MB/s eta 0:00:00\n",
+ "Downloading protobuf-3.20.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.0/1.0 MB 42.8 MB/s eta 0:00:00\n",
+ "Downloading coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 46.0/46.0 kB 192.0 MB/s eta 0:00:00\n",
+ "Downloading filelock-3.13.1-py3-none-any.whl (11 kB)\n",
+ "Downloading flatbuffers-24.3.7-py2.py3-none-any.whl (26 kB)\n",
+ "Downloading multiprocess-0.70.14-py39-none-any.whl (132 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.9/132.9 kB 100.7 MB/s eta 0:00:00\n",
+ "Downloading sympy-1.12-py3-none-any.whl (5.7 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 41.4 MB/s eta 0:00:00\n",
+ "Downloading humanfriendly-10.0-py2.py3-none-any.whl (86 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 86.8/86.8 kB 253.7 MB/s eta 0:00:00\n",
+ "Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 45.4 MB/s eta 0:00:00\n",
+ "Downloading sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 46.1 MB/s eta 0:00:00\n",
+ "Downloading networkx-3.2.1-py3-none-any.whl (1.6 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 43.7 MB/s eta 0:00:00\n",
+ "Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)\n",
+ " ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 21.1/21.1 MB 43.8 MB/s eta 0:00:00\n",
+ "Installing collected packages: tokenizers, sentencepiece, mpmath, flatbuffers, sympy, regex, protobuf, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, numpy, networkx, humanfriendly, filelock, dill, triton, responses, onnx, nvidia-cusparse-cu12, nvidia-cudnn-cu12, multiprocess, huggingface-hub, coloredlogs, transformers, scikit-learn, onnxruntime, nvidia-cusolver-cu12, torch, datasets, optimum\n",
+ " Attempting uninstall: protobuf\n",
+ " Found existing installation: protobuf 3.20.3\n",
+ " Uninstalling protobuf-3.20.3:\n",
+ " Successfully uninstalled protobuf-3.20.3\n",
+ " Attempting uninstall: numpy\n",
+ " Found existing installation: numpy 1.26.4\n",
+ " Uninstalling numpy-1.26.4:\n",
+ " Successfully uninstalled numpy-1.26.4\n",
+ " Attempting uninstall: scikit-learn\n",
+ " Found existing installation: scikit-learn 1.4.1.post1\n",
+ " Uninstalling scikit-learn-1.4.1.post1:\n",
+ " Successfully uninstalled scikit-learn-1.4.1.post1\n",
+ "Successfully installed coloredlogs-15.0.1 datasets-2.10.1 dill-0.3.6 filelock-3.13.1 flatbuffers-24.3.7 huggingface-hub-0.21.4 humanfriendly-10.0 mpmath-1.3.0 multiprocess-0.70.14 networkx-3.2.1 numpy-1.23.5 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 onnx-1.14.1 onnxruntime-1.16.3 optimum-1.6.4 protobuf-3.20.2 regex-2023.12.25 responses-0.18.0 scikit-learn-1.0.2 sentencepiece-0.2.0 sympy-1.12 tokenizers-0.13.3 torch-2.2.1 transformers-4.26.1 triton-2.2.0\n",
+ "WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\n",
+ "\u001b[36mINFO\u001b[0m[0238] Taking snapshot of full filesystem... \n",
+ "\u001b[36mINFO\u001b[0m[0463] Pushing image to docker-registry.default-tenant.app.app-lab-2-b688.iguazio-cd2.com/mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer:latest \n",
+ "\u001b[36mINFO\u001b[0m[0493] Pushed docker-registry.default-tenant.app.app-lab-2-b688.iguazio-cd2.com/mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer@sha256:691d0bb3c23487b4b5d2f84ab323c24735626ee81681475f53a4158b72d4cfee \n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "BuildStatus(ready=True, outputs={'image': '.mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer:latest'})"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "project.build_function(\"hugging-face-classifier-trainer\",with_mlrun=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "scrolled": true,
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:22:42,252 [info] Storing function: {'name': 'hugging-face-classifier-trainer-train', 'uid': '53252ce7aacb4b1aacf86bf3b862daa2', 'db': 'http://mlrun-api:8080'}\n",
+ "> 2024-03-24 17:22:42,536 [info] Job is running in the background, pod: hugging-face-classifier-trainer-train-dqqfr\n",
+ "> 2024-03-24 17:24:43,288 [info] 'train_test_split_size' is not provided, setting train_test_split_size to 0.2\n",
+ "> 2024-03-24 17:24:43,847 [info] Loading and editing Shayanvsf/US_Airline_Sentiment dataset from Hugging Face hub\n",
+ "Downloading metadata: 100%|██████████| 1.03k/1.03k [00:00<00:00, 6.77MB/s]\n",
+ "Downloading and preparing dataset None/None (download: 265.13 KiB, generated: 1.50 MiB, post-processed: Unknown size, total: 1.76 MiB) to /root/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...\n",
+ "Downloading data files: 0%| | 0/3 [00:00, ?it/s]\n",
+ "Downloading data: 100%|██████████| 92.6k/92.6k [00:00<00:00, 59.3MB/s]\n",
+ "Downloading data files: 33%|███▎ | 1/3 [00:00<00:00, 6.42it/s]\n",
+ "Downloading data: 100%|██████████| 605k/605k [00:00<00:00, 81.8MB/s]\n",
+ "Downloading data files: 67%|██████▋ | 2/3 [00:00<00:00, 6.59it/s]\n",
+ "Downloading data: 100%|██████████| 179k/179k [00:00<00:00, 50.9MB/s]\n",
+ "Downloading data files: 100%|██████████| 3/3 [00:00<00:00, 6.62it/s]\n",
+ "Extracting data files: 100%|██████████| 3/3 [00:00<00:00, 1263.34it/s]\n",
+ "Dataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.\n",
+ "100%|██████████| 3/3 [00:00<00:00, 978.99it/s] \n",
+ "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.weight', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_layer_norm.weight']\n",
+ "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
+ "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
+ "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'pre_classifier.weight', 'classifier.weight', 'classifier.bias']\n",
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
+ "> 2024-03-24 17:24:47,076 [info] training 'huggingface-model'\n",
+ "The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
+ "***** Running training *****\n",
+ " Num examples = 100\n",
+ " Num Epochs = 3\n",
+ " Instantaneous batch size per device = 16\n",
+ " Total train batch size (w. parallel, distributed & accumulation) = 16\n",
+ " Gradient Accumulation steps = 1\n",
+ " Total optimization steps = 21\n",
+ " Number of trainable parameters = 66955010\n",
+ "huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\n",
+ "To disable this warning, you can either:\n",
+ "\t- Avoid using `tokenizers` before the fork if possible\n",
+ "\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\n",
+ " 0%| | 0/21 [00:00, ?it/s]You're using a DistilBertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n",
+ " 33%|███▎ | 7/21 [00:16<00:28, 2.02s/it]The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 24\n",
+ " Batch size = 16\n",
+ "\n",
+ "{'loss': 0.7005, 'learning_rate': 1.904761904761905e-05, 'epoch': 0.14}\n",
+ "{'loss': 0.6528, 'learning_rate': 1.8095238095238097e-05, 'epoch': 0.29}\n",
+ "{'loss': 0.6468, 'learning_rate': 1.7142857142857142e-05, 'epoch': 0.43}\n",
+ "{'loss': 0.5877, 'learning_rate': 1.6190476190476193e-05, 'epoch': 0.57}\n",
+ "{'loss': 0.6694, 'learning_rate': 1.523809523809524e-05, 'epoch': 0.71}\n",
+ "{'loss': 0.5219, 'learning_rate': 1.4285714285714287e-05, 'epoch': 0.86}\n",
+ "{'loss': 0.7052, 'learning_rate': 1.3333333333333333e-05, 'epoch': 1.0}\n",
+ " 0%| | 0/2 [00:00, ?it/s]\u001b[A\n",
+ "100%|██████████| 2/2 [00:00<00:00, 4.86it/s]\u001b[Amain.py:561: FutureWarning:\n",
+ "\n",
+ "load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
+ "\n",
+ "\n",
+ "\n",
+ "Downloading builder script: 4.21kB [00:00, 11.4MB/s] \u001b[A\u001b[A\n",
+ "\n",
+ "\n",
+ "Downloading builder script: 6.50kB [00:00, 21.8MB/s] \u001b[A\u001b[A\n",
+ " \n",
+ " 33%|███▎ | 7/21 [00:18<00:28, 2.02s/it]\n",
+ "100%|██████████| 2/2 [00:00<00:00, 4.86it/s]\u001b[A\n",
+ " 67%|██████▋ | 14/21 [00:34<00:14, 2.07s/it]The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 24\n",
+ " Batch size = 16\n",
+ "{'eval_loss': 0.5350419878959656, 'eval_accuracy': 0.7916666666666666, 'eval_f1': 0.0, 'eval_runtime': 1.5536, 'eval_samples_per_second': 15.448, 'eval_steps_per_second': 1.287, 'epoch': 1.0}\n",
+ "{'loss': 0.5942, 'learning_rate': 1.2380952380952383e-05, 'epoch': 1.14}\n",
+ "{'loss': 0.5899, 'learning_rate': 1.1428571428571429e-05, 'epoch': 1.29}\n",
+ "{'loss': 0.5317, 'learning_rate': 1.0476190476190477e-05, 'epoch': 1.43}\n",
+ "{'loss': 0.4516, 'learning_rate': 9.523809523809525e-06, 'epoch': 1.57}\n",
+ "{'loss': 0.5121, 'learning_rate': 8.571428571428571e-06, 'epoch': 1.71}\n",
+ "{'loss': 0.5264, 'learning_rate': 7.61904761904762e-06, 'epoch': 1.86}\n",
+ "{'loss': 0.539, 'learning_rate': 6.666666666666667e-06, 'epoch': 2.0}\n",
+ "\n",
+ " 0%| | 0/2 [00:00, ?it/s]\u001b[A\n",
+ " A\n",
+ " 67%|██████▋ | 14/21 [00:35<00:14, 2.07s/it]\n",
+ "100%|██████████| 2/2 [00:00<00:00, 4.95it/s]\u001b[A\n",
+ "100%|██████████| 21/21 [00:52<00:00, 2.05s/it]The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.\n",
+ "***** Running Evaluation *****\n",
+ " Num examples = 24\n",
+ " Batch size = 16\n",
+ "{'eval_loss': 0.4877033233642578, 'eval_accuracy': 0.7916666666666666, 'eval_f1': 0.0, 'eval_runtime': 1.1789, 'eval_samples_per_second': 20.357, 'eval_steps_per_second': 1.696, 'epoch': 2.0}\n",
+ "{'loss': 0.4059, 'learning_rate': 5.7142857142857145e-06, 'epoch': 2.14}\n",
+ "{'loss': 0.5851, 'learning_rate': 4.761904761904762e-06, 'epoch': 2.29}\n",
+ "{'loss': 0.4135, 'learning_rate': 3.80952380952381e-06, 'epoch': 2.43}\n",
+ "{'loss': 0.6571, 'learning_rate': 2.8571428571428573e-06, 'epoch': 2.57}\n",
+ "{'loss': 0.4883, 'learning_rate': 1.904761904761905e-06, 'epoch': 2.71}\n",
+ "{'loss': 0.5114, 'learning_rate': 9.523809523809525e-07, 'epoch': 2.86}\n",
+ "{'loss': 0.5215, 'learning_rate': 0.0, 'epoch': 3.0}\n",
+ "\n",
+ " 0%| | 0/2 [00:00, ?it/s]\u001b[A\n",
+ " A\n",
+ "100%|██████████| 21/21 [00:54<00:00, 2.05s/it]\n",
+ "100%|██████████| 2/2 [00:00<00:00, 6.38it/s]\u001b[A\n",
+ " \u001b[A\n",
+ "\n",
+ "Training completed. Do not forget to share your model on huggingface.co/models =)\n",
+ "\n",
+ "\n",
+ "100%|██████████| 21/21 [00:55<00:00, 2.62s/it]\n",
+ "tokenizer config file saved in /tmp/tokenizer/tokenizer_config.json\n",
+ "Special tokens file saved in /tmp/tokenizer/special_tokens_map.json\n",
+ "Configuration saved in /tmp/model/config.json\n",
+ "Model weights saved in /tmp/model/pytorch_model.bin\n",
+ "{'eval_loss': 0.4750453531742096, 'eval_accuracy': 0.7916666666666666, 'eval_f1': 0.0, 'eval_runtime': 1.0524, 'eval_samples_per_second': 22.806, 'eval_steps_per_second': 1.9, 'epoch': 3.0}\n",
+ "{'train_runtime': 55.1543, 'train_samples_per_second': 5.439, 'train_steps_per_second': 0.381, 'train_loss': 0.5624780683290391, 'epoch': 3.0}\n",
+ "> 2024-03-24 17:26:00,230 [info] To track results use the CLI: {'info_cmd': 'mlrun get run 53252ce7aacb4b1aacf86bf3b862daa2 -p hugging-face-trainer-avia', 'logs_cmd': 'mlrun logs 53252ce7aacb4b1aacf86bf3b862daa2 -p hugging-face-trainer-avia'}\n",
+ "> 2024-03-24 17:26:00,231 [info] Or click for UI: {'ui_url': 'https://dashboard.default-tenant.app.app-lab-2-b688.iguazio-cd2.com/mlprojects/hugging-face-trainer-avia/jobs/monitor/53252ce7aacb4b1aacf86bf3b862daa2/overview'}\n",
+ "> 2024-03-24 17:26:00,231 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-train'}\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " hugging-face-trainer-avia \n",
+ " \n",
+ " 0 \n",
+ " Mar 24 17:24:39 \n",
+ " completed \n",
+ " hugging-face-classifier-trainer-train \n",
+ " v3io_user=avia
kind=job
owner=avia
mlrun/client_version=1.6.1
mlrun/client_python_version=3.9.16
host=hugging-face-classifier-trainer-train-dqqfr
\n",
+ " \n",
+ " hf_dataset=Shayanvsf/US_Airline_Sentiment
drop_columns=['airline_sentiment_confidence', 'negativereason_confidence']
pretrained_tokenizer=distilbert-base-uncased
pretrained_model=distilbert-base-uncased
model_class=transformers.AutoModelForSequenceClassification
label_name=airline_sentiment
num_of_train_samples=100
metrics=['accuracy', 'f1']
random_state=42
TRAIN_output_dir=finetuning-sentiment-model-3000-samples
TRAIN_learning_rate=2e-05
TRAIN_per_device_train_batch_size=16
TRAIN_per_device_eval_batch_size=16
TRAIN_num_train_epochs=3
TRAIN_weight_decay=0.01
TRAIN_push_to_hub=False
TRAIN_evaluation_strategy=epoch
TRAIN_eval_steps=1
TRAIN_logging_steps=1
CLASS_num_labels=2
\n",
+ " loss=0.5215
learning_rate=0.0
eval_loss=0.4750453531742096
eval_accuracy=0.7916666666666666
eval_f1=0.0
eval_runtime=1.0524
eval_samples_per_second=22.806
eval_steps_per_second=1.9
train_runtime=55.1543
train_samples_per_second=5.439
train_steps_per_second=0.381
total_flos=3327208489680.0
\n",
+ " loss_plot
learning_rate_plot
eval_loss_plot
eval_accuracy_plot
eval_f1_plot
eval_runtime_plot
eval_samples_per_second_plot
eval_steps_per_second_plot
tokenizer
model
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2024-03-24 17:26:09,792 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-train'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "train_run = hugging_face_classifier_trainer.run(params={\n",
+ " \"hf_dataset\": \"Shayanvsf/US_Airline_Sentiment\",\n",
+ " \"drop_columns\": [\n",
+ " \"airline_sentiment_confidence\",\n",
+ " \"negativereason_confidence\",\n",
+ " ],\n",
+ " \"pretrained_tokenizer\": \"distilbert-base-uncased\",\n",
+ " \"pretrained_model\": \"distilbert-base-uncased\",\n",
+ " \"model_class\": \"transformers.AutoModelForSequenceClassification\",\n",
+ " \"label_name\": \"airline_sentiment\",\n",
+ " \"num_of_train_samples\": 100,\n",
+ " \"metrics\": [\"accuracy\", \"f1\"],\n",
+ " \"random_state\": 42,\n",
+ " **additional_parameters\n",
+ " },\n",
+ " handler=\"train\", \n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "[Back to the top](#top)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlrun-base",
+ "language": "python",
+ "name": "conda-env-mlrun-base-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/src/hugging_face_classifier_trainer.py b/functions/master/hugging_face_classifier_trainer/0.3.0/src/hugging_face_classifier_trainer.py
new file mode 100755
index 00000000..29d07039
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/src/hugging_face_classifier_trainer.py
@@ -0,0 +1,832 @@
+import os
+import shutil
+import tempfile
+import zipfile
+from abc import ABC
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import mlrun
+import mlrun.datastore
+import mlrun.utils
+import numpy as np
+import pandas as pd
+import transformers
+from datasets import Dataset, load_dataset, load_metric
+from mlrun import MLClientCtx
+from mlrun import feature_store as fs
+from mlrun.artifacts import Artifact, PlotlyArtifact
+from mlrun.datastore import DataItem
+from mlrun.frameworks._common import CommonTypes, MLRunInterface
+from mlrun.utils import create_class
+from plotly import graph_objects as go
+from sklearn.model_selection import train_test_split
+from transformers import (
+ AutoTokenizer,
+ DataCollatorWithPadding,
+ EvalPrediction,
+ PreTrainedModel,
+ PreTrainedTokenizer,
+ Trainer,
+ TrainerCallback,
+ TrainerControl,
+ TrainerState,
+ TrainingArguments,
+)
+
+
+# ----------------------from MLRUN--------------------------------
+class HFORTOptimizerMLRunInterface(MLRunInterface, ABC):
+ """
+ Interface for adding MLRun features for tensorflow keras API.
+ """
+
+ # MLRun's context default name:
+ DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+ # Attributes to be inserted so the MLRun interface will be fully enabled.
+ _PROPERTIES = {
+ "_auto_log": False,
+ "_context": None,
+ "_model_name": "model",
+ "_tag": "",
+ "_labels": None,
+ "_extra_data": None,
+ }
+ _METHODS = ["enable_auto_logging"]
+ # Attributes to replace so the MLRun interface will be fully enabled.
+ _REPLACED_METHODS = [
+ "optimize",
+ ]
+
+ @classmethod
+ def add_interface(
+ cls,
+ obj,
+ restoration: CommonTypes.MLRunInterfaceRestorationType = None,
+ ):
+ """
+ Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+ MLRun's features.
+ :param obj: The object to enrich his interface.
+ :param restoration: Restoration information tuple as returned from 'remove_interface' in order to
+ add the interface in a certain state.
+ """
+ super(HFORTOptimizerMLRunInterface, cls).add_interface(
+ obj=obj, restoration=restoration
+ )
+
+ @classmethod
+ def mlrun_optimize(cls):
+ """
+ MLRun's tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+ passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+ """
+
+ def wrapper(self, *args, **kwargs):
+ save_dir = cls._get_function_argument(
+ self.optimize,
+ argument_name="save_dir",
+ passed_args=args,
+ passed_kwargs=kwargs,
+ )[0]
+
+ # Call the original optimize method:
+ result = self.original_optimize(*args, **kwargs)
+
+ if self._auto_log:
+ # Log the onnx model:
+ self._context.log_model(
+ key="model",
+ db_key=self._model_name,
+ model_file=f"{save_dir}/model_optimized.onnx",
+ tag=self._tag,
+ framework="ONNX",
+ labels=self._labels,
+ extra_data=self._extra_data,
+ )
+
+ return result
+
+ return wrapper
+
+ def enable_auto_logging(
+ self,
+ context: mlrun.MLClientCtx,
+ model_name: str = "model",
+ tag: str = "",
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ ):
+ self._auto_log = True
+
+ self._context = context
+ self._model_name = model_name
+ self._tag = tag
+ self._labels = labels
+ self._extra_data = extra_data
+
+
+class HFTrainerMLRunInterface(MLRunInterface, ABC):
+ """
+ Interface for adding MLRun features for tensorflow keras API.
+ """
+
+ # MLRuns context default name:
+ DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+ # Attributes to replace so the MLRun interface will be fully enabled.
+ _REPLACED_METHODS = [
+ "train",
+ # "evaluate"
+ ]
+
+ @classmethod
+ def add_interface(
+ cls,
+ obj: Trainer,
+ restoration: CommonTypes.MLRunInterfaceRestorationType = None,
+ ):
+ """
+ Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+ MLRuns features.
+ :param obj: The object to enrich his interface.
+ :param restoration: Restoration information tuple as returned from 'remove_interface' in order to
+ add the interface in a certain state.
+ """
+
+ super(HFTrainerMLRunInterface, cls).add_interface(
+ obj=obj, restoration=restoration
+ )
+
+ @classmethod
+ def mlrun_train(cls):
+
+ """
+ MLRuns tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+ passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+ """
+
+ def wrapper(self: Trainer, *args, **kwargs):
+ # Restore the evaluation method as `train` will use it:
+ # cls._restore_attribute(obj=self, attribute_name="evaluate")
+
+ # Call the original fit method:
+ result = self.original_train(*args, **kwargs)
+
+ # Replace the evaluation method again:
+ # cls._replace_function(obj=self, function_name="evaluate")
+
+ return result
+
+ return wrapper
+
+
+class MLRunCallback(TrainerCallback):
+ """
+ Callback for collecting logs during training / evaluation of the `Trainer` API.
+ """
+
+ def __init__(
+ self,
+ context: mlrun.MLClientCtx = None,
+ model_name: str = "model",
+ tag: str = "",
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ ):
+ super().__init__()
+
+ # Store the configurations:
+ self._context = (
+ context
+ if context is not None
+ else mlrun.get_or_create_ctx("./mlrun-huggingface")
+ )
+ self._model_name = model_name
+ self._tag = tag
+ self._labels = labels
+ self._extra_data = extra_data if extra_data is not None else {}
+
+ # Set up the logging mode:
+ self._is_training = False
+ self._steps: List[List[int]] = []
+ self._metric_scores: Dict[str, List[float]] = {}
+ self._artifacts: Dict[str, Artifact] = {}
+
+ def on_epoch_begin(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._steps.append([])
+
+ def on_epoch_end(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._log_metrics()
+
+ def on_log(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ logs: Dict[str, float] = None,
+ **kwargs,
+ ):
+ recent_logs = state.log_history[-1].copy()
+
+ recent_logs.pop("epoch")
+ current_step = int(recent_logs.pop("step"))
+ if current_step not in self._steps[-1]:
+ self._steps[-1].append(current_step)
+
+ for metric_name, metric_score in recent_logs.items():
+ if metric_name.startswith("train_"):
+ if metric_name.split("train_")[1] not in self._metric_scores:
+ self._metric_scores[metric_name] = [metric_score]
+ continue
+ if metric_name not in self._metric_scores:
+ self._metric_scores[metric_name] = []
+ self._metric_scores[metric_name].append(metric_score)
+
+ def on_train_begin(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._is_training = True
+
+ def on_train_end(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ model: PreTrainedModel = None,
+ tokenizer: PreTrainedTokenizer = None,
+ **kwargs,
+ ):
+ self._log_metrics()
+
+ temp_directory = tempfile.gettempdir()
+
+ # Save and log the tokenizer:
+ if tokenizer is not None:
+ # Save tokenizer:
+ tokenizer_dir = os.path.join(temp_directory, "tokenizer")
+ tokenizer.save_pretrained(save_directory=tokenizer_dir)
+ # Zip the tokenizer directory:
+ tokenizer_zip = shutil.make_archive(
+ base_name="tokenizer",
+ format="zip",
+ root_dir=tokenizer_dir,
+ )
+ # Log the zip file:
+ self._artifacts["tokenizer"] = self._context.log_artifact(
+ item="tokenizer", local_path=tokenizer_zip
+ )
+
+ # Save the model:
+ model_dir = os.path.join(temp_directory, "model")
+ model.save_pretrained(save_directory=model_dir)
+
+ # Zip the model directory:
+ shutil.make_archive(
+ base_name="model",
+ format="zip",
+ root_dir=model_dir,
+ )
+
+ # Log the model:
+ self._context.log_model(
+ key="model",
+ db_key=self._model_name,
+ model_file="model.zip",
+ tag=self._tag,
+ framework="Hugging Face",
+ labels=self._labels,
+ extra_data={**self._artifacts, **self._extra_data},
+ )
+
+ def on_evaluate(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._log_metrics()
+
+ if self._is_training:
+ return
+
+ # TODO: Update the model object
+
+ def _log_metrics(self):
+ for metric_name, metric_scores in self._metric_scores.items():
+ self._context.log_result(key=metric_name, value=metric_scores[-1])
+ if len(metric_scores) > 1:
+ self._log_metric_plot(name=metric_name, scores=metric_scores)
+ self._context.commit(completed=False)
+
+ def _log_metric_plot(self, name: str, scores: List[float]):
+ # Initialize a plotly figure:
+ metric_figure = go.Figure()
+
+ # Add titles:
+ metric_figure.update_layout(
+ title=name.capitalize().replace("_", " "),
+ xaxis_title="Samples",
+ yaxis_title="Scores",
+ )
+
+ # Draw:
+ metric_figure.add_trace(
+ go.Scatter(x=np.arange(len(scores)), y=scores, mode="lines")
+ )
+
+ # Create the plotly artifact:
+ artifact_name = f"{name}_plot"
+ artifact = PlotlyArtifact(key=artifact_name, figure=metric_figure)
+ self._artifacts[artifact_name] = self._context.log_artifact(artifact)
+
+
+def _apply_mlrun_on_trainer(
+ trainer: transformers.Trainer,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ # Get parameters defaults:
+ if context is None:
+ context = mlrun.get_or_create_ctx(HFTrainerMLRunInterface.DEFAULT_CONTEXT_NAME)
+
+ HFTrainerMLRunInterface.add_interface(obj=trainer)
+
+ if auto_log:
+ trainer.add_callback(
+ MLRunCallback(
+ context=context,
+ model_name=model_name,
+ tag=tag,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ )
+
+
+def _apply_mlrun_on_optimizer(
+ optimizer,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ # Get parameters defaults:
+ if context is None:
+ context = mlrun.get_or_create_ctx(
+ HFORTOptimizerMLRunInterface.DEFAULT_CONTEXT_NAME
+ )
+
+ HFORTOptimizerMLRunInterface.add_interface(obj=optimizer)
+
+ if auto_log:
+ optimizer.enable_auto_logging(
+ context=context,
+ model_name=model_name,
+ tag=tag,
+ labels=labels,
+ extra_data=extra_data,
+ )
+
+
+def apply_mlrun(
+ huggingface_object,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ """
+ Wrap the given model with MLRun's interface providing it with mlrun's additional features.
+ :param huggingface_object: The model to wrap. Can be loaded from the model path given as well.
+ :param model_name: The model name to use for storing the model artifact. Default: "model".
+ :param tag: The model's tag to log with.
+ :param context: MLRun context to work with. If no context is given it will be retrieved via
+ 'mlrun.get_or_create_ctx(None)'
+ :param auto_log: Whether to enable MLRun's auto logging. Default: True.
+ """
+
+ if isinstance(huggingface_object, transformers.Trainer):
+ return _apply_mlrun_on_trainer(
+ trainer=huggingface_object,
+ model_name=model_name,
+ tag=tag,
+ context=context,
+ auto_log=auto_log,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ import optimum.onnxruntime as optimum_ort
+
+ if isinstance(huggingface_object, optimum_ort.ORTOptimizer):
+ return _apply_mlrun_on_optimizer(
+ optimizer=huggingface_object,
+ model_name=model_name,
+ tag=tag,
+ context=context,
+ auto_log=auto_log,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ raise mlrun.errors.MLRunInvalidArgumentError
+
+
+# ---------------------- from auto_trainer--------------------------------
+class KWArgsPrefixes:
+ MODEL_CLASS = "CLASS_"
+ FIT = "FIT_"
+ TRAIN = "TRAIN_"
+ PREDICT = "PREDICT_"
+
+
+def _get_sub_dict_by_prefix(src: Dict, prefix_key: str) -> Dict[str, Any]:
+ """
+ Collect all the keys from the given dict that starts with the given prefix and creates a new dictionary with these
+ keys.
+
+ :param src: The source dict to extract the values from.
+ :param prefix_key: Only keys with this prefix will be returned. The keys in the result dict will be without this
+ prefix.
+ """
+ return {
+ key.replace(prefix_key, ""): val
+ for key, val in src.items()
+ if key.startswith(prefix_key)
+ }
+
+
+def _get_dataframe(
+ context: MLClientCtx,
+ dataset: DataItem,
+ label_columns: Optional[Union[str, List[str]]] = None,
+ drop_columns: Union[str, List[str], int, List[int]] = None,
+) -> Tuple[pd.DataFrame, Optional[Union[str, List[str]]]]:
+ """
+ Getting the DataFrame of the dataset and drop the columns accordingly.
+
+ :param context: MLRun context.
+ :param dataset: The dataset to train the model on.
+ Can be either a list of lists, dict, URI or a FeatureVector.
+ :param label_columns: The target label(s) of the column(s) in the dataset. for Regression or
+ Classification tasks.
+ :param drop_columns: str/int or a list of strings/ints that represent the column names/indices to drop.
+ """
+ if isinstance(dataset, (list, dict)):
+ dataset = pd.DataFrame(dataset)
+ # Checking if drop_columns provided by integer type:
+ if drop_columns:
+ if isinstance(drop_columns, str) or (
+ isinstance(drop_columns, list)
+ and any(isinstance(col, str) for col in drop_columns)
+ ):
+ context.logger.error(
+ "drop_columns must be an integer/list of integers if not provided with a URI/FeatureVector dataset"
+ )
+ raise ValueError
+ dataset.drop(drop_columns, axis=1, inplace=True)
+
+ return dataset, label_columns
+
+ store_uri_prefix, _ = mlrun.datastore.parse_store_uri(dataset.artifact_url)
+ if mlrun.utils.StorePrefix.FeatureVector == store_uri_prefix:
+ # feature-vector case:
+ label_columns = label_columns or dataset.meta.status.label_column
+ dataset = fs.get_offline_features(
+ dataset.meta.uri, drop_columns=drop_columns
+ ).to_dataframe()
+
+ context.logger.info(f"label columns: {label_columns}")
+ else:
+ # simple URL case:
+ dataset = dataset.as_df()
+ if drop_columns:
+ if all(col in dataset for col in drop_columns):
+ dataset = dataset.drop(drop_columns, axis=1)
+ else:
+ context.logger.info(
+ "not all of the columns to drop in the dataset, drop columns process skipped"
+ )
+ return dataset, label_columns
+
+
+# ---------------------- Hugging Face Trainer --------------------------------
+
+
+def _create_compute_metrics(metrics: List[str]) -> Callable[[EvalPrediction], Dict]:
+ """
+ This function create and returns a function that will be used to compute metrics at evaluation.
+ :param metrics: List of different metrics for evaluate the model such as f1, accuracy etc.
+
+ :returns: Function that will be used to compute metrics at evaluation.
+ Must take a [`EvalPrediction`] and return a dictionary string to metric values.
+ """
+
+ def _compute_metrics(eval_pred):
+ logits, labels = eval_pred
+ predictions = np.argmax(logits, axis=-1)
+ metric_dict_results = {}
+ for metric in metrics:
+ load_met = load_metric(metric)
+ metric_res = load_met.compute(predictions=predictions, references=labels)[
+ metric
+ ]
+ metric_dict_results[metric] = metric_res
+
+ return metric_dict_results
+
+ return _compute_metrics
+
+
+def _edit_columns(
+ dataset: Dataset,
+ drop_columns: List[str] = None,
+ rename_columns: [str, str] = None,
+) -> Dataset:
+ """
+ Drop and renames that columns of the given dataset
+ :param dataset: Dataset to process
+ :param drop_columns: The columns to drop from the dataset.
+ :param rename_columns: Dict of columns ro rename : {: , ...}
+
+ :returns: The dataset after the desired process
+ """
+ if drop_columns:
+ dataset = dataset.remove_columns(drop_columns)
+ if rename_columns:
+ dataset = dataset.rename_columns(rename_columns)
+ return dataset
+
+
+def _prepare_dataset(
+ context: MLClientCtx,
+ dataset_name: str,
+ label_name: str = None,
+ drop_columns: Optional[List[str]] = None,
+ num_of_train_samples: int = None,
+ train_test_split_size: float = None,
+ random_state: int = None,
+) -> Tuple[Dataset, Dataset]:
+ """
+ Loading the dataset and editing the columns
+
+ :param context: MLRun contex
+ :param dataset_name: The name of the dataset to get from the HuggingFace hub
+ :param label_name: The target label of the column in the dataset.
+ :param drop_columns: The columns to drop from the dataset.
+ :param num_of_train_samples: Max number of training samples, for debugging.
+ :param train_test_split_size: Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+ in the test split.
+ :param random_state: Random state for train_test_split
+
+ """
+
+ context.logger.info(
+ f"Loading and editing {dataset_name} dataset from Hugging Face hub"
+ )
+ rename_cols = {label_name: "labels"}
+
+ # Loading and editing dataset:
+ dataset = load_dataset(dataset_name)
+
+ # train set
+ train_dataset = dataset["train"]
+ if num_of_train_samples:
+ train_dataset = train_dataset.shuffle(seed=random_state).select(
+ list(range(num_of_train_samples))
+ )
+ train_dataset = _edit_columns(train_dataset, drop_columns, rename_cols)
+
+ # test set
+ test_dataset = dataset["test"]
+ if train_test_split_size or num_of_train_samples:
+ train_test_split_size = train_test_split_size or 0.2
+ num_of_test_samples = int(
+ (train_dataset.num_rows * train_test_split_size)
+ // (1 - train_test_split_size)
+ )
+ test_dataset = test_dataset.shuffle(seed=random_state).select(
+ list(range(num_of_test_samples))
+ )
+ test_dataset = _edit_columns(test_dataset, drop_columns, rename_cols)
+
+ return train_dataset, test_dataset
+
+
+def train(
+ context: MLClientCtx,
+ hf_dataset: str = None,
+ dataset: DataItem = None,
+ test_set: DataItem = None,
+ drop_columns: Optional[List[str]] = None,
+ pretrained_tokenizer: str = None,
+ pretrained_model: str = None,
+ model_class: str = None,
+ model_name: str = "huggingface-model",
+ label_name: str = "labels",
+ text_col: str = "text",
+ num_of_train_samples: int = None,
+ train_test_split_size: float = None,
+ metrics: List[str] = None,
+ random_state: int = None,
+):
+ """
+ Training and evaluating a pretrained model with a pretrained tokenizer over a dataset.
+ The dataset can be either be the name of the dataset that contains in the HuggingFace hub,
+ or a URI or a FeatureVector
+
+ :param context: MLRun context
+ :param hf_dataset: The name of the dataset to get from the HuggingFace hub
+ :param dataset: The dataset to train the model on. Can be either a URI or a FeatureVector
+ :param test_set: The test set to train the model with.
+ :param drop_columns: The columns to drop from the dataset.
+ :param pretrained_tokenizer: The name of the pretrained tokenizer from the HuggingFace hub.
+ :param pretrained_model: The name of the pretrained model from the HuggingFace hub.
+ :param model_name: The model's name to use for storing the model artifact, default to 'model'
+ :param model_class: The class of the model, e.g. `transformers.AutoModelForSequenceClassification`
+ :param label_name: The target label of the column in the dataset.
+ :param text_col: The input text column un the dataset.
+ :param num_of_train_samples: Max number of training samples, for debugging.
+ :param train_test_split_size: Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+ in the test split.
+ :param metrics: List of different metrics for evaluate the model such as f1, accuracy etc.
+ :param random_state: Random state for train_test_split
+ """
+
+ if train_test_split_size is None and test_set is None:
+ context.logger.info(
+ "'train_test_split_size' is not provided, setting train_test_split_size to 0.2"
+ )
+ train_test_split_size = 0.2
+
+ # Creating tokenizer:
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_tokenizer)
+
+ def preprocess_function(examples):
+ return tokenizer(examples[text_col], truncation=True)
+
+ # prepare data for training
+ if hf_dataset:
+ train_dataset, test_dataset = _prepare_dataset(
+ context,
+ hf_dataset,
+ label_name,
+ drop_columns,
+ num_of_train_samples,
+ train_test_split_size,
+ random_state=random_state,
+ )
+ elif dataset:
+ # Get DataFrame by URL or by FeatureVector:
+ train_dataset, label_name = _get_dataframe(
+ context=context,
+ dataset=dataset,
+ label_columns=label_name,
+ drop_columns=drop_columns,
+ )
+ if test_set:
+ test_dataset, _ = _get_dataframe(
+ context=context,
+ dataset=test_set,
+ label_columns=label_name,
+ drop_columns=drop_columns,
+ )
+ else:
+ train_dataset, test_dataset = train_test_split(
+ train_dataset,
+ test_size=train_test_split_size,
+ random_state=random_state,
+ )
+ train_dataset = Dataset.from_pandas(train_dataset)
+ test_dataset = Dataset.from_pandas(test_dataset)
+ else:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ "Training data was not provided. A training dataset is mandatory for training."
+ " Please provide a training set using one of the arguments 'hf_dataset' or 'dataset'."
+ )
+
+ # Mapping datasets with the tokenizer:
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
+
+ # Creating data collator for batching:
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
+
+ # Parsing kwargs:
+ train_kwargs = _get_sub_dict_by_prefix(
+ src=context.parameters, prefix_key=KWArgsPrefixes.TRAIN
+ )
+ model_class_kwargs = _get_sub_dict_by_prefix(
+ src=context.parameters, prefix_key=KWArgsPrefixes.MODEL_CLASS
+ )
+
+ # Loading our pretrained model:
+ model_class_kwargs["pretrained_model_name_or_path"] = (
+ model_class_kwargs.get("pretrained_model_name_or_path") or pretrained_model
+ )
+ train_kwargs["hub_token"] = train_kwargs.get("hub_token") or pretrained_tokenizer
+ if not model_class_kwargs["pretrained_model_name_or_path"]:
+ raise mlrun.errors.MLRunRuntimeError(
+ "Must provide pretrained_model name as "
+ "function argument or in extra params"
+ )
+ model = create_class(model_class).from_pretrained(**model_class_kwargs)
+
+ # Preparing training arguments:
+ training_args = TrainingArguments(
+ **train_kwargs,
+ )
+
+ compute_metrics = _create_compute_metrics(metrics) if metrics else None
+ trainer = Trainer(
+ model=model,
+ args=training_args,
+ train_dataset=tokenized_train,
+ eval_dataset=tokenized_test,
+ tokenizer=tokenizer,
+ data_collator=data_collator,
+ compute_metrics=compute_metrics,
+ )
+
+ apply_mlrun(trainer, model_name=model_name)
+
+ # Apply training with evaluation:
+ context.logger.info(f"training '{model_name}'")
+ trainer.train()
+
+
+def _get_model_dir(model_uri: str):
+ model_file, _, _ = mlrun.artifacts.get_model(model_uri)
+ model_dir = tempfile.gettempdir()
+ # Unzip the Model:
+ with zipfile.ZipFile(model_file, "r") as zip_file:
+ zip_file.extractall(model_dir)
+
+ return model_dir
+
+
+def optimize(
+ model_path: str,
+ model_name: str = "optimized_model",
+ target_dir: str = "./optimized",
+ optimization_level: int = 1,
+):
+ """
+ Optimizing the transformer model using ONNX optimization.
+
+
+ :param model_path: The path of the model to optimize.
+ :param model_name: Name of the optimized model.
+ :param target_dir: The directory to save the ONNX model.
+ :param optimization_level: Optimization level performed by ONNX Runtime of the loaded graph. (default is 1)
+ """
+ # We import these in the function scope so ONNX won't be mandatory for the other handlers:
+ from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer
+ from optimum.onnxruntime.configuration import OptimizationConfig
+
+ model_dir = _get_model_dir(model_uri=model_path)
+ # Creating configuration for optimization step:
+ optimization_config = OptimizationConfig(optimization_level=optimization_level)
+
+ # Converting our pretrained model to an ONNX-Runtime model:
+ ort_model = ORTModelForSequenceClassification.from_pretrained(
+ model_dir, from_transformers=True
+ )
+
+ # Creating an ONNX-Runtime optimizer from ONNX model:
+ optimizer = ORTOptimizer.from_pretrained(ort_model)
+
+ apply_mlrun(optimizer, model_name=model_name)
+ # Optimizing and saving the ONNX model:
+ optimizer.optimize(save_dir=target_dir, optimization_config=optimization_config)
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/src/item.yaml b/functions/master/hugging_face_classifier_trainer/0.3.0/src/item.yaml
new file mode 100755
index 00000000..332902b3
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/src/item.yaml
@@ -0,0 +1,33 @@
+apiVersion: v1
+categories:
+- deep-learning
+- huggingface
+- machine-learning
+- model-training
+description: Automatic train and optimize functions for HuggingFace framework
+doc: ''
+example: hugging_face_classifier_trainer.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ author: davids
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.6.1
+name: hugging_face_classifier_trainer
+platformVersion: 3.5.5
+spec:
+ filename: hugging_face_classifier_trainer.py
+ handler: train
+ image: mlrun/mlrun
+ kind: job
+ requirements:
+ - onnx~=1.14.1
+ - onnxruntime~=1.16.1
+ - optimum~=1.6.4
+ - transformers~=4.26.1
+ - datasets~=2.10.1
+ - scikit-learn~=1.0.2
+url: ''
+version: 0.3.0
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/src/requirements.txt b/functions/master/hugging_face_classifier_trainer/0.3.0/src/requirements.txt
new file mode 100644
index 00000000..9d0db7b4
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/src/requirements.txt
@@ -0,0 +1,6 @@
+onnx~=1.14.1
+onnxruntime~=1.16.1
+optimum~=1.6.4
+transformers~=4.26.1
+datasets~=2.10.1
+scikit-learn~=1.0.2
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/src/test_hugging_face_classifier_trainer.py b/functions/master/hugging_face_classifier_trainer/0.3.0/src/test_hugging_face_classifier_trainer.py
new file mode 100644
index 00000000..a5e0fee9
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/src/test_hugging_face_classifier_trainer.py
@@ -0,0 +1,145 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import os
+
+import mlrun
+import pytest
+from mlrun import import_function
+
+REQUIRED_ENV_VARS = [
+ "MLRUN_DBPATH",
+ "MLRUN_ARTIFACT_PATH",
+ "V3IO_USERNAME",
+ "V3IO_API",
+ "V3IO_ACCESS_KEY",
+]
+
+ADDITIONAL_PARAM_FOR_TRAIN = {
+ "TRAIN_output_dir": "finetuning-sentiment-model-3000-samples",
+ "TRAIN_learning_rate": 2e-5,
+ "TRAIN_per_device_train_batch_size": 16,
+ "TRAIN_per_device_eval_batch_size": 16,
+ "TRAIN_num_train_epochs": 2,
+ "TRAIN_weight_decay": 0.01,
+ "TRAIN_push_to_hub": False,
+ "TRAIN_evaluation_strategy": "epoch",
+ "TRAIN_eval_steps": 1,
+ "TRAIN_logging_steps": 1,
+ "CLASS_num_labels": 2,
+}
+
+
+def _validate_environment_variables() -> bool:
+ """
+ Checks that all required Environment variables are set.
+ """
+ environment_keys = os.environ.keys()
+ return all(key in environment_keys for key in REQUIRED_ENV_VARS)
+
+
+def _set_environment(env_file=None):
+ if env_file:
+ mlrun.set_env_from_file(env_file)
+ mlrun.get_or_create_project(
+ "hugging-face-classifier-trainer-test", context="./", user_project=True
+ )
+
+
+@pytest.mark.skipif(
+ condition=not _validate_environment_variables(),
+ reason="Project's environment variables are not set",
+)
+def test_train_sequence_classification():
+ _set_environment()
+
+ # Importing function:
+ fn = import_function("function.yaml")
+
+ train_run = None
+
+ try:
+ train_run = fn.run(
+ params={
+ "hf_dataset": "Shayanvsf/US_Airline_Sentiment",
+ "drop_columns": [
+ "airline_sentiment_confidence",
+ "negativereason_confidence",
+ ],
+ "pretrained_tokenizer": "distilbert-base-uncased",
+ "pretrained_model": "distilbert-base-uncased",
+ "model_class": "transformers.AutoModelForSequenceClassification",
+ "label_name": "airline_sentiment",
+ "num_of_train_samples": 100,
+ "metrics": ["accuracy", "f1"],
+ "random_state": 42,
+ **ADDITIONAL_PARAM_FOR_TRAIN,
+ },
+ handler="train",
+ local=True,
+ )
+ except Exception as exception:
+ print(f"- The test failed - raised the following error:\n- {exception}")
+ assert train_run and all(
+ key in train_run.outputs for key in ["model", "loss"]
+ ), "outputs should include more data"
+
+
+@pytest.mark.skipif(
+ condition=not _validate_environment_variables(),
+ reason="Project's environment variables are not set",
+)
+def test_train_and_optimize_sequence_classification():
+ _set_environment()
+
+ # Importing function:
+ fn = import_function("function.yaml")
+
+ train_run = None
+ optimize_run = None
+
+ try:
+ train_run = fn.run(
+ params={
+ "hf_dataset": "Shayanvsf/US_Airline_Sentiment",
+ "drop_columns": [
+ "airline_sentiment_confidence",
+ "negativereason_confidence",
+ ],
+ "pretrained_tokenizer": "distilbert-base-uncased",
+ "pretrained_model": "distilbert-base-uncased",
+ "model_class": "transformers.AutoModelForSequenceClassification",
+ "label_name": "airline_sentiment",
+ "num_of_train_samples": 100,
+ "metrics": ["accuracy", "f1"],
+ "random_state": 42,
+ **ADDITIONAL_PARAM_FOR_TRAIN,
+ },
+ handler="train",
+ local=True,
+ )
+
+ optimize_run = fn.run(
+ params={"model_path": train_run.outputs["model"]},
+ handler="optimize",
+ local=True,
+ )
+ except Exception as exception:
+ print(f"- The test failed - raised the following error:\n- {exception}")
+ assert train_run and all(
+ key in train_run.outputs for key in ["model", "loss"]
+ ), "outputs should include more data"
+ assert optimize_run and all(
+ key in optimize_run.outputs for key in ["model"]
+ ), "outputs should include more data"
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/static/documentation.html b/functions/master/hugging_face_classifier_trainer/0.3.0/static/documentation.html
new file mode 100644
index 00000000..1652c838
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/static/documentation.html
@@ -0,0 +1,394 @@
+
+
+
+
+
+
+
+hugging_face_classifier_trainer package
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
hugging_face_classifier_trainer package
+
+
+
+
+
+
+hugging_face_classifier_trainer package
+
+
+hugging_face_classifier_trainer.hugging_face_classifier_trainer module
+
+
+class hugging_face_classifier_trainer.hugging_face_classifier_trainer. HFORTOptimizerMLRunInterface ( * args : Any , ** kwargs : Any ) [source]
+Bases: mlrun.frameworks._common.
, abc.ABC
+Interface for adding MLRun features for tensorflow keras API.
+
+
+DEFAULT_CONTEXT_NAME = 'mlrun-huggingface'
+
+
+
+classmethod add_interface ( obj , restoration : Optional [ mlrun.frameworks._common.CommonTypes.MLRunInterfaceRestorationType ] = None ) [source]
+Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+MLRun’s features.
+:param obj: The object to enrich his interface.
+:param restoration: Restoration information tuple as returned from ‘remove_interface’ in order to
+
+add the interface in a certain state.
+
+
+
+
+enable_auto_logging ( context : mlrun.execution.MLClientCtx , model_name : str = 'model' , tag : str = '' , labels : Optional [ Dict [ str , str ] ] = None , extra_data : Optional [ dict ] = None ) [source]
+
+
+
+classmethod mlrun_optimize ( ) [source]
+MLRun’s tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+
+
+
+
+class hugging_face_classifier_trainer.hugging_face_classifier_trainer. HFTrainerMLRunInterface ( * args : Any , ** kwargs : Any ) [source]
+Bases: mlrun.frameworks._common.
, abc.ABC
+Interface for adding MLRun features for tensorflow keras API.
+
+
+DEFAULT_CONTEXT_NAME = 'mlrun-huggingface'
+
+
+
+classmethod add_interface ( obj : transformers.Trainer , restoration : Optional [ mlrun.frameworks._common.CommonTypes.MLRunInterfaceRestorationType ] = None ) [source]
+Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+MLRuns features.
+:param obj: The object to enrich his interface.
+:param restoration: Restoration information tuple as returned from ‘remove_interface’ in order to
+
+add the interface in a certain state.
+
+
+
+
+classmethod mlrun_train ( ) [source]
+MLRuns tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+
+
+
+
+class hugging_face_classifier_trainer.hugging_face_classifier_trainer. KWArgsPrefixes [source]
+Bases: object
+
+
+FIT = 'FIT_'
+
+
+
+MODEL_CLASS = 'CLASS_'
+
+
+
+PREDICT = 'PREDICT_'
+
+
+
+TRAIN = 'TRAIN_'
+
+
+
+
+class hugging_face_classifier_trainer.hugging_face_classifier_trainer. MLRunCallback ( * args : Any , ** kwargs : Any ) [source]
+Bases: transformers.
+Callback for collecting logs during training / evaluation of the Trainer API.
+
+
+on_epoch_begin ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_epoch_end ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_evaluate ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_log ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , logs : Optional [ Dict [ str , float ] ] = None , ** kwargs ) [source]
+
+
+
+on_train_begin ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_train_end ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , model : Optional [ transformers.PreTrainedModel ] = None , tokenizer : Optional [ transformers.PreTrainedTokenizer ] = None , ** kwargs ) [source]
+
+
+
+
+hugging_face_classifier_trainer.hugging_face_classifier_trainer. apply_mlrun ( huggingface_object , model_name : Optional [ str ] = None , tag : str = '' , context : Optional [ mlrun.execution.MLClientCtx ] = None , auto_log : bool = True , labels : Optional [ Dict [ str , str ] ] = None , extra_data : Optional [ dict ] = None , ** kwargs ) [source]
+Wrap the given model with MLRun’s interface providing it with mlrun’s additional features.
+:param huggingface_object: The model to wrap. Can be loaded from the model path given as well.
+:param model_name: The model name to use for storing the model artifact. Default: “model”.
+:param tag: The model’s tag to log with.
+:param context: MLRun context to work with. If no context is given it will be retrieved via
+
+‘mlrun.get_or_create_ctx(None)’
+
+
+Parameters
+auto_log – Whether to enable MLRun’s auto logging. Default: True.
+
+
+
+
+
+hugging_face_classifier_trainer.hugging_face_classifier_trainer. optimize ( model_path : str , model_name : str = 'optimized_model' , target_dir : str = './optimized' , optimization_level : int = 1 ) [source]
+Optimizing the transformer model using ONNX optimization.
+
+Parameters
+
+model_path – The path of the model to optimize.
+model_name – Name of the optimized model.
+target_dir – The directory to save the ONNX model.
+optimization_level – Optimization level performed by ONNX Runtime of the loaded graph. (default is 1)
+
+
+
+
+
+
+hugging_face_classifier_trainer.hugging_face_classifier_trainer. train ( context : mlrun.execution.MLClientCtx , hf_dataset : Optional [ str ] = None , dataset : Optional [ mlrun.datastore.base.DataItem ] = None , test_set : Optional [ mlrun.datastore.base.DataItem ] = None , drop_columns : Optional [ List [ str ] ] = None , pretrained_tokenizer : Optional [ str ] = None , pretrained_model : Optional [ str ] = None , model_class : Optional [ str ] = None , model_name : str = 'huggingface-model' , label_name : str = 'labels' , text_col : str = 'text' , num_of_train_samples : Optional [ int ] = None , train_test_split_size : Optional [ float ] = None , metrics : Optional [ List [ str ] ] = None , random_state : Optional [ int ] = None ) [source]
+Training and evaluating a pretrained model with a pretrained tokenizer over a dataset.
+The dataset can be either be the name of the dataset that contains in the HuggingFace hub,
+or a URI or a FeatureVector
+
+Parameters
+
+context – MLRun context
+hf_dataset – The name of the dataset to get from the HuggingFace hub
+dataset – The dataset to train the model on. Can be either a URI or a FeatureVector
+test_set – The test set to train the model with.
+drop_columns – The columns to drop from the dataset.
+pretrained_tokenizer – The name of the pretrained tokenizer from the HuggingFace hub.
+pretrained_model – The name of the pretrained model from the HuggingFace hub.
+model_name – The model’s name to use for storing the model artifact, default to ‘model’
+model_class – The class of the model, e.g. transformers.AutoModelForSequenceClassification
+label_name – The target label of the column in the dataset.
+text_col – The input text column un the dataset.
+num_of_train_samples – Max number of training samples, for debugging.
+train_test_split_size – Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+in the test split.
+metrics – List of different metrics for evaluate the model such as f1, accuracy etc.
+random_state – Random state for train_test_split
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/static/example.html b/functions/master/hugging_face_classifier_trainer/0.3.0/static/example.html
new file mode 100644
index 00000000..5fdd60e5
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/static/example.html
@@ -0,0 +1,2406 @@
+
+
+
+
+
+
+
+MLRun Hugging Face Classifier Trainer Tutorial
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
MLRun Hugging Face Classifier Trainer Tutorial
+
+
+
+
+
+
+
+MLRun Hugging Face Classifier Trainer Tutorial
+This notebook shows how to use the handlers of the Hugging Face classifier trainer.
+the following handlers are:
+
+All you need is simply HF model type and a HF dataset name .
+
+
+
+
Requirement already satisfied: onnx~=1.14.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 1)) (1.14.1)
+Requirement already satisfied: onnxruntime==1.16.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 2)) (1.16.1)
+Requirement already satisfied: optimum~=1.6.4 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 3)) (1.6.4)
+Requirement already satisfied: transformers~=4.26.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 4)) (4.26.1)
+Requirement already satisfied: datasets~=2.10.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 5)) (2.10.1)
+Requirement already satisfied: scikit-learn~=1.0.2 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from -r requirements.txt (line 6)) (1.0.2)
+Requirement already satisfied: coloredlogs in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (15.0.1)
+Requirement already satisfied: flatbuffers in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.12)
+Requirement already satisfied: numpy>=1.21.6 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.23.5)
+Requirement already satisfied: packaging in /conda/envs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (21.3)
+Requirement already satisfied: protobuf in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (3.20.2)
+Requirement already satisfied: sympy in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.12)
+Requirement already satisfied: typing-extensions>=3.6.2.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from onnx~=1.14.1->-r requirements.txt (line 1)) (4.7.1)
+Requirement already satisfied: torch>=1.9 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from optimum~=1.6.4->-r requirements.txt (line 3)) (2.1.2)
+Requirement already satisfied: huggingface-hub>=0.8.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from optimum~=1.6.4->-r requirements.txt (line 3)) (0.20.1)
+Requirement already satisfied: filelock in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (3.13.1)
+Requirement already satisfied: pyyaml>=5.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (5.4.1)
+Requirement already satisfied: regex!=2019.12.17 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (2023.12.25)
+Requirement already satisfied: requests in /conda/envs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (2.31.0)
+Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (0.13.3)
+Requirement already satisfied: tqdm>=4.27 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from transformers~=4.26.1->-r requirements.txt (line 4)) (4.65.0)
+Requirement already satisfied: pyarrow>=6.0.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (11.0.0)
+Requirement already satisfied: dill<0.3.7,>=0.3.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (0.3.6)
+Requirement already satisfied: pandas in /conda/envs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (1.4.4)
+Requirement already satisfied: xxhash in /conda/envs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (3.3.0)
+Requirement already satisfied: multiprocess in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (0.70.14)
+Requirement already satisfied: fsspec>=2021.11.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from fsspec[http]>=2021.11.1->datasets~=2.10.1->-r requirements.txt (line 5)) (2023.9.2)
+Requirement already satisfied: aiohttp in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (3.9.1)
+Requirement already satisfied: responses<0.19 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from datasets~=2.10.1->-r requirements.txt (line 5)) (0.18.0)
+Requirement already satisfied: scipy>=1.1.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r requirements.txt (line 6)) (1.11.4)
+Requirement already satisfied: joblib>=0.11 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r requirements.txt (line 6)) (1.3.2)
+Requirement already satisfied: threadpoolctl>=2.0.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r requirements.txt (line 6)) (3.2.0)
+Requirement already satisfied: attrs>=17.3.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (19.1.0)
+Requirement already satisfied: multidict<7.0,>=4.5 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (6.0.4)
+Requirement already satisfied: yarl<2.0,>=1.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (1.9.2)
+Requirement already satisfied: frozenlist>=1.1.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (1.4.0)
+Requirement already satisfied: aiosignal>=1.1.2 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (1.3.1)
+Requirement already satisfied: async-timeout<5.0,>=4.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from aiohttp->datasets~=2.10.1->-r requirements.txt (line 5)) (4.0.3)
+Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from packaging->onnxruntime==1.16.1->-r requirements.txt (line 2)) (3.1.1)
+Requirement already satisfied: charset-normalizer<4,>=2 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (2.1.1)
+Requirement already satisfied: idna<4,>=2.5 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (3.4)
+Requirement already satisfied: urllib3<3,>=1.21.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (1.26.16)
+Requirement already satisfied: certifi>=2017.4.17 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from requests->transformers~=4.26.1->-r requirements.txt (line 4)) (2023.7.22)
+Requirement already satisfied: networkx in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (3.2.1)
+Requirement already satisfied: jinja2 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (3.1.3)
+Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)
+Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)
+Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)
+Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (8.9.2.26)
+Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.3.1)
+Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (11.0.2.54)
+Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (10.3.2.106)
+Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (11.4.5.107)
+Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.0.106)
+Requirement already satisfied: nvidia-nccl-cu12==2.18.1 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (2.18.1)
+Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.1.105)
+Requirement already satisfied: triton==2.1.0 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (2.1.0)
+Requirement already satisfied: nvidia-nvjitlink-cu12 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (12.3.101)
+Requirement already satisfied: sentencepiece!=0.1.92,>=0.1.91 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from transformers[sentencepiece]>=4.26.0->optimum~=1.6.4->-r requirements.txt (line 3)) (0.2.0)
+Requirement already satisfied: humanfriendly>=9.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from coloredlogs->onnxruntime==1.16.1->-r requirements.txt (line 2)) (9.2)
+Requirement already satisfied: python-dateutil>=2.8.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from pandas->datasets~=2.10.1->-r requirements.txt (line 5)) (2.8.2)
+Requirement already satisfied: pytz>=2020.1 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from pandas->datasets~=2.10.1->-r requirements.txt (line 5)) (2023.3.post1)
+Requirement already satisfied: mpmath>=0.19 in /User/.pythonlibs/mlrun-base/lib/python3.9/site-packages (from sympy->onnxruntime==1.16.1->-r requirements.txt (line 2)) (1.3.0)
+Requirement already satisfied: six>=1.5 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas->datasets~=2.10.1->-r requirements.txt (line 5)) (1.16.0)
+Requirement already satisfied: MarkupSafe>=2.0 in /conda/envs/mlrun-base/lib/python3.9/site-packages (from jinja2->torch>=1.9->optimum~=1.6.4->-r requirements.txt (line 3)) (2.1.3)
+Note: you may need to restart the kernel to use updated packages.
+
+
+
+
+
+
+
+
+
> 2024-03-24 17:10:17,091 [info] Project loaded successfully: {'project_name': 'hugging-face-trainer'}
+
+
+
+
+
+Importing the hugging_face_classifier_trainer function from the Marketplace
+
+
+
+Training a model
+Choosing the train
handler
+
+Define task parameters¶
+
+
+
+
+Running the Training job with the “train” handler
+
+
+
+
> 2024-03-24 17:10:21,025 [info] Storing function: {'name': 'hugging-face-classifier-trainer-train', 'uid': '514d8d5530c842238b1cc81983cd943e', 'db': 'http://mlrun-api:8080'}
+> 2024-03-24 17:11:03,727 [info] 'train_test_split_size' is not provided, setting train_test_split_size to 0.2
+> 2024-03-24 17:11:03,882 [info] Loading and editing Shayanvsf/US_Airline_Sentiment dataset from Hugging Face hub
+
+
+
Found cached dataset parquet (/igz/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)
+
+
+
Loading cached shuffled indices for dataset at /igz/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-ec18d1773cfb9bb5.arrow
+Loading cached shuffled indices for dataset at /igz/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec/cache-e0c54c494a578ee6.arrow
+
+
+
Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.weight', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_layer_norm.bias', 'vocab_layer_norm.weight']
+- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
+- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
+Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'classifier.weight', 'pre_classifier.weight', 'classifier.bias']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+
+
+
> 2024-03-24 17:11:08,938 [info] training 'huggingface-model'
+
+
+
The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
+***** Running training *****
+ Num examples = 100
+ Num Epochs = 3
+ Instantaneous batch size per device = 16
+ Total train batch size (w. parallel, distributed & accumulation) = 16
+ Gradient Accumulation steps = 1
+ Total optimization steps = 21
+ Number of trainable parameters = 66955010
+You're using a DistilBertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
+
+
+
+
+
+ [21/21 00:15, Epoch 3/3]
+
+
+
+
+Epoch
+Training Loss
+Validation Loss
+Accuracy
+F1
+
+
+
+
+1
+0.738900
+0.515311
+0.791667
+0.000000
+
+
+2
+0.525900
+0.481563
+0.791667
+0.000000
+
+
+3
+0.490800
+0.471675
+0.791667
+0.000000
+
+
+
The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+***** Running Evaluation *****
+ Num examples = 24
+ Batch size = 16
+/tmp/tmp0c1aawrq.py:561: FutureWarning:
+
+load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
+
+The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+***** Running Evaluation *****
+ Num examples = 24
+ Batch size = 16
+The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+***** Running Evaluation *****
+ Num examples = 24
+ Batch size = 16
+
+
+Training completed. Do not forget to share your model on huggingface.co/models =)
+
+
+tokenizer config file saved in /tmp/tokenizer/tokenizer_config.json
+Special tokens file saved in /tmp/tokenizer/special_tokens_map.json
+Configuration saved in /tmp/model/config.json
+Model weights saved in /tmp/model/pytorch_model.bin
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+hugging-face-trainer-avia
+
+0
+Mar 24 17:10:21
+completed
+hugging-face-classifier-trainer-train
+v3io_user=avia
kind=local
owner=avia
host=jupyter-avia-6454bdd4c5-xz8cg
+
+hf_dataset=Shayanvsf/US_Airline_Sentiment
drop_columns=['airline_sentiment_confidence', 'negativereason_confidence']
pretrained_tokenizer=distilbert-base-uncased
pretrained_model=distilbert-base-uncased
model_class=transformers.AutoModelForSequenceClassification
label_name=airline_sentiment
num_of_train_samples=100
metrics=['accuracy', 'f1']
random_state=42
TRAIN_output_dir=finetuning-sentiment-model-3000-samples
TRAIN_learning_rate=2e-05
TRAIN_per_device_train_batch_size=16
TRAIN_per_device_eval_batch_size=16
TRAIN_num_train_epochs=3
TRAIN_weight_decay=0.01
TRAIN_push_to_hub=False
TRAIN_evaluation_strategy=epoch
TRAIN_eval_steps=1
TRAIN_logging_steps=1
CLASS_num_labels=2
+loss=0.4908
learning_rate=0.0
eval_loss=0.47167453169822693
eval_accuracy=0.7916666666666666
eval_f1=0.0
eval_runtime=0.5186
eval_samples_per_second=46.276
eval_steps_per_second=3.856
train_runtime=17.6054
train_samples_per_second=17.04
train_steps_per_second=1.193
total_flos=3327208489680.0
+loss_plot
learning_rate_plot
eval_loss_plot
eval_accuracy_plot
eval_f1_plot
eval_runtime_plot
eval_samples_per_second_plot
eval_steps_per_second_plot
tokenizer
model
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2024-03-24 17:12:01,880 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-train'}
+
+
+
+
+
+
+The result of the train run
+
+
+
+
{'loss': 0.4908,
+ 'learning_rate': 0.0,
+ 'eval_loss': 0.47167453169822693,
+ 'eval_accuracy': 0.7916666666666666,
+ 'eval_f1': 0.0,
+ 'eval_runtime': 0.5186,
+ 'eval_samples_per_second': 46.276,
+ 'eval_steps_per_second': 3.856,
+ 'train_runtime': 17.6054,
+ 'train_samples_per_second': 17.04,
+ 'train_steps_per_second': 1.193,
+ 'total_flos': 3327208489680.0,
+ 'loss_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/loss_plot.html',
+ 'learning_rate_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/learning_rate_plot.html',
+ 'eval_loss_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_loss_plot.html',
+ 'eval_accuracy_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_accuracy_plot.html',
+ 'eval_f1_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_f1_plot.html',
+ 'eval_runtime_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_runtime_plot.html',
+ 'eval_samples_per_second_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_samples_per_second_plot.html',
+ 'eval_steps_per_second_plot': 'v3io:///projects/hugging-face-trainer-avia/artifacts/hugging-face-classifier-trainer-train/0/eval_steps_per_second_plot.html',
+ 'tokenizer': 'store://artifacts/hugging-face-trainer-avia/hugging-face-classifier-trainer-train_tokenizer@514d8d5530c842238b1cc81983cd943e',
+ 'model': 'store://artifacts/hugging-face-trainer-avia/huggingface-model@514d8d5530c842238b1cc81983cd943e'}
+
+
+
+
+
+
+
+Getting the model for evaluating and predicting
+
+
+
+
+Optimize the model
+Choosing the optimize
handler
+The result of using this handled is an onnx optimized model.
+
+
+
+
> 2024-03-24 17:12:02,020 [info] Storing function: {'name': 'hugging-face-classifier-trainer-optimize', 'uid': 'fbee1ead18444824a4b5c0308a677bf4', 'db': 'http://mlrun-api:8080'}
+
+
+
/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/optimum/onnxruntime/configuration.py:726: FutureWarning:
+
+disable_embed_layer_norm will be deprecated soon, use disable_embed_layer_norm_fusion instead, disable_embed_layer_norm_fusion is set to True.
+
+loading configuration file /tmp/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/config.json",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+loading configuration file /tmp/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+loading weights file /tmp/pytorch_model.bin
+All model checkpoint weights were used when initializing DistilBertForSequenceClassification.
+
+All the weights of DistilBertForSequenceClassification were initialized from the model checkpoint at /tmp.
+If your task is similar to the task the model of the checkpoint was trained on, you can already use DistilBertForSequenceClassification for predictions without further training.
+/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/transformers/models/distilbert/modeling_distilbert.py:218: TracerWarning:
+
+torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
+
+Configuration saved in /tmp/tmp79wjp8m8/config.json
+Could not locate the tokenizer configuration file, will try to use the model config instead.
+loading configuration file /tmp/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+loading configuration file /tmp/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+Could not locate the tokenizer configuration file, will try to use the model config instead.
+loading configuration file /tmp/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+Could not locate the tokenizer configuration file, will try to use the model config instead.
+loading configuration file /tmp/tmp79wjp8m8/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/tmp79wjp8m8",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+loading configuration file /tmp/tmp79wjp8m8/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/tmp79wjp8m8",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+Could not locate the tokenizer configuration file, will try to use the model config instead.
+loading configuration file /tmp/tmp79wjp8m8/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/tmp79wjp8m8",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+Configuration saved in optimized/config.json
+Could not locate the tokenizer configuration file, will try to use the model config instead.
+loading configuration file /tmp/tmp79wjp8m8/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/tmp79wjp8m8",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+loading configuration file /tmp/tmp79wjp8m8/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/tmp79wjp8m8",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+Could not locate the tokenizer configuration file, will try to use the model config instead.
+loading configuration file /tmp/tmp79wjp8m8/config.json
+Model config DistilBertConfig {
+ "_name_or_path": "/tmp/tmp79wjp8m8",
+ "activation": "gelu",
+ "architectures": [
+ "DistilBertForSequenceClassification"
+ ],
+ "attention_dropout": 0.1,
+ "dim": 768,
+ "dropout": 0.1,
+ "hidden_dim": 3072,
+ "initializer_range": 0.02,
+ "max_position_embeddings": 512,
+ "model_type": "distilbert",
+ "n_heads": 12,
+ "n_layers": 6,
+ "pad_token_id": 0,
+ "problem_type": "single_label_classification",
+ "qa_dropout": 0.1,
+ "seq_classif_dropout": 0.2,
+ "sinusoidal_pos_embds": false,
+ "tie_weights_": true,
+ "torch_dtype": "float32",
+ "transformers_version": "4.26.1",
+ "vocab_size": 30522
+}
+
+Failed to remove node input: "/distilbert/transformer/layer.0/attention/Transpose_output_0"
+input: "/distilbert/transformer/layer.0/attention/Constant_11_output_0"
+output: "/distilbert/transformer/layer.0/attention/Div_output_0"
+name: "/distilbert/transformer/layer.0/attention/Div"
+op_type: "Div"
+
+Failed to remove node input: "/distilbert/transformer/layer.1/attention/Transpose_output_0"
+input: "/distilbert/transformer/layer.1/attention/Constant_11_output_0"
+output: "/distilbert/transformer/layer.1/attention/Div_output_0"
+name: "/distilbert/transformer/layer.1/attention/Div"
+op_type: "Div"
+
+Failed to remove node input: "/distilbert/transformer/layer.2/attention/Transpose_output_0"
+input: "/distilbert/transformer/layer.2/attention/Constant_11_output_0"
+output: "/distilbert/transformer/layer.2/attention/Div_output_0"
+name: "/distilbert/transformer/layer.2/attention/Div"
+op_type: "Div"
+
+Failed to remove node input: "/distilbert/transformer/layer.3/attention/Transpose_output_0"
+input: "/distilbert/transformer/layer.3/attention/Constant_11_output_0"
+output: "/distilbert/transformer/layer.3/attention/Div_output_0"
+name: "/distilbert/transformer/layer.3/attention/Div"
+op_type: "Div"
+
+Failed to remove node input: "/distilbert/transformer/layer.4/attention/Transpose_output_0"
+input: "/distilbert/transformer/layer.4/attention/Constant_11_output_0"
+output: "/distilbert/transformer/layer.4/attention/Div_output_0"
+name: "/distilbert/transformer/layer.4/attention/Div"
+op_type: "Div"
+
+Failed to remove node input: "/distilbert/transformer/layer.5/attention/Transpose_output_0"
+input: "/distilbert/transformer/layer.5/attention/Constant_11_output_0"
+output: "/distilbert/transformer/layer.5/attention/Div_output_0"
+name: "/distilbert/transformer/layer.5/attention/Div"
+op_type: "Div"
+
+Configuration saved in optimized/config.json
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+hugging-face-trainer-avia
+
+0
+Mar 24 17:12:02
+completed
+hugging-face-classifier-trainer-optimize
+v3io_user=avia
kind=local
owner=avia
host=jupyter-avia-6454bdd4c5-xz8cg
+
+model_path=store://artifacts/hugging-face-trainer-avia/huggingface-model@514d8d5530c842238b1cc81983cd943e
+
+model
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2024-03-24 17:12:22,721 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-optimize'}
+
+
+
+
+
+
+
+
{'model': 'store://artifacts/hugging-face-trainer-avia/optimized_model@fbee1ead18444824a4b5c0308a677bf4'}
+
+
+
+
+
+
+Running the training remotely
+
+
+
+
/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/mlrun/projects/operations.py:276: OverwriteBuildParamsWarning:
+
+The `overwrite_build_params` parameter default will change from 'False' to 'True' in 1.8.0.
+
+
+
> 2024-03-24 17:14:22,792 [info] Started building image: .mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer:latest
+INFO [0000] Retrieving image manifest mlrun/mlrun:1.6.1
+INFO [0000] Retrieving image mlrun/mlrun:1.6.1 from registry index.docker.io
+INFO [0000] Built cross stage deps: map[]
+INFO [0000] Retrieving image manifest mlrun/mlrun:1.6.1
+INFO [0000] Returning cached image manifest
+INFO [0000] Executing 0 build triggers
+INFO [0000] Building stage 'mlrun/mlrun:1.6.1' [idx: '0', base-idx: '-1']
+INFO [0000] Unpacking rootfs as cmd RUN echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt requires it.
+INFO [0047] RUN echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt
+INFO [0047] Initializing snapshotter ...
+INFO [0047] Taking snapshot of full filesystem...
+INFO [0074] Cmd: /bin/sh
+INFO [0074] Args: [-c echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt]
+INFO [0074] Running: [/bin/sh -c echo 'Installing /empty/requirements.txt...'; cat /empty/requirements.txt]
+Installing /empty/requirements.txt...
+mlrun[complete]==1.6.1
+onnx~=1.14.1
+onnxruntime~=1.16.1
+optimum~=1.6.4
+transformers~=4.26.1
+datasets~=2.10.1
+scikit-learn~=1.0.2
+INFO [0074] Taking snapshot of full filesystem...
+INFO [0078] No files were changed, appending empty layer to config. No layer added to image.
+INFO [0078] RUN python -m pip install -r /empty/requirements.txt
+INFO [0078] Cmd: /bin/sh
+INFO [0078] Args: [-c python -m pip install -r /empty/requirements.txt]
+INFO [0078] Running: [/bin/sh -c python -m pip install -r /empty/requirements.txt]
+Requirement already satisfied: mlrun[complete]==1.6.1 in /opt/conda/lib/python3.9/site-packages (from -r /empty/requirements.txt (line 1)) (1.6.1)
+Collecting onnx~=1.14.1 (from -r /empty/requirements.txt (line 2))
+ Obtaining dependency information for onnx~=1.14.1 from https://files.pythonhosted.org/packages/ff/24/0e522fdcadf0e15fc304145a5b6e5d7246d7f2c507fd9bfe6e1fafb2aa95/onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (15 kB)
+Collecting onnxruntime~=1.16.1 (from -r /empty/requirements.txt (line 3))
+ Obtaining dependency information for onnxruntime~=1.16.1 from https://files.pythonhosted.org/packages/de/ab/ed3ae0d649cee41e870f8b1653cf4a1c1fc321e0ded4e3e1a3d4a25c0131/onnxruntime-1.16.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading onnxruntime-1.16.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.3 kB)
+Collecting optimum~=1.6.4 (from -r /empty/requirements.txt (line 4))
+ Obtaining dependency information for optimum~=1.6.4 from https://files.pythonhosted.org/packages/31/72/a7e3b2c57d6368c5f4bb6fba54a85cbf07d25c385a2db3f1a638f3c0ddb2/optimum-1.6.4-py3-none-any.whl.metadata
+ Downloading optimum-1.6.4-py3-none-any.whl.metadata (17 kB)
+Collecting transformers~=4.26.1 (from -r /empty/requirements.txt (line 5))
+ Obtaining dependency information for transformers~=4.26.1 from https://files.pythonhosted.org/packages/1e/e2/60c3f4691b16d126ee9cfe28f598b13c424b60350ab339aba81aef054b8f/transformers-4.26.1-py3-none-any.whl.metadata
+ Downloading transformers-4.26.1-py3-none-any.whl.metadata (100 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.3/100.3 kB 6.2 MB/s eta 0:00:00
+Collecting datasets~=2.10.1 (from -r /empty/requirements.txt (line 6))
+ Obtaining dependency information for datasets~=2.10.1 from https://files.pythonhosted.org/packages/fe/17/5825fdf034ff1a315becdbb9b6fe5a2bd9d8e724464535f18809593bf9c2/datasets-2.10.1-py3-none-any.whl.metadata
+ Downloading datasets-2.10.1-py3-none-any.whl.metadata (20 kB)
+Collecting scikit-learn~=1.0.2 (from -r /empty/requirements.txt (line 7))
+ Obtaining dependency information for scikit-learn~=1.0.2 from https://files.pythonhosted.org/packages/57/aa/483fbe6b5314bce2d49801e6cec1f2139a9c220d0d51494788fff47233b3/scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (10 kB)
+Requirement already satisfied: urllib3<1.27,>=1.26.9 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.26.18)
+Requirement already satisfied: GitPython>=3.1.41,~=3.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.1.42)
+Requirement already satisfied: aiohttp~=3.9 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.9.3)
+Requirement already satisfied: aiohttp-retry~=2.8 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.3)
+Requirement already satisfied: click~=8.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (8.1.7)
+Requirement already satisfied: kfp~=1.8 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.22)
+Requirement already satisfied: nest-asyncio~=1.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.6.0)
+Requirement already satisfied: ipython~=8.10 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (8.18.1)
+Requirement already satisfied: nuclio-jupyter~=0.9.15 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.16)
+Requirement already satisfied: numpy<1.27.0,>=1.16.5 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.26.4)
+Requirement already satisfied: pandas<2.2,>=1.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1.4)
+Requirement already satisfied: pyarrow<15,>=10.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (14.0.2)
+Requirement already satisfied: pyyaml~=5.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.4.1)
+Requirement already satisfied: requests~=2.31 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.31.0)
+Requirement already satisfied: tabulate~=0.8.6 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.8.10)
+Requirement already satisfied: v3io~=0.5.21 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.23)
+Requirement already satisfied: pydantic>=1.10.8,~=1.10 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.10.14)
+Requirement already satisfied: mergedeep~=1.3 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.4)
+Requirement already satisfied: v3io-frames~=0.10.12 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.10.13)
+Requirement already satisfied: semver~=3.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.2)
+Requirement already satisfied: dependency-injector~=4.41 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.41.0)
+Requirement already satisfied: fsspec==2023.9.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.2)
+Requirement already satisfied: v3iofs~=0.1.17 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.18)
+Requirement already satisfied: storey~=1.6.18 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.6.18)
+Requirement already satisfied: inflection~=0.5.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.1)
+Requirement already satisfied: python-dotenv~=0.17.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.17.1)
+Requirement already satisfied: setuptools~=68.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (68.2.2)
+Requirement already satisfied: deprecated~=1.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.14)
+Requirement already satisfied: jinja2>=3.1.3,~=3.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.1.3)
+Requirement already satisfied: anyio~=3.7 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.7.1)
+Requirement already satisfied: orjson~=3.9 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.9.15)
+Requirement already satisfied: adlfs==2023.9.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.0)
+Requirement already satisfied: aiobotocore<2.8,>=2.5.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.5.4)
+Requirement already satisfied: avro~=1.11 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.11.3)
+Requirement already satisfied: azure-core~=1.24 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.30.0)
+Requirement already satisfied: azure-identity~=1.5 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.15.0)
+Requirement already satisfied: azure-keyvault-secrets~=4.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.8.0)
+Requirement already satisfied: boto3<1.29.0,>=1.28.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.28.17)
+Requirement already satisfied: dask~=2023.9.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.3)
+Requirement already satisfied: databricks-sdk~=0.13.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.13.0)
+Requirement already satisfied: distributed~=2023.9.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.3)
+Requirement already satisfied: gcsfs==2023.9.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.2)
+Requirement already satisfied: google-cloud-bigquery[bqstorage,pandas]==3.14.1 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.14.1)
+Requirement already satisfied: graphviz~=0.20.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.20.1)
+Requirement already satisfied: kafka-python~=2.0 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.2)
+Requirement already satisfied: mlflow~=2.8 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.10.2)
+Requirement already satisfied: msrest~=0.6.21 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.21)
+Requirement already satisfied: plotly<5.12.0,~=5.4 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.11.0)
+Requirement already satisfied: pyopenssl>=23 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (24.0.0)
+Requirement already satisfied: redis~=4.3 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.6.0)
+Requirement already satisfied: s3fs==2023.9.2 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.9.2)
+Requirement already satisfied: sqlalchemy~=1.4 in /opt/conda/lib/python3.9/site-packages (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.51)
+Requirement already satisfied: azure-datalake-store<0.1,>=0.0.46 in /opt/conda/lib/python3.9/site-packages (from adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.0.53)
+Requirement already satisfied: azure-storage-blob>=12.12.0 in /opt/conda/lib/python3.9/site-packages (from adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (12.19.0)
+Requirement already satisfied: decorator>4.1.2 in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.1.1)
+Requirement already satisfied: google-auth>=1.2 in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.28.1)
+Requirement already satisfied: google-auth-oauthlib in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)
+Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.9/site-packages (from gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.14.0)
+Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.17.1)
+Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.6.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.1)
+Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.7.0)
+Requirement already satisfied: packaging>=20.0.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (23.1)
+Requirement already satisfied: python-dateutil<3.0dev,>=2.7.2 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.2)
+Requirement already satisfied: db-dtypes<2.0.0dev,>=0.3.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)
+Requirement already satisfied: google-cloud-bigquery-storage<3.0.0dev,>=2.6.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.24.0)
+Requirement already satisfied: grpcio<2.0dev,>=1.47.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.62.0)
+Requirement already satisfied: protobuf>=3.20.2 in /opt/conda/lib/python3.9/site-packages (from onnx~=1.14.1->-r /empty/requirements.txt (line 2)) (3.20.3)
+Requirement already satisfied: typing-extensions>=3.6.2.1 in /opt/conda/lib/python3.9/site-packages (from onnx~=1.14.1->-r /empty/requirements.txt (line 2)) (4.10.0)
+Collecting coloredlogs (from onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))
+ Obtaining dependency information for coloredlogs from https://files.pythonhosted.org/packages/a7/06/3d6badcf13db419e25b07041d9c7b4a2c331d3f4e7134445ec5df57714cd/coloredlogs-15.0.1-py2.py3-none-any.whl.metadata
+ Downloading coloredlogs-15.0.1-py2.py3-none-any.whl.metadata (12 kB)
+Collecting flatbuffers (from onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))
+ Obtaining dependency information for flatbuffers from https://files.pythonhosted.org/packages/bf/45/c961e3cb6ddad76b325c163d730562bb6deb1ace5acbed0306f5fbefb90e/flatbuffers-24.3.7-py2.py3-none-any.whl.metadata
+ Downloading flatbuffers-24.3.7-py2.py3-none-any.whl.metadata (849 bytes)
+Collecting sympy (from onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))
+ Obtaining dependency information for sympy from https://files.pythonhosted.org/packages/d2/05/e6600db80270777c4a64238a98d442f0fd07cc8915be2a1c16da7f2b9e74/sympy-1.12-py3-none-any.whl.metadata
+ Downloading sympy-1.12-py3-none-any.whl.metadata (12 kB)
+Collecting transformers[sentencepiece]>=4.26.0 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/0a/fd/280f4385e76f3c1890efc15fa93f7206134fefad6351397e1bfab6d0d0de/transformers-4.39.1-py3-none-any.whl.metadata
+ Downloading transformers-4.39.1-py3-none-any.whl.metadata (134 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 134.8/134.8 kB 40.1 MB/s eta 0:00:00
+Collecting torch>=1.9 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for torch>=1.9 from https://files.pythonhosted.org/packages/98/04/95a12556d068786d6505c609daf2805bed91c9210c5185499a7c121eba47/torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl.metadata
+ Downloading torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl.metadata (25 kB)
+Collecting numpy<1.27.0,>=1.16.5 (from mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1))
+ Obtaining dependency information for numpy<1.27.0,>=1.16.5 from https://files.pythonhosted.org/packages/4c/b9/038abd6fbd67b05b03cb1af590cfc02b7f1e5a37af7ac6a868f5093c29f5/numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.3 kB)
+Collecting huggingface-hub>=0.8.0 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for huggingface-hub>=0.8.0 from https://files.pythonhosted.org/packages/ab/28/d4b691840d73126d4c9845f8a22dad033ac872509b6d3a0d93b456eef424/huggingface_hub-0.21.4-py3-none-any.whl.metadata
+ Downloading huggingface_hub-0.21.4-py3-none-any.whl.metadata (13 kB)
+Collecting filelock (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))
+ Obtaining dependency information for filelock from https://files.pythonhosted.org/packages/81/54/84d42a0bee35edba99dee7b59a8d4970eccdd44b99fe728ed912106fc781/filelock-3.13.1-py3-none-any.whl.metadata
+ Downloading filelock-3.13.1-py3-none-any.whl.metadata (2.8 kB)
+Collecting regex!=2019.12.17 (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))
+ Obtaining dependency information for regex!=2019.12.17 from https://files.pythonhosted.org/packages/05/9e/80c20f1151432a6025690c9c2037053039b028a7b236fa81d7e7ac9dec60/regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 40.9/40.9 kB 217.5 MB/s eta 0:00:00
+Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))
+ Obtaining dependency information for tokenizers!=0.11.3,<0.14,>=0.11.1 from https://files.pythonhosted.org/packages/d6/27/07a337087dd507170a1b20fed3bbf8da81401185a7130a6e74e440c52040/tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)
+Requirement already satisfied: tqdm>=4.27 in /opt/conda/lib/python3.9/site-packages (from transformers~=4.26.1->-r /empty/requirements.txt (line 5)) (4.65.0)
+Collecting dill<0.3.7,>=0.3.0 (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))
+ Obtaining dependency information for dill<0.3.7,>=0.3.0 from https://files.pythonhosted.org/packages/be/e3/a84bf2e561beed15813080d693b4b27573262433fced9c1d1fea59e60553/dill-0.3.6-py3-none-any.whl.metadata
+ Downloading dill-0.3.6-py3-none-any.whl.metadata (9.8 kB)
+Requirement already satisfied: xxhash in /opt/conda/lib/python3.9/site-packages (from datasets~=2.10.1->-r /empty/requirements.txt (line 6)) (3.4.1)
+Collecting multiprocess (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))
+ Obtaining dependency information for multiprocess from https://files.pythonhosted.org/packages/da/d9/f7f9379981e39b8c2511c9e0326d212accacb82f12fbfdc1aa2ce2a7b2b6/multiprocess-0.70.16-py39-none-any.whl.metadata
+ Downloading multiprocess-0.70.16-py39-none-any.whl.metadata (7.2 kB)
+Collecting responses<0.19 (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))
+ Obtaining dependency information for responses<0.19 from https://files.pythonhosted.org/packages/79/f3/2b3a6dc5986303b3dd1bbbcf482022acb2583c428cd23f0b6d37b1a1a519/responses-0.18.0-py3-none-any.whl.metadata
+ Downloading responses-0.18.0-py3-none-any.whl.metadata (29 kB)
+Requirement already satisfied: scipy>=1.1.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r /empty/requirements.txt (line 7)) (1.12.0)
+Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r /empty/requirements.txt (line 7)) (1.3.2)
+Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from scikit-learn~=1.0.2->-r /empty/requirements.txt (line 7)) (3.3.0)
+Requirement already satisfied: botocore<1.31.18,>=1.31.17 in /opt/conda/lib/python3.9/site-packages (from aiobotocore<2.8,>=2.5.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.31.17)
+Requirement already satisfied: wrapt<2.0.0,>=1.10.10 in /opt/conda/lib/python3.9/site-packages (from aiobotocore<2.8,>=2.5.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.16.0)
+Requirement already satisfied: aioitertools<1.0.0,>=0.5.1 in /opt/conda/lib/python3.9/site-packages (from aiobotocore<2.8,>=2.5.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.11.0)
+Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.1)
+Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (23.2.0)
+Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.1)
+Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.0.5)
+Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.9.4)
+Requirement already satisfied: async-timeout<5.0,>=4.0 in /opt/conda/lib/python3.9/site-packages (from aiohttp~=3.9->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.0.3)
+Requirement already satisfied: idna>=2.8 in /opt/conda/lib/python3.9/site-packages (from anyio~=3.7->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.4)
+Requirement already satisfied: sniffio>=1.1 in /opt/conda/lib/python3.9/site-packages (from anyio~=3.7->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.1)
+Requirement already satisfied: exceptiongroup in /opt/conda/lib/python3.9/site-packages (from anyio~=3.7->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)
+Requirement already satisfied: six>=1.11.0 in /opt/conda/lib/python3.9/site-packages (from azure-core~=1.24->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.16.0)
+Requirement already satisfied: cryptography>=2.5 in /opt/conda/lib/python3.9/site-packages (from azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (42.0.2)
+Requirement already satisfied: msal<2.0.0,>=1.24.0 in /opt/conda/lib/python3.9/site-packages (from azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.27.0)
+Requirement already satisfied: msal-extensions<2.0.0,>=0.3.0 in /opt/conda/lib/python3.9/site-packages (from azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.1.0)
+Requirement already satisfied: isodate>=0.6.1 in /opt/conda/lib/python3.9/site-packages (from azure-keyvault-secrets~=4.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.1)
+Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /opt/conda/lib/python3.9/site-packages (from boto3<1.29.0,>=1.28.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.1)
+Requirement already satisfied: s3transfer<0.7.0,>=0.6.0 in /opt/conda/lib/python3.9/site-packages (from boto3<1.29.0,>=1.28.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.2)
+Requirement already satisfied: cloudpickle>=1.5.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.2.1)
+Requirement already satisfied: partd>=1.2.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.1)
+Requirement already satisfied: toolz>=0.10.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.12.0)
+Requirement already satisfied: importlib-metadata>=4.13.0 in /opt/conda/lib/python3.9/site-packages (from dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.0.1)
+Requirement already satisfied: locket>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.0)
+Requirement already satisfied: msgpack>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.7)
+Requirement already satisfied: psutil>=5.7.2 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.9.8)
+Requirement already satisfied: sortedcontainers>=2.0.5 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.0)
+Requirement already satisfied: tblib>=1.6.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.0)
+Requirement already satisfied: tornado>=6.0.4 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.4)
+Requirement already satisfied: zict>=3.0.0 in /opt/conda/lib/python3.9/site-packages (from distributed~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.0)
+Requirement already satisfied: gitdb<5,>=4.0.1 in /opt/conda/lib/python3.9/site-packages (from GitPython>=3.1.41,~=3.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.0.11)
+Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.19.1)
+Requirement already satisfied: matplotlib-inline in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.6)
+Requirement already satisfied: prompt-toolkit<3.1.0,>=3.0.41 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.43)
+Requirement already satisfied: pygments>=2.4.0 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.17.2)
+Requirement already satisfied: stack-data in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.6.3)
+Requirement already satisfied: traitlets>=5 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.14.1)
+Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.9/site-packages (from ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.9.0)
+Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.9/site-packages (from jinja2>=3.1.3,~=3.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1.5)
+Requirement already satisfied: absl-py<2,>=0.9 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.0)
+Requirement already satisfied: kubernetes<26,>=8.0.0 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (25.3.0)
+Requirement already satisfied: google-api-python-client<2,>=1.7.8 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.12.11)
+Requirement already satisfied: requests-toolbelt<1,>=0.8.0 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.10.1)
+Requirement already satisfied: kfp-server-api<2.0.0,>=1.1.2 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.5)
+Requirement already satisfied: jsonschema<5,>=3.0.1 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.21.1)
+Requirement already satisfied: strip-hints<1,>=0.1.8 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.10)
+Requirement already satisfied: docstring-parser<1,>=0.7.3 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.15)
+Requirement already satisfied: kfp-pipeline-spec<0.2.0,>=0.1.16 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.16)
+Requirement already satisfied: fire<1,>=0.3.1 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.0)
+Requirement already satisfied: uritemplate<4,>=3.0.1 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.1)
+Requirement already satisfied: typer<1.0,>=0.3.2 in /opt/conda/lib/python3.9/site-packages (from kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.0)
+Requirement already satisfied: entrypoints<1 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.4)
+Requirement already satisfied: pytz<2024 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.4)
+Requirement already satisfied: sqlparse<1,>=0.4.0 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.4.4)
+Requirement already satisfied: alembic!=1.10.0,<2 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.13.1)
+Requirement already satisfied: docker<8,>=4.0.0 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.0.0)
+Requirement already satisfied: Flask<4 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.2)
+Requirement already satisfied: querystring-parser<2 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.4)
+Requirement already satisfied: markdown<4,>=3.3 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.5.2)
+Requirement already satisfied: matplotlib<4 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.8.3)
+Requirement already satisfied: gunicorn<22 in /opt/conda/lib/python3.9/site-packages (from mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (21.2.0)
+Requirement already satisfied: requests-oauthlib>=0.5.0 in /opt/conda/lib/python3.9/site-packages (from msrest~=0.6.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.1)
+Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.9/site-packages (from msrest~=0.6.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2024.2.2)
+Requirement already satisfied: nbconvert>=6.4.5 in /opt/conda/lib/python3.9/site-packages (from nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.16.1)
+Requirement already satisfied: notebook<7.0.0,>=6.4 in /opt/conda/lib/python3.9/site-packages (from nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.5.6)
+Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.9/site-packages (from pandas<2.2,>=1.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2024.1)
+Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/lib/python3.9/site-packages (from plotly<5.12.0,~=5.4->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (8.2.3)
+Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.9/site-packages (from requests~=2.31->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.4)
+Requirement already satisfied: greenlet!=0.4.17 in /opt/conda/lib/python3.9/site-packages (from sqlalchemy~=1.4->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.3)
+Requirement already satisfied: nuclio-sdk>=0.5.3 in /opt/conda/lib/python3.9/site-packages (from storey~=1.6.18->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.9)
+Collecting networkx (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for networkx from https://files.pythonhosted.org/packages/d5/f0/8fbc882ca80cf077f1b246c0e3c3465f7f415439bdea6b899f6b19f61f70/networkx-3.2.1-py3-none-any.whl.metadata
+ Downloading networkx-3.2.1-py3-none-any.whl.metadata (5.2 kB)
+Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cuda-nvrtc-cu12==12.1.105 from https://files.pythonhosted.org/packages/b6/9f/c64c03f49d6fbc56196664d05dba14e3a561038a81a638eeb47f4d4cfd48/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)
+Collecting nvidia-cuda-runtime-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cuda-runtime-cu12==12.1.105 from https://files.pythonhosted.org/packages/eb/d5/c68b1d2cdfcc59e72e8a5949a37ddb22ae6cade80cd4a57a84d4c8b55472/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)
+Collecting nvidia-cuda-cupti-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cuda-cupti-cu12==12.1.105 from https://files.pythonhosted.org/packages/7e/00/6b218edd739ecfc60524e585ba8e6b00554dd908de2c9c66c1af3e44e18d/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)
+Collecting nvidia-cudnn-cu12==8.9.2.26 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cudnn-cu12==8.9.2.26 from https://files.pythonhosted.org/packages/ff/74/a2e2be7fb83aaedec84f391f082cf765dfb635e7caa9b49065f73e4835d8/nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)
+Collecting nvidia-cublas-cu12==12.1.3.1 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cublas-cu12==12.1.3.1 from https://files.pythonhosted.org/packages/37/6d/121efd7382d5b0284239f4ab1fc1590d86d34ed4a4a2fdb13b30ca8e5740/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)
+Collecting nvidia-cufft-cu12==11.0.2.54 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cufft-cu12==11.0.2.54 from https://files.pythonhosted.org/packages/86/94/eb540db023ce1d162e7bea9f8f5aa781d57c65aed513c33ee9a5123ead4d/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)
+Collecting nvidia-curand-cu12==10.3.2.106 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-curand-cu12==10.3.2.106 from https://files.pythonhosted.org/packages/44/31/4890b1c9abc496303412947fc7dcea3d14861720642b49e8ceed89636705/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)
+Collecting nvidia-cusolver-cu12==11.4.5.107 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cusolver-cu12==11.4.5.107 from https://files.pythonhosted.org/packages/bc/1d/8de1e5c67099015c834315e333911273a8c6aaba78923dd1d1e25fc5f217/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)
+Collecting nvidia-cusparse-cu12==12.1.0.106 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-cusparse-cu12==12.1.0.106 from https://files.pythonhosted.org/packages/65/5b/cfaeebf25cd9fdec14338ccb16f6b2c4c7fa9163aefcf057d86b9cc248bb/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)
+Collecting nvidia-nccl-cu12==2.19.3 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-nccl-cu12==2.19.3 from https://files.pythonhosted.org/packages/38/00/d0d4e48aef772ad5aebcf70b73028f88db6e5640b36c38e90445b7a57c45/nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl.metadata (1.8 kB)
+Collecting nvidia-nvtx-cu12==12.1.105 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-nvtx-cu12==12.1.105 from https://files.pythonhosted.org/packages/da/d3/8057f0587683ed2fcd4dbfbdfdfa807b9160b809976099d36b8f60d08f03/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata
+ Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl.metadata (1.7 kB)
+Collecting triton==2.2.0 (from torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for triton==2.2.0 from https://files.pythonhosted.org/packages/6a/5c/01d9f062f719581cf6e60053e1a005d666ec67dcb59630fffaa3a3e5c9d8/triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (1.4 kB)
+Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.9->optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for nvidia-nvjitlink-cu12 from https://files.pythonhosted.org/packages/58/d1/d1c80553f9d5d07b6072bc132607d75a0ef3600e28e1890e11c0f55d7346/nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl.metadata
+ Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)
+INFO: pip is looking at multiple versions of transformers[sentencepiece] to determine which version is compatible with other requirements. This could take a while.
+Collecting transformers[sentencepiece]>=4.26.0 (from optimum~=1.6.4->-r /empty/requirements.txt (line 4))
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/a4/73/f620d76193954e16db3d5c53a07d956d7b9c800e570758d3bff91906d4a4/transformers-4.39.0-py3-none-any.whl.metadata
+ Downloading transformers-4.39.0-py3-none-any.whl.metadata (134 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 134.8/134.8 kB 115.9 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/b6/4d/fbe6d89fde59d8107f0a02816c4ac4542a8f9a85559fdf33c68282affcc1/transformers-4.38.2-py3-none-any.whl.metadata
+ Downloading transformers-4.38.2-py3-none-any.whl.metadata (130 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 130.7/130.7 kB 126.3 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/3e/6b/1b589f7b69aaea8193cf5bc91cf97410284aecd97b6312cdb08baedbdffe/transformers-4.38.1-py3-none-any.whl.metadata
+ Downloading transformers-4.38.1-py3-none-any.whl.metadata (131 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 131.1/131.1 kB 138.2 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/91/89/5416dc364c7ef0711c564fd61a69b03d1e40eeb5c506c38e53ba8a969e79/transformers-4.38.0-py3-none-any.whl.metadata
+ Downloading transformers-4.38.0-py3-none-any.whl.metadata (131 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 131.1/131.1 kB 186.3 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/85/f6/c5065913119c41ecad148c34e3a861f719e16b89a522287213698da911fc/transformers-4.37.2-py3-none-any.whl.metadata
+ Downloading transformers-4.37.2-py3-none-any.whl.metadata (129 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 236.8 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/ad/67/b4d6a51dcaf988cb45b31e26c6e33fb169fe34ba5fb168b086309bd7c028/transformers-4.37.1-py3-none-any.whl.metadata
+ Downloading transformers-4.37.1-py3-none-any.whl.metadata (129 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 156.4 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/3c/45/52133ce6bce49a099cc865599803bf1fad93de887276f728e56848d77a70/transformers-4.37.0-py3-none-any.whl.metadata
+ Downloading transformers-4.37.0-py3-none-any.whl.metadata (129 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 129.4/129.4 kB 102.0 MB/s eta 0:00:00
+INFO: pip is still looking at multiple versions of transformers[sentencepiece] to determine which version is compatible with other requirements. This could take a while.
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/20/0a/739426a81f7635b422fbe6cb8d1d99d1235579a6ac8024c13d743efa6847/transformers-4.36.2-py3-none-any.whl.metadata
+ Downloading transformers-4.36.2-py3-none-any.whl.metadata (126 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.8/126.8 kB 108.8 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/fc/04/0aad491cd98b09236c54ab849863ee85421eeda5138bbf9d33ecc594652b/transformers-4.36.1-py3-none-any.whl.metadata
+ Downloading transformers-4.36.1-py3-none-any.whl.metadata (126 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.8/126.8 kB 140.6 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/0f/12/d8e27a190ca67811f81deea3183b528d9169f10b74d827e0b9211520ecfa/transformers-4.36.0-py3-none-any.whl.metadata
+ Downloading transformers-4.36.0-py3-none-any.whl.metadata (126 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 126.8/126.8 kB 267.8 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/12/dd/f17b11a93a9ca27728e12512d167eb1281c151c4c6881d3ab59eb58f4127/transformers-4.35.2-py3-none-any.whl.metadata
+ Downloading transformers-4.35.2-py3-none-any.whl.metadata (123 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.5/123.5 kB 130.2 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/92/ba/cfff7e01f7070d9fca3964bf42b2257b86964c3e6763b8d5435436cc1d77/transformers-4.35.1-py3-none-any.whl.metadata
+ Downloading transformers-4.35.1-py3-none-any.whl.metadata (123 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.1/123.1 kB 183.6 MB/s eta 0:00:00
+INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/9a/06/e4ec2a321e57c03b7e9345d709d554a52c33760e5015fdff0919d9459af0/transformers-4.35.0-py3-none-any.whl.metadata
+ Downloading transformers-4.35.0-py3-none-any.whl.metadata (123 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 123.1/123.1 kB 177.3 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/c1/bd/f64d67df4d3b05a460f281defe830ffab6d7940b7ca98ec085e94e024781/transformers-4.34.1-py3-none-any.whl.metadata
+ Downloading transformers-4.34.1-py3-none-any.whl.metadata (121 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.5/121.5 kB 270.5 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/1a/d1/3bba59606141ae808017f6fde91453882f931957f125009417b87a281067/transformers-4.34.0-py3-none-any.whl.metadata
+ Downloading transformers-4.34.0-py3-none-any.whl.metadata (121 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.5/121.5 kB 133.4 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/98/46/f6a79f944d5c7763a9bc13b2aa6ac72daf43a6551f5fb03bccf0a9c2fec1/transformers-4.33.3-py3-none-any.whl.metadata
+ Downloading transformers-4.33.3-py3-none-any.whl.metadata (119 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 163.1 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/1a/06/3817f9bb923437ead9a794f0ac0d03b8b5e0478ab112db4c413dd37c09da/transformers-4.33.2-py3-none-any.whl.metadata
+ Downloading transformers-4.33.2-py3-none-any.whl.metadata (119 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 274.9 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/13/30/54b59e73400df3de506ad8630284e9fd63f4b94f735423d55fc342181037/transformers-4.33.1-py3-none-any.whl.metadata
+ Downloading transformers-4.33.1-py3-none-any.whl.metadata (119 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 274.2 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/e1/9d/4d9fe5c3b820db10773392ac5f4a0c8dab668f70b245ce2ce09785166128/transformers-4.33.0-py3-none-any.whl.metadata
+ Downloading transformers-4.33.0-py3-none-any.whl.metadata (119 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 119.9/119.9 kB 185.9 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/83/8d/f65f8138365462ace54458a9e164f4b28ce1141361970190eef36bdef986/transformers-4.32.1-py3-none-any.whl.metadata
+ Downloading transformers-4.32.1-py3-none-any.whl.metadata (118 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 118.5/118.5 kB 144.4 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/ae/95/283a1c004430bd2a9425d6937fc545dd49a4e4592feb76be0299a14e2378/transformers-4.32.0-py3-none-any.whl.metadata
+ Downloading transformers-4.32.0-py3-none-any.whl.metadata (118 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 118.5/118.5 kB 150.3 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/21/02/ae8e595f45b6c8edee07913892b3b41f5f5f273962ad98851dc6a564bbb9/transformers-4.31.0-py3-none-any.whl.metadata
+ Downloading transformers-4.31.0-py3-none-any.whl.metadata (116 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 116.9/116.9 kB 156.7 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/5b/0b/e45d26ccd28568013523e04f325432ea88a442b4e3020b757cf4361f0120/transformers-4.30.2-py3-none-any.whl.metadata
+ Downloading transformers-4.30.2-py3-none-any.whl.metadata (113 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 113.6/113.6 kB 263.7 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/b8/df/b01b5e67cde3883757c9212455cbb9169385dcab5858b7172199126b756d/transformers-4.30.1-py3-none-any.whl.metadata
+ Downloading transformers-4.30.1-py3-none-any.whl.metadata (113 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 113.6/113.6 kB 263.8 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/e2/72/1af3d38e98fdcceb3876de4567ac395a66c26976e259fe2d46266e052d61/transformers-4.30.0-py3-none-any.whl.metadata
+ Downloading transformers-4.30.0-py3-none-any.whl.metadata (113 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 113.6/113.6 kB 266.5 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/17/aa/a89864288afe45abe1ab79f002140a20348140e86836d96096d8f8a3bac0/transformers-4.29.2-py3-none-any.whl.metadata
+ Downloading transformers-4.29.2-py3-none-any.whl.metadata (112 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 112.3/112.3 kB 272.7 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/e8/b5/ddb16f9de207e6571ab7cc5db0cc538fa2d6d91cf024565496462af4c1ce/transformers-4.29.1-py3-none-any.whl.metadata
+ Downloading transformers-4.29.1-py3-none-any.whl.metadata (112 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 112.3/112.3 kB 262.3 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/45/e4/4914b11df70954d95a7c36b74bf9010c8594fcec960471479449b0deb4f7/transformers-4.29.0-py3-none-any.whl.metadata
+ Downloading transformers-4.29.0-py3-none-any.whl.metadata (111 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 111.9/111.9 kB 269.5 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/d8/a7/a6ff727fd5d96d6625f4658944a2ae230f0c75743a9a117fbda013b03d3d/transformers-4.28.1-py3-none-any.whl.metadata
+ Downloading transformers-4.28.1-py3-none-any.whl.metadata (109 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 110.0/110.0 kB 245.6 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/8b/13/1ce598763b3669d43f192a7911bf2bf730a328012ab8801b93187a4f70d0/transformers-4.28.0-py3-none-any.whl.metadata
+ Downloading transformers-4.28.0-py3-none-any.whl.metadata (109 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 110.0/110.0 kB 256.3 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/87/f0/2a152ed10ab8601431e87a606d397f7473c5fa4f8162f4ec5bda6ddb2df4/transformers-4.27.4-py3-none-any.whl.metadata
+ Downloading transformers-4.27.4-py3-none-any.whl.metadata (106 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 254.4 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/52/ac/9dc5a17ba60bc354d99250d9d1629f99d76f6729cee438fa91c8cc74bc5d/transformers-4.27.3-py3-none-any.whl.metadata
+ Downloading transformers-4.27.3-py3-none-any.whl.metadata (106 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 251.5 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/73/f0/4a795505387a3e7cd7f0c2a2a87f876658f9a07947a38fb67bffceff9246/transformers-4.27.2-py3-none-any.whl.metadata
+ Downloading transformers-4.27.2-py3-none-any.whl.metadata (106 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 246.1 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/6d/9b/2f536f9e73390209e0b27b74691355dac494b7ec8154f3012fdc6debbae7/transformers-4.27.1-py3-none-any.whl.metadata
+ Downloading transformers-4.27.1-py3-none-any.whl.metadata (106 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 114.0 MB/s eta 0:00:00
+ Obtaining dependency information for transformers[sentencepiece]>=4.26.0 from https://files.pythonhosted.org/packages/4d/3e/1378ed266cf991f5ab5fcb29e953d97d793c7f9242ea5dc52f856415ea3a/transformers-4.27.0-py3-none-any.whl.metadata
+ Downloading transformers-4.27.0-py3-none-any.whl.metadata (106 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.7/106.7 kB 247.2 MB/s eta 0:00:00
+Collecting sentencepiece!=0.1.92,>=0.1.91 (from transformers~=4.26.1->-r /empty/requirements.txt (line 5))
+ Obtaining dependency information for sentencepiece!=0.1.92,>=0.1.91 from https://files.pythonhosted.org/packages/5f/01/c95e42eb86282b2c79305d3e0b0ca5a743f85a61262bb7130999c70b9374/sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
+ Downloading sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.7 kB)
+Collecting protobuf>=3.20.2 (from onnx~=1.14.1->-r /empty/requirements.txt (line 2))
+ Obtaining dependency information for protobuf>=3.20.2 from https://files.pythonhosted.org/packages/38/b1/d9b615dceb67ac38e13cbd7680c27182b40154996022cbb244ba1ac7d30f/protobuf-3.20.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.metadata
+ Downloading protobuf-3.20.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.metadata (679 bytes)
+Requirement already satisfied: future>=0.18.2 in /opt/conda/lib/python3.9/site-packages (from v3io~=0.5.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.0)
+Requirement already satisfied: ujson>=3 in /opt/conda/lib/python3.9/site-packages (from v3io~=0.5.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.9.0)
+Requirement already satisfied: googleapis-common-protos>=1.5.3 in /opt/conda/lib/python3.9/site-packages (from v3io-frames~=0.10.12->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.62.0)
+Requirement already satisfied: grpcio-tools!=1.34.0,<1.49,>=1.30 in /opt/conda/lib/python3.9/site-packages (from v3io-frames~=0.10.12->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.48.2)
+Collecting humanfriendly>=9.1 (from coloredlogs->onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))
+ Obtaining dependency information for humanfriendly>=9.1 from https://files.pythonhosted.org/packages/f0/0f/310fb31e39e2d734ccaa2c0fb981ee41f7bd5056ce9bc29b2248bd569169/humanfriendly-10.0-py2.py3-none-any.whl.metadata
+ Downloading humanfriendly-10.0-py2.py3-none-any.whl.metadata (9.2 kB)
+INFO: pip is looking at multiple versions of multiprocess to determine which version is compatible with other requirements. This could take a while.
+Collecting multiprocess (from datasets~=2.10.1->-r /empty/requirements.txt (line 6))
+ Obtaining dependency information for multiprocess from https://files.pythonhosted.org/packages/c6/c9/820b5ab056f4ada76fbe05bd481a948f287957d6cbfd59e2dd2618b408c1/multiprocess-0.70.15-py39-none-any.whl.metadata
+ Downloading multiprocess-0.70.15-py39-none-any.whl.metadata (7.2 kB)
+ Obtaining dependency information for multiprocess from https://files.pythonhosted.org/packages/6a/f4/fbeb03ef7abdda54db4a6a75c971b88ab73d724ff09e3275cc1e99f1c946/multiprocess-0.70.14-py39-none-any.whl.metadata
+ Downloading multiprocess-0.70.14-py39-none-any.whl.metadata (6.6 kB)
+Collecting mpmath>=0.19 (from sympy->onnxruntime~=1.16.1->-r /empty/requirements.txt (line 3))
+ Obtaining dependency information for mpmath>=0.19 from https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl.metadata
+ Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)
+Requirement already satisfied: Mako in /opt/conda/lib/python3.9/site-packages (from alembic!=1.10.0,<2->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.2)
+Requirement already satisfied: cffi in /opt/conda/lib/python3.9/site-packages (from azure-datalake-store<0.1,>=0.0.46->adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.16.0)
+Requirement already satisfied: termcolor in /opt/conda/lib/python3.9/site-packages (from fire<1,>=0.3.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.0)
+Requirement already satisfied: Werkzeug>=3.0.0 in /opt/conda/lib/python3.9/site-packages (from Flask<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.1)
+Requirement already satisfied: itsdangerous>=2.1.2 in /opt/conda/lib/python3.9/site-packages (from Flask<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1.2)
+Requirement already satisfied: blinker>=1.6.2 in /opt/conda/lib/python3.9/site-packages (from Flask<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.7.0)
+Requirement already satisfied: smmap<6,>=3.0.1 in /opt/conda/lib/python3.9/site-packages (from gitdb<5,>=4.0.1->GitPython>=3.1.41,~=3.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.0.1)
+Requirement already satisfied: httplib2<1dev,>=0.15.0 in /opt/conda/lib/python3.9/site-packages (from google-api-python-client<2,>=1.7.8->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.22.0)
+Requirement already satisfied: google-auth-httplib2>=0.0.3 in /opt/conda/lib/python3.9/site-packages (from google-api-python-client<2,>=1.7.8->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.0)
+Requirement already satisfied: cachetools<6.0,>=2.0.0 in /opt/conda/lib/python3.9/site-packages (from google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.3.3)
+Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.9/site-packages (from google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.3.0)
+Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.9/site-packages (from google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.9)
+Requirement already satisfied: proto-plus<2.0.0dev,>=1.22.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-bigquery-storage<3.0.0dev,>=2.6.0->google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.23.0)
+Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.9/site-packages (from google-cloud-storage->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.5.0)
+Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.9/site-packages (from importlib-metadata>=4.13.0->dask~=2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.17.0)
+Requirement already satisfied: parso<0.9.0,>=0.8.3 in /opt/conda/lib/python3.9/site-packages (from jedi>=0.16->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.8.3)
+Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2023.12.1)
+Requirement already satisfied: referencing>=0.28.4 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.33.0)
+Requirement already satisfied: rpds-py>=0.7.1 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.18.0)
+Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /opt/conda/lib/python3.9/site-packages (from kubernetes<26,>=8.0.0->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.7.0)
+Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.0)
+Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.12.1)
+Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.49.0)
+Requirement already satisfied: kiwisolver>=1.3.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.4.5)
+Requirement already satisfied: pillow>=8 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (10.2.0)
+Requirement already satisfied: pyparsing>=2.3.1 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.1.1)
+Requirement already satisfied: importlib-resources>=3.2.0 in /opt/conda/lib/python3.9/site-packages (from matplotlib<4->mlflow~=2.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.1.2)
+Requirement already satisfied: PyJWT[crypto]<3,>=1.0.0 in /opt/conda/lib/python3.9/site-packages (from msal<2.0.0,>=1.24.0->azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.0)
+Requirement already satisfied: portalocker<3,>=1.0 in /opt/conda/lib/python3.9/site-packages (from msal-extensions<2.0.0,>=0.3.0->azure-identity~=1.5->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.2)
+Requirement already satisfied: beautifulsoup4 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (4.12.3)
+Requirement already satisfied: bleach!=5.0.0 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.1.0)
+Requirement already satisfied: defusedxml in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.7.1)
+Requirement already satisfied: jupyter-core>=4.7 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.7.1)
+Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.3.0)
+Requirement already satisfied: mistune<4,>=2.0.3 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.0.2)
+Requirement already satisfied: nbclient>=0.5.0 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.0)
+Requirement already satisfied: nbformat>=5.7 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (5.9.2)
+Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.5.1)
+Requirement already satisfied: tinycss2 in /opt/conda/lib/python3.9/site-packages (from nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.2.1)
+Requirement already satisfied: pyzmq<25,>=17 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (24.0.1)
+Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (23.1.0)
+Requirement already satisfied: jupyter-client<8,>=5.3.4 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.4.9)
+Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.0)
+Requirement already satisfied: ipykernel in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (6.29.3)
+Requirement already satisfied: Send2Trash>=1.8.0 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.2)
+Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.18.0)
+Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.20.0)
+Requirement already satisfied: nbclassic>=0.4.7 in /opt/conda/lib/python3.9/site-packages (from notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.0.0)
+Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.9/site-packages (from pexpect>4.3->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.7.0)
+Requirement already satisfied: wcwidth in /opt/conda/lib/python3.9/site-packages (from prompt-toolkit<3.1.0,>=3.0.41->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.13)
+Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.9/site-packages (from requests-oauthlib>=0.5.0->msrest~=0.6.21->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.2.2)
+Requirement already satisfied: wheel in /opt/conda/lib/python3.9/site-packages (from strip-hints<1,>=0.1.8->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.41.2)
+Requirement already satisfied: executing>=1.2.0 in /opt/conda/lib/python3.9/site-packages (from stack-data->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.1)
+Requirement already satisfied: asttokens>=2.1.0 in /opt/conda/lib/python3.9/site-packages (from stack-data->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.4.1)
+Requirement already satisfied: pure-eval in /opt/conda/lib/python3.9/site-packages (from stack-data->ipython~=8.10->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.2)
+Requirement already satisfied: webencodings in /opt/conda/lib/python3.9/site-packages (from bleach!=5.0.0->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.1)
+Requirement already satisfied: pycparser in /opt/conda/lib/python3.9/site-packages (from cffi->azure-datalake-store<0.1,>=0.0.46->adlfs==2023.9.0->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.21)
+Requirement already satisfied: grpcio-status<2.0.dev0,>=1.33.2 in /opt/conda/lib/python3.9/site-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-cloud-bigquery[bqstorage,pandas]==3.14.1->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.48.2)
+Requirement already satisfied: platformdirs>=2.5 in /opt/conda/lib/python3.9/site-packages (from jupyter-core>=4.7->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (3.10.0)
+Requirement already satisfied: jupyter-server>=1.8 in /opt/conda/lib/python3.9/site-packages (from nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.12.5)
+Requirement already satisfied: notebook-shim>=0.2.3 in /opt/conda/lib/python3.9/site-packages (from nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.4)
+Requirement already satisfied: fastjsonschema in /opt/conda/lib/python3.9/site-packages (from nbformat>=5.7->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.19.1)
+Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /opt/conda/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth>=1.2->gcsfs==2023.9.2->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.1)
+Requirement already satisfied: argon2-cffi-bindings in /opt/conda/lib/python3.9/site-packages (from argon2-cffi->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (21.2.0)
+Requirement already satisfied: soupsieve>1.2 in /opt/conda/lib/python3.9/site-packages (from beautifulsoup4->nbconvert>=6.4.5->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.5)
+Requirement already satisfied: comm>=0.1.1 in /opt/conda/lib/python3.9/site-packages (from ipykernel->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.2.1)
+Requirement already satisfied: debugpy>=1.6.5 in /opt/conda/lib/python3.9/site-packages (from ipykernel->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.8.1)
+Requirement already satisfied: jupyter-events>=0.9.0 in /opt/conda/lib/python3.9/site-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.9.0)
+Requirement already satisfied: jupyter-server-terminals in /opt/conda/lib/python3.9/site-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.5.2)
+Requirement already satisfied: overrides in /opt/conda/lib/python3.9/site-packages (from jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (7.7.0)
+Requirement already satisfied: python-json-logger>=2.0.4 in /opt/conda/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.0.7)
+Requirement already satisfied: rfc3339-validator in /opt/conda/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.4)
+Requirement already satisfied: rfc3986-validator>=0.1.1 in /opt/conda/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server>=1.8->nbclassic>=0.4.7->notebook<7.0.0,>=6.4->nuclio-jupyter~=0.9.15->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (0.1.1)
+Requirement already satisfied: fqdn in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.5.1)
+Requirement already satisfied: isoduration in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (20.11.0)
+Requirement already satisfied: jsonpointer>1.13 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.1)
+Requirement already satisfied: uri-template in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.0)
+Requirement already satisfied: webcolors>=1.11 in /opt/conda/lib/python3.9/site-packages (from jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.13)
+Requirement already satisfied: arrow>=0.15.0 in /opt/conda/lib/python3.9/site-packages (from isoduration->jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (1.3.0)
+Requirement already satisfied: types-python-dateutil>=2.8.10 in /opt/conda/lib/python3.9/site-packages (from arrow>=0.15.0->isoduration->jsonschema<5,>=3.0.1->kfp~=1.8->mlrun[complete]==1.6.1->-r /empty/requirements.txt (line 1)) (2.8.19.20240106)
+Downloading onnx-1.14.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.6 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.6/14.6 MB 274.2 MB/s eta 0:00:00
+Downloading onnxruntime-1.16.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.4/6.4 MB 277.9 MB/s eta 0:00:00
+Downloading optimum-1.6.4-py3-none-any.whl (227 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 227.8/227.8 kB 291.3 MB/s eta 0:00:00
+Downloading transformers-4.26.1-py3-none-any.whl (6.3 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.3/6.3 MB 242.4 MB/s eta 0:00:00
+Downloading datasets-2.10.1-py3-none-any.whl (469 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 469.0/469.0 kB 185.9 MB/s eta 0:00:00
+Downloading scikit_learn-1.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26.4 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 26.4/26.4 MB 275.9 MB/s eta 0:00:00
+Downloading dill-0.3.6-py3-none-any.whl (110 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 110.5/110.5 kB 282.3 MB/s eta 0:00:00
+Downloading huggingface_hub-0.21.4-py3-none-any.whl (346 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 346.4/346.4 kB 311.7 MB/s eta 0:00:00
+Downloading numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.1/17.1 MB 269.6 MB/s eta 0:00:00
+Downloading regex-2023.12.25-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (773 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 773.4/773.4 kB 311.9 MB/s eta 0:00:00
+Downloading responses-0.18.0-py3-none-any.whl (38 kB)
+Downloading tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.8/7.8 MB 264.1 MB/s eta 0:00:00
+Downloading torch-2.2.1-cp39-cp39-manylinux1_x86_64.whl (755.5 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 755.5/755.5 MB 204.0 MB/s eta 0:00:00
+Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 410.6/410.6 MB 40.3 MB/s eta 0:00:00
+Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 14.1/14.1 MB 43.0 MB/s eta 0:00:00
+Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 23.7/23.7 MB 46.9 MB/s eta 0:00:00
+Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 823.6/823.6 kB 51.0 MB/s eta 0:00:00
+Downloading nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 731.7/731.7 MB 58.2 MB/s eta 0:00:00
+Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 121.6/121.6 MB 69.0 MB/s eta 0:00:00
+Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.5/56.5 MB 36.0 MB/s eta 0:00:00
+Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 124.2/124.2 MB 52.8 MB/s eta 0:00:00
+Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 196.0/196.0 MB 45.9 MB/s eta 0:00:00
+Downloading nvidia_nccl_cu12-2.19.3-py3-none-manylinux1_x86_64.whl (166.0 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 166.0/166.0 MB 19.6 MB/s eta 0:00:00
+Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 99.1/99.1 kB 27.7 MB/s eta 0:00:00
+Downloading triton-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (167.9 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 167.9/167.9 MB 41.3 MB/s eta 0:00:00
+Downloading protobuf-3.20.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.0/1.0 MB 42.8 MB/s eta 0:00:00
+Downloading coloredlogs-15.0.1-py2.py3-none-any.whl (46 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 46.0/46.0 kB 192.0 MB/s eta 0:00:00
+Downloading filelock-3.13.1-py3-none-any.whl (11 kB)
+Downloading flatbuffers-24.3.7-py2.py3-none-any.whl (26 kB)
+Downloading multiprocess-0.70.14-py39-none-any.whl (132 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.9/132.9 kB 100.7 MB/s eta 0:00:00
+Downloading sympy-1.12-py3-none-any.whl (5.7 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.7/5.7 MB 41.4 MB/s eta 0:00:00
+Downloading humanfriendly-10.0-py2.py3-none-any.whl (86 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 86.8/86.8 kB 253.7 MB/s eta 0:00:00
+Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 45.4 MB/s eta 0:00:00
+Downloading sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 46.1 MB/s eta 0:00:00
+Downloading networkx-3.2.1-py3-none-any.whl (1.6 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 43.7 MB/s eta 0:00:00
+Downloading nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl (21.1 MB)
+ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 21.1/21.1 MB 43.8 MB/s eta 0:00:00
+Installing collected packages: tokenizers, sentencepiece, mpmath, flatbuffers, sympy, regex, protobuf, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, numpy, networkx, humanfriendly, filelock, dill, triton, responses, onnx, nvidia-cusparse-cu12, nvidia-cudnn-cu12, multiprocess, huggingface-hub, coloredlogs, transformers, scikit-learn, onnxruntime, nvidia-cusolver-cu12, torch, datasets, optimum
+ Attempting uninstall: protobuf
+ Found existing installation: protobuf 3.20.3
+ Uninstalling protobuf-3.20.3:
+ Successfully uninstalled protobuf-3.20.3
+ Attempting uninstall: numpy
+ Found existing installation: numpy 1.26.4
+ Uninstalling numpy-1.26.4:
+ Successfully uninstalled numpy-1.26.4
+ Attempting uninstall: scikit-learn
+ Found existing installation: scikit-learn 1.4.1.post1
+ Uninstalling scikit-learn-1.4.1.post1:
+ Successfully uninstalled scikit-learn-1.4.1.post1
+Successfully installed coloredlogs-15.0.1 datasets-2.10.1 dill-0.3.6 filelock-3.13.1 flatbuffers-24.3.7 huggingface-hub-0.21.4 humanfriendly-10.0 mpmath-1.3.0 multiprocess-0.70.14 networkx-3.2.1 numpy-1.23.5 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.19.3 nvidia-nvjitlink-cu12-12.4.99 nvidia-nvtx-cu12-12.1.105 onnx-1.14.1 onnxruntime-1.16.3 optimum-1.6.4 protobuf-3.20.2 regex-2023.12.25 responses-0.18.0 scikit-learn-1.0.2 sentencepiece-0.2.0 sympy-1.12 tokenizers-0.13.3 torch-2.2.1 transformers-4.26.1 triton-2.2.0
+WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
+INFO [0238] Taking snapshot of full filesystem...
+INFO [0463] Pushing image to docker-registry.default-tenant.app.app-lab-2-b688.iguazio-cd2.com/mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer:latest
+INFO [0493] Pushed docker-registry.default-tenant.app.app-lab-2-b688.iguazio-cd2.com/mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer@sha256:691d0bb3c23487b4b5d2f84ab323c24735626ee81681475f53a4158b72d4cfee
+
+
+
BuildStatus(ready=True, outputs={'image': '.mlrun/func-hugging-face-trainer-avia-hugging-face-classifier-trainer:latest'})
+
+
+
+
+
+
+
+
> 2024-03-24 17:22:42,252 [info] Storing function: {'name': 'hugging-face-classifier-trainer-train', 'uid': '53252ce7aacb4b1aacf86bf3b862daa2', 'db': 'http://mlrun-api:8080'}
+> 2024-03-24 17:22:42,536 [info] Job is running in the background, pod: hugging-face-classifier-trainer-train-dqqfr
+> 2024-03-24 17:24:43,288 [info] 'train_test_split_size' is not provided, setting train_test_split_size to 0.2
+> 2024-03-24 17:24:43,847 [info] Loading and editing Shayanvsf/US_Airline_Sentiment dataset from Hugging Face hub
+Downloading metadata: 100%|██████████| 1.03k/1.03k [00:00<00:00, 6.77MB/s]
+Downloading and preparing dataset None/None (download: 265.13 KiB, generated: 1.50 MiB, post-processed: Unknown size, total: 1.76 MiB) to /root/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec...
+Downloading data files: 0%| | 0/3 [00:00<?, ?it/s]
+Downloading data: 100%|██████████| 92.6k/92.6k [00:00<00:00, 59.3MB/s]
+Downloading data files: 33%|███▎ | 1/3 [00:00<00:00, 6.42it/s]
+Downloading data: 100%|██████████| 605k/605k [00:00<00:00, 81.8MB/s]
+Downloading data files: 67%|██████▋ | 2/3 [00:00<00:00, 6.59it/s]
+Downloading data: 100%|██████████| 179k/179k [00:00<00:00, 50.9MB/s]
+Downloading data files: 100%|██████████| 3/3 [00:00<00:00, 6.62it/s]
+Extracting data files: 100%|██████████| 3/3 [00:00<00:00, 1263.34it/s]
+Dataset parquet downloaded and prepared to /root/.cache/huggingface/datasets/Shayanvsf___parquet/Shayanvsf--US_Airline_Sentiment-1319c42f87c44b2f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec. Subsequent calls will reuse this data.
+100%|██████████| 3/3 [00:00<00:00, 978.99it/s]
+Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_layer_norm.bias', 'vocab_transform.weight', 'vocab_transform.bias', 'vocab_projector.weight', 'vocab_projector.bias', 'vocab_layer_norm.weight']
+- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
+- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
+Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'pre_classifier.weight', 'classifier.weight', 'classifier.bias']
+You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
+> 2024-03-24 17:24:47,076 [info] training 'huggingface-model'
+The following columns in the training set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning
+***** Running training *****
+ Num examples = 100
+ Num Epochs = 3
+ Instantaneous batch size per device = 16
+ Total train batch size (w. parallel, distributed & accumulation) = 16
+ Gradient Accumulation steps = 1
+ Total optimization steps = 21
+ Number of trainable parameters = 66955010
+huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
+To disable this warning, you can either:
+ - Avoid using `tokenizers` before the fork if possible
+ - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
+ 0%| | 0/21 [00:00<?, ?it/s]You're using a DistilBertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
+ 33%|███▎ | 7/21 [00:16<00:28, 2.02s/it]The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+***** Running Evaluation *****
+ Num examples = 24
+ Batch size = 16
+
+{'loss': 0.7005, 'learning_rate': 1.904761904761905e-05, 'epoch': 0.14}
+{'loss': 0.6528, 'learning_rate': 1.8095238095238097e-05, 'epoch': 0.29}
+{'loss': 0.6468, 'learning_rate': 1.7142857142857142e-05, 'epoch': 0.43}
+{'loss': 0.5877, 'learning_rate': 1.6190476190476193e-05, 'epoch': 0.57}
+{'loss': 0.6694, 'learning_rate': 1.523809523809524e-05, 'epoch': 0.71}
+{'loss': 0.5219, 'learning_rate': 1.4285714285714287e-05, 'epoch': 0.86}
+{'loss': 0.7052, 'learning_rate': 1.3333333333333333e-05, 'epoch': 1.0}
+ 0%| | 0/2 [00:00<?, ?it/s]
+100%|██████████| 2/2 [00:00<00:00, 4.86it/s]main.py:561: FutureWarning:
+
+load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate
+
+
+
+Downloading builder script: 4.21kB [00:00, 11.4MB/s]
+
+
+Downloading builder script: 6.50kB [00:00, 21.8MB/s]
+
+ 33%|███▎ | 7/21 [00:18<00:28, 2.02s/it]
+100%|██████████| 2/2 [00:00<00:00, 4.86it/s]
+ 67%|██████▋ | 14/21 [00:34<00:14, 2.07s/it]The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+***** Running Evaluation *****
+ Num examples = 24
+ Batch size = 16
+{'eval_loss': 0.5350419878959656, 'eval_accuracy': 0.7916666666666666, 'eval_f1': 0.0, 'eval_runtime': 1.5536, 'eval_samples_per_second': 15.448, 'eval_steps_per_second': 1.287, 'epoch': 1.0}
+{'loss': 0.5942, 'learning_rate': 1.2380952380952383e-05, 'epoch': 1.14}
+{'loss': 0.5899, 'learning_rate': 1.1428571428571429e-05, 'epoch': 1.29}
+{'loss': 0.5317, 'learning_rate': 1.0476190476190477e-05, 'epoch': 1.43}
+{'loss': 0.4516, 'learning_rate': 9.523809523809525e-06, 'epoch': 1.57}
+{'loss': 0.5121, 'learning_rate': 8.571428571428571e-06, 'epoch': 1.71}
+{'loss': 0.5264, 'learning_rate': 7.61904761904762e-06, 'epoch': 1.86}
+{'loss': 0.539, 'learning_rate': 6.666666666666667e-06, 'epoch': 2.0}
+
+ 0%| | 0/2 [00:00<?, ?it/s]
+ A
+ 67%|██████▋ | 14/21 [00:35<00:14, 2.07s/it]
+100%|██████████| 2/2 [00:00<00:00, 4.95it/s]
+100%|██████████| 21/21 [00:52<00:00, 2.05s/it]The following columns in the evaluation set don't have a corresponding argument in `DistilBertForSequenceClassification.forward` and have been ignored: text. If text are not expected by `DistilBertForSequenceClassification.forward`, you can safely ignore this message.
+***** Running Evaluation *****
+ Num examples = 24
+ Batch size = 16
+{'eval_loss': 0.4877033233642578, 'eval_accuracy': 0.7916666666666666, 'eval_f1': 0.0, 'eval_runtime': 1.1789, 'eval_samples_per_second': 20.357, 'eval_steps_per_second': 1.696, 'epoch': 2.0}
+{'loss': 0.4059, 'learning_rate': 5.7142857142857145e-06, 'epoch': 2.14}
+{'loss': 0.5851, 'learning_rate': 4.761904761904762e-06, 'epoch': 2.29}
+{'loss': 0.4135, 'learning_rate': 3.80952380952381e-06, 'epoch': 2.43}
+{'loss': 0.6571, 'learning_rate': 2.8571428571428573e-06, 'epoch': 2.57}
+{'loss': 0.4883, 'learning_rate': 1.904761904761905e-06, 'epoch': 2.71}
+{'loss': 0.5114, 'learning_rate': 9.523809523809525e-07, 'epoch': 2.86}
+{'loss': 0.5215, 'learning_rate': 0.0, 'epoch': 3.0}
+
+ 0%| | 0/2 [00:00<?, ?it/s]
+ A
+100%|██████████| 21/21 [00:54<00:00, 2.05s/it]
+100%|██████████| 2/2 [00:00<00:00, 6.38it/s]
+
+
+Training completed. Do not forget to share your model on huggingface.co/models =)
+
+
+100%|██████████| 21/21 [00:55<00:00, 2.62s/it]
+tokenizer config file saved in /tmp/tokenizer/tokenizer_config.json
+Special tokens file saved in /tmp/tokenizer/special_tokens_map.json
+Configuration saved in /tmp/model/config.json
+Model weights saved in /tmp/model/pytorch_model.bin
+{'eval_loss': 0.4750453531742096, 'eval_accuracy': 0.7916666666666666, 'eval_f1': 0.0, 'eval_runtime': 1.0524, 'eval_samples_per_second': 22.806, 'eval_steps_per_second': 1.9, 'epoch': 3.0}
+{'train_runtime': 55.1543, 'train_samples_per_second': 5.439, 'train_steps_per_second': 0.381, 'train_loss': 0.5624780683290391, 'epoch': 3.0}
+> 2024-03-24 17:26:00,230 [info] To track results use the CLI: {'info_cmd': 'mlrun get run 53252ce7aacb4b1aacf86bf3b862daa2 -p hugging-face-trainer-avia', 'logs_cmd': 'mlrun logs 53252ce7aacb4b1aacf86bf3b862daa2 -p hugging-face-trainer-avia'}
+> 2024-03-24 17:26:00,231 [info] Or click for UI: {'ui_url': 'https://dashboard.default-tenant.app.app-lab-2-b688.iguazio-cd2.com/mlprojects/hugging-face-trainer-avia/jobs/monitor/53252ce7aacb4b1aacf86bf3b862daa2/overview'}
+> 2024-03-24 17:26:00,231 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-train'}
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+hugging-face-trainer-avia
+
+0
+Mar 24 17:24:39
+completed
+hugging-face-classifier-trainer-train
+v3io_user=avia
kind=job
owner=avia
mlrun/client_version=1.6.1
mlrun/client_python_version=3.9.16
host=hugging-face-classifier-trainer-train-dqqfr
+
+hf_dataset=Shayanvsf/US_Airline_Sentiment
drop_columns=['airline_sentiment_confidence', 'negativereason_confidence']
pretrained_tokenizer=distilbert-base-uncased
pretrained_model=distilbert-base-uncased
model_class=transformers.AutoModelForSequenceClassification
label_name=airline_sentiment
num_of_train_samples=100
metrics=['accuracy', 'f1']
random_state=42
TRAIN_output_dir=finetuning-sentiment-model-3000-samples
TRAIN_learning_rate=2e-05
TRAIN_per_device_train_batch_size=16
TRAIN_per_device_eval_batch_size=16
TRAIN_num_train_epochs=3
TRAIN_weight_decay=0.01
TRAIN_push_to_hub=False
TRAIN_evaluation_strategy=epoch
TRAIN_eval_steps=1
TRAIN_logging_steps=1
CLASS_num_labels=2
+loss=0.5215
learning_rate=0.0
eval_loss=0.4750453531742096
eval_accuracy=0.7916666666666666
eval_f1=0.0
eval_runtime=1.0524
eval_samples_per_second=22.806
eval_steps_per_second=1.9
train_runtime=55.1543
train_samples_per_second=5.439
train_steps_per_second=0.381
total_flos=3327208489680.0
+loss_plot
learning_rate_plot
eval_loss_plot
eval_accuracy_plot
eval_f1_plot
eval_runtime_plot
eval_samples_per_second_plot
eval_steps_per_second_plot
tokenizer
model
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2024-03-24 17:26:09,792 [info] Run execution finished: {'status': 'completed', 'name': 'hugging-face-classifier-trainer-train'}
+
+
+
+
+Back to the top
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/static/function.html b/functions/master/hugging_face_classifier_trainer/0.3.0/static/function.html
new file mode 100644
index 00000000..08fe9f21
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/static/function.html
@@ -0,0 +1,392 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+kind: job
+metadata:
+ name: hugging-face-classifier-trainer
+ tag: ''
+ hash: f9d8aa4a2c66e24fa418bb163829adc3e2ada06c
+ project: ''
+ labels:
+ author: davids
+ categories:
+ - deep-learning
+ - huggingface
+ - machine-learning
+ - model-training
+spec:
+ command: ''
+ args: []
+ image: ''
+ build:
+ functionSourceCode: aW1wb3J0IG9zCmltcG9ydCBzaHV0aWwKaW1wb3J0IHRlbXBmaWxlCmltcG9ydCB6aXBmaWxlCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSB0eXBpbmcgaW1wb3J0IEFueSwgQ2FsbGFibGUsIERpY3QsIExpc3QsIE9wdGlvbmFsLCBUdXBsZSwgVW5pb24KCmltcG9ydCBtbHJ1bgppbXBvcnQgbWxydW4uZGF0YXN0b3JlCmltcG9ydCBtbHJ1bi51dGlscwppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZAppbXBvcnQgdHJhbnNmb3JtZXJzCmZyb20gZGF0YXNldHMgaW1wb3J0IERhdGFzZXQsIGxvYWRfZGF0YXNldCwgbG9hZF9tZXRyaWMKZnJvbSBtbHJ1biBpbXBvcnQgTUxDbGllbnRDdHgKZnJvbSBtbHJ1biBpbXBvcnQgZmVhdHVyZV9zdG9yZSBhcyBmcwpmcm9tIG1scnVuLmFydGlmYWN0cyBpbXBvcnQgQXJ0aWZhY3QsIFBsb3RseUFydGlmYWN0CmZyb20gbWxydW4uZGF0YXN0b3JlIGltcG9ydCBEYXRhSXRlbQpmcm9tIG1scnVuLmZyYW1ld29ya3MuX2NvbW1vbiBpbXBvcnQgQ29tbW9uVHlwZXMsIE1MUnVuSW50ZXJmYWNlCmZyb20gbWxydW4udXRpbHMgaW1wb3J0IGNyZWF0ZV9jbGFzcwpmcm9tIHBsb3RseSBpbXBvcnQgZ3JhcGhfb2JqZWN0cyBhcyBnbwpmcm9tIHNrbGVhcm4ubW9kZWxfc2VsZWN0aW9uIGltcG9ydCB0cmFpbl90ZXN0X3NwbGl0CmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCAoCiAgICBBdXRvVG9rZW5pemVyLAogICAgRGF0YUNvbGxhdG9yV2l0aFBhZGRpbmcsCiAgICBFdmFsUHJlZGljdGlvbiwKICAgIFByZVRyYWluZWRNb2RlbCwKICAgIFByZVRyYWluZWRUb2tlbml6ZXIsCiAgICBUcmFpbmVyLAogICAgVHJhaW5lckNhbGxiYWNrLAogICAgVHJhaW5lckNvbnRyb2wsCiAgICBUcmFpbmVyU3RhdGUsCiAgICBUcmFpbmluZ0FyZ3VtZW50cywKKQoKCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLWZyb20gTUxSVU4tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpjbGFzcyBIRk9SVE9wdGltaXplck1MUnVuSW50ZXJmYWNlKE1MUnVuSW50ZXJmYWNlLCBBQkMpOgogICAgIiIiCiAgICBJbnRlcmZhY2UgZm9yIGFkZGluZyBNTFJ1biBmZWF0dXJlcyBmb3IgdGVuc29yZmxvdyBrZXJhcyBBUEkuCiAgICAiIiIKCiAgICAjIE1MUnVuJ3MgY29udGV4dCBkZWZhdWx0IG5hbWU6CiAgICBERUZBVUxUX0NPTlRFWFRfTkFNRSA9ICJtbHJ1bi1odWdnaW5nZmFjZSIKCiAgICAjIEF0dHJpYnV0ZXMgdG8gYmUgaW5zZXJ0ZWQgc28gdGhlIE1MUnVuIGludGVyZmFjZSB3aWxsIGJlIGZ1bGx5IGVuYWJsZWQuCiAgICBfUFJPUEVSVElFUyA9IHsKICAgICAgICAiX2F1dG9fbG9nIjogRmFsc2UsCiAgICAgICAgIl9jb250ZXh0IjogTm9uZSwKICAgICAgICAiX21vZGVsX25hbWUiOiAibW9kZWwiLAogICAgICAgICJfdGFnIjogIiIsCiAgICAgICAgIl9sYWJlbHMiOiBOb25lLAogICAgICAgICJfZXh0cmFfZGF0YSI6IE5vbmUsCiAgICB9CiAgICBfTUVUSE9EUyA9IFsiZW5hYmxlX2F1dG9fbG9nZ2luZyJdCiAgICAjIEF0dHJpYnV0ZXMgdG8gcmVwbGFjZSBzbyB0aGUgTUxSdW4gaW50ZXJmYWNlIHdpbGwgYmUgZnVsbHkgZW5hYmxlZC4KICAgIF9SRVBMQUNFRF9NRVRIT0RTID0gWwogICAgICAgICJvcHRpbWl6ZSIsCiAgICBdCgogICAgQGNsYXNzbWV0aG9kCiAgICBkZWYgYWRkX2ludGVyZmFjZSgKICAgICAgICBjbHMsCiAgICAgICAgb2JqLAogICAgICAgIHJlc3RvcmF0aW9uOiBDb21tb25UeXBlcy5NTFJ1bkludGVyZmFjZVJlc3RvcmF0aW9uVHlwZSA9IE5vbmUsCiAgICApOgogICAgICAgICIiIgogICAgICAgIEVucmljaCB0aGUgb2JqZWN0IHdpdGggdGhpcyBpbnRlcmZhY2UgcHJvcGVydGllcywgbWV0aG9kcyBhbmQgZnVuY3Rpb25zLCBzbyBpdCB3aWxsIGhhdmUgdGhpcyBUZW5zb3JGbG93LktlcmFzCiAgICAgICAgTUxSdW4ncyBmZWF0dXJlcy4KICAgICAgICA6cGFyYW0gb2JqOiAgICAgICAgICAgICAgICAgICAgIFRoZSBvYmplY3QgdG8gZW5yaWNoIGhpcyBpbnRlcmZhY2UuCiAgICAgICAgOnBhcmFtIHJlc3RvcmF0aW9uOiBSZXN0b3JhdGlvbiBpbmZvcm1hdGlvbiB0dXBsZSBhcyByZXR1cm5lZCBmcm9tICdyZW1vdmVfaW50ZXJmYWNlJyBpbiBvcmRlciB0bwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWRkIHRoZSBpbnRlcmZhY2UgaW4gYSBjZXJ0YWluIHN0YXRlLgogICAgICAgICIiIgogICAgICAgIHN1cGVyKEhGT1JUT3B0aW1pemVyTUxSdW5JbnRlcmZhY2UsIGNscykuYWRkX2ludGVyZmFjZSgKICAgICAgICAgICAgb2JqPW9iaiwgcmVzdG9yYXRpb249cmVzdG9yYXRpb24KICAgICAgICApCgogICAgQGNsYXNzbWV0aG9kCiAgICBkZWYgbWxydW5fb3B0aW1pemUoY2xzKToKICAgICAgICAiIiIKICAgICAgICBNTFJ1bidzIHRmLmtlcmFzLk1vZGVsLmZpdCB3cmFwcGVyLiBJdCB3aWxsIHNldHVwIHRoZSBvcHRpbWl6ZXIgd2hlbiB1c2luZyBob3Jvdm9kLiBUaGUgb3B0aW1pemVyIG11c3QgYmUKICAgICAgICBwYXNzZWQgaW4gYSBrZXl3b3JkIGFyZ3VtZW50IGFuZCB3aGVuIHVzaW5nIGhvcm92b2QsIGl0IG11c3QgYmUgcGFzc2VkIGFzIGFuIE9wdGltaXplciBpbnN0YW5jZSwgbm90IGEgc3RyaW5nLgoKICAgICAgICByYWlzZSBNTFJ1bkludmFsaWRBcmd1bWVudEVycm9yOiBJbiBjYXNlIHRoZSBvcHRpbWl6ZXIgcHJvdmlkZWQgZGlkIG5vdCBmb2xsb3cgdGhlIGluc3RydWN0aW9ucyBhYm92ZS4KICAgICAgICAiIiIKCiAgICAgICAgZGVmIHdyYXBwZXIoc2VsZiwgKmFyZ3MsICoqa3dhcmdzKToKICAgICAgICAgICAgc2F2ZV9kaXIgPSBjbHMuX2dldF9mdW5jdGlvbl9hcmd1bWVudCgKICAgICAgICAgICAgICAgIHNlbGYub3B0aW1pemUsCiAgICAgICAgICAgICAgICBhcmd1bWVudF9uYW1lPSJzYXZlX2RpciIsCiAgICAgICAgICAgICAgICBwYXNzZWRfYXJncz1hcmdzLAogICAgICAgICAgICAgICAgcGFzc2VkX2t3YXJncz1rd2FyZ3MsCiAgICAgICAgICAgIClbMF0KCiAgICAgICAgICAgICMgQ2FsbCB0aGUgb3JpZ2luYWwgb3B0aW1pemUgbWV0aG9kOgogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm9yaWdpbmFsX29wdGltaXplKCphcmdzLCAqKmt3YXJncykKCiAgICAgICAgICAgIGlmIHNlbGYuX2F1dG9fbG9nOgogICAgICAgICAgICAgICAgIyBMb2cgdGhlIG9ubnggbW9kZWw6CiAgICAgICAgICAgICAgICBzZWxmLl9jb250ZXh0LmxvZ19tb2RlbCgKICAgICAgICAgICAgICAgICAgICBrZXk9Im1vZGVsIiwKICAgICAgICAgICAgICAgICAgICBkYl9rZXk9c2VsZi5fbW9kZWxfbmFtZSwKICAgICAgICAgICAgICAgICAgICBtb2RlbF9maWxlPWYie3NhdmVfZGlyfS9tb2RlbF9vcHRpbWl6ZWQub25ueCIsCiAgICAgICAgICAgICAgICAgICAgdGFnPXNlbGYuX3RhZywKICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcms9Ik9OTlgiLAogICAgICAgICAgICAgICAgICAgIGxhYmVscz1zZWxmLl9sYWJlbHMsCiAgICAgICAgICAgICAgICAgICAgZXh0cmFfZGF0YT1zZWxmLl9leHRyYV9kYXRhLAogICAgICAgICAgICAgICAgKQoKICAgICAgICAgICAgcmV0dXJuIHJlc3VsdAoKICAgICAgICByZXR1cm4gd3JhcHBlcgoKICAgIGRlZiBlbmFibGVfYXV0b19sb2dnaW5nKAogICAgICAgIHNlbGYsCiAgICAgICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICAgICAgbW9kZWxfbmFtZTogc3RyID0gIm1vZGVsIiwKICAgICAgICB0YWc6IHN0ciA9ICIiLAogICAgICAgIGxhYmVsczogRGljdFtzdHIsIHN0cl0gPSBOb25lLAogICAgICAgIGV4dHJhX2RhdGE6IGRpY3QgPSBOb25lLAogICAgKToKICAgICAgICBzZWxmLl9hdXRvX2xvZyA9IFRydWUKCiAgICAgICAgc2VsZi5fY29udGV4dCA9IGNvbnRleHQKICAgICAgICBzZWxmLl9tb2RlbF9uYW1lID0gbW9kZWxfbmFtZQogICAgICAgIHNlbGYuX3RhZyA9IHRhZwogICAgICAgIHNlbGYuX2xhYmVscyA9IGxhYmVscwogICAgICAgIHNlbGYuX2V4dHJhX2RhdGEgPSBleHRyYV9kYXRhCgoKY2xhc3MgSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UoTUxSdW5JbnRlcmZhY2UsIEFCQyk6CiAgICAiIiIKICAgIEludGVyZmFjZSBmb3IgYWRkaW5nIE1MUnVuIGZlYXR1cmVzIGZvciB0ZW5zb3JmbG93IGtlcmFzIEFQSS4KICAgICIiIgoKICAgICMgTUxSdW5zIGNvbnRleHQgZGVmYXVsdCBuYW1lOgogICAgREVGQVVMVF9DT05URVhUX05BTUUgPSAibWxydW4taHVnZ2luZ2ZhY2UiCgogICAgIyBBdHRyaWJ1dGVzIHRvIHJlcGxhY2Ugc28gdGhlIE1MUnVuIGludGVyZmFjZSB3aWxsIGJlIGZ1bGx5IGVuYWJsZWQuCiAgICBfUkVQTEFDRURfTUVUSE9EUyA9IFsKICAgICAgICAidHJhaW4iLAogICAgICAgICMgImV2YWx1YXRlIgogICAgXQoKICAgIEBjbGFzc21ldGhvZAogICAgZGVmIGFkZF9pbnRlcmZhY2UoCiAgICAgICAgY2xzLAogICAgICAgIG9iajogVHJhaW5lciwKICAgICAgICByZXN0b3JhdGlvbjogQ29tbW9uVHlwZXMuTUxSdW5JbnRlcmZhY2VSZXN0b3JhdGlvblR5cGUgPSBOb25lLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBFbnJpY2ggdGhlIG9iamVjdCB3aXRoIHRoaXMgaW50ZXJmYWNlIHByb3BlcnRpZXMsIG1ldGhvZHMgYW5kIGZ1bmN0aW9ucywgc28gaXQgd2lsbCBoYXZlIHRoaXMgVGVuc29yRmxvdy5LZXJhcwogICAgICAgIE1MUnVucyBmZWF0dXJlcy4KICAgICAgICA6cGFyYW0gb2JqOiAgICAgICAgICAgICAgICAgICAgIFRoZSBvYmplY3QgdG8gZW5yaWNoIGhpcyBpbnRlcmZhY2UuCiAgICAgICAgOnBhcmFtIHJlc3RvcmF0aW9uOiBSZXN0b3JhdGlvbiBpbmZvcm1hdGlvbiB0dXBsZSBhcyByZXR1cm5lZCBmcm9tICdyZW1vdmVfaW50ZXJmYWNlJyBpbiBvcmRlciB0bwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYWRkIHRoZSBpbnRlcmZhY2UgaW4gYSBjZXJ0YWluIHN0YXRlLgogICAgICAgICIiIgoKICAgICAgICBzdXBlcihIRlRyYWluZXJNTFJ1bkludGVyZmFjZSwgY2xzKS5hZGRfaW50ZXJmYWNlKAogICAgICAgICAgICBvYmo9b2JqLCByZXN0b3JhdGlvbj1yZXN0b3JhdGlvbgogICAgICAgICkKCiAgICBAY2xhc3NtZXRob2QKICAgIGRlZiBtbHJ1bl90cmFpbihjbHMpOgoKICAgICAgICAiIiIKICAgICAgICBNTFJ1bnMgdGYua2VyYXMuTW9kZWwuZml0IHdyYXBwZXIuIEl0IHdpbGwgc2V0dXAgdGhlIG9wdGltaXplciB3aGVuIHVzaW5nIGhvcm92b2QuIFRoZSBvcHRpbWl6ZXIgbXVzdCBiZQogICAgICAgIHBhc3NlZCBpbiBhIGtleXdvcmQgYXJndW1lbnQgYW5kIHdoZW4gdXNpbmcgaG9yb3ZvZCwgaXQgbXVzdCBiZSBwYXNzZWQgYXMgYW4gT3B0aW1pemVyIGluc3RhbmNlLCBub3QgYSBzdHJpbmcuCgogICAgICAgIHJhaXNlIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IEluIGNhc2UgdGhlIG9wdGltaXplciBwcm92aWRlZCBkaWQgbm90IGZvbGxvdyB0aGUgaW5zdHJ1Y3Rpb25zIGFib3ZlLgogICAgICAgICIiIgoKICAgICAgICBkZWYgd3JhcHBlcihzZWxmOiBUcmFpbmVyLCAqYXJncywgKiprd2FyZ3MpOgogICAgICAgICAgICAjIFJlc3RvcmUgdGhlIGV2YWx1YXRpb24gbWV0aG9kIGFzIGB0cmFpbmAgd2lsbCB1c2UgaXQ6CiAgICAgICAgICAgICMgY2xzLl9yZXN0b3JlX2F0dHJpYnV0ZShvYmo9c2VsZiwgYXR0cmlidXRlX25hbWU9ImV2YWx1YXRlIikKCiAgICAgICAgICAgICMgQ2FsbCB0aGUgb3JpZ2luYWwgZml0IG1ldGhvZDoKICAgICAgICAgICAgcmVzdWx0ID0gc2VsZi5vcmlnaW5hbF90cmFpbigqYXJncywgKiprd2FyZ3MpCgogICAgICAgICAgICAjIFJlcGxhY2UgdGhlIGV2YWx1YXRpb24gbWV0aG9kIGFnYWluOgogICAgICAgICAgICAjIGNscy5fcmVwbGFjZV9mdW5jdGlvbihvYmo9c2VsZiwgZnVuY3Rpb25fbmFtZT0iZXZhbHVhdGUiKQoKICAgICAgICAgICAgcmV0dXJuIHJlc3VsdAoKICAgICAgICByZXR1cm4gd3JhcHBlcgoKCmNsYXNzIE1MUnVuQ2FsbGJhY2soVHJhaW5lckNhbGxiYWNrKToKICAgICIiIgogICAgQ2FsbGJhY2sgZm9yIGNvbGxlY3RpbmcgbG9ncyBkdXJpbmcgdHJhaW5pbmcgLyBldmFsdWF0aW9uIG9mIHRoZSBgVHJhaW5lcmAgQVBJLgogICAgIiIiCgogICAgZGVmIF9faW5pdF9fKAogICAgICAgIHNlbGYsCiAgICAgICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHggPSBOb25lLAogICAgICAgIG1vZGVsX25hbWU6IHN0ciA9ICJtb2RlbCIsCiAgICAgICAgdGFnOiBzdHIgPSAiIiwKICAgICAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgICAgICBleHRyYV9kYXRhOiBkaWN0ID0gTm9uZSwKICAgICk6CiAgICAgICAgc3VwZXIoKS5fX2luaXRfXygpCgogICAgICAgICMgU3RvcmUgdGhlIGNvbmZpZ3VyYXRpb25zOgogICAgICAgIHNlbGYuX2NvbnRleHQgPSAoCiAgICAgICAgICAgIGNvbnRleHQKICAgICAgICAgICAgaWYgY29udGV4dCBpcyBub3QgTm9uZQogICAgICAgICAgICBlbHNlIG1scnVuLmdldF9vcl9jcmVhdGVfY3R4KCIuL21scnVuLWh1Z2dpbmdmYWNlIikKICAgICAgICApCiAgICAgICAgc2VsZi5fbW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLl90YWcgPSB0YWcKICAgICAgICBzZWxmLl9sYWJlbHMgPSBsYWJlbHMKICAgICAgICBzZWxmLl9leHRyYV9kYXRhID0gZXh0cmFfZGF0YSBpZiBleHRyYV9kYXRhIGlzIG5vdCBOb25lIGVsc2Uge30KCiAgICAgICAgIyBTZXQgdXAgdGhlIGxvZ2dpbmcgbW9kZToKICAgICAgICBzZWxmLl9pc190cmFpbmluZyA9IEZhbHNlCiAgICAgICAgc2VsZi5fc3RlcHM6IExpc3RbTGlzdFtpbnRdXSA9IFtdCiAgICAgICAgc2VsZi5fbWV0cmljX3Njb3JlczogRGljdFtzdHIsIExpc3RbZmxvYXRdXSA9IHt9CiAgICAgICAgc2VsZi5fYXJ0aWZhY3RzOiBEaWN0W3N0ciwgQXJ0aWZhY3RdID0ge30KCiAgICBkZWYgb25fZXBvY2hfYmVnaW4oCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgICoqa3dhcmdzLAogICAgKToKICAgICAgICBzZWxmLl9zdGVwcy5hcHBlbmQoW10pCgogICAgZGVmIG9uX2Vwb2NoX2VuZCgKICAgICAgICBzZWxmLAogICAgICAgIGFyZ3M6IFRyYWluaW5nQXJndW1lbnRzLAogICAgICAgIHN0YXRlOiBUcmFpbmVyU3RhdGUsCiAgICAgICAgY29udHJvbDogVHJhaW5lckNvbnRyb2wsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIHNlbGYuX2xvZ19tZXRyaWNzKCkKCiAgICBkZWYgb25fbG9nKAogICAgICAgIHNlbGYsCiAgICAgICAgYXJnczogVHJhaW5pbmdBcmd1bWVudHMsCiAgICAgICAgc3RhdGU6IFRyYWluZXJTdGF0ZSwKICAgICAgICBjb250cm9sOiBUcmFpbmVyQ29udHJvbCwKICAgICAgICBsb2dzOiBEaWN0W3N0ciwgZmxvYXRdID0gTm9uZSwKICAgICAgICAqKmt3YXJncywKICAgICk6CiAgICAgICAgcmVjZW50X2xvZ3MgPSBzdGF0ZS5sb2dfaGlzdG9yeVstMV0uY29weSgpCgogICAgICAgIHJlY2VudF9sb2dzLnBvcCgiZXBvY2giKQogICAgICAgIGN1cnJlbnRfc3RlcCA9IGludChyZWNlbnRfbG9ncy5wb3AoInN0ZXAiKSkKICAgICAgICBpZiBjdXJyZW50X3N0ZXAgbm90IGluIHNlbGYuX3N0ZXBzWy0xXToKICAgICAgICAgICAgc2VsZi5fc3RlcHNbLTFdLmFwcGVuZChjdXJyZW50X3N0ZXApCgogICAgICAgIGZvciBtZXRyaWNfbmFtZSwgbWV0cmljX3Njb3JlIGluIHJlY2VudF9sb2dzLml0ZW1zKCk6CiAgICAgICAgICAgIGlmIG1ldHJpY19uYW1lLnN0YXJ0c3dpdGgoInRyYWluXyIpOgogICAgICAgICAgICAgICAgaWYgbWV0cmljX25hbWUuc3BsaXQoInRyYWluXyIpWzFdIG5vdCBpbiBzZWxmLl9tZXRyaWNfc2NvcmVzOgogICAgICAgICAgICAgICAgICAgIHNlbGYuX21ldHJpY19zY29yZXNbbWV0cmljX25hbWVdID0gW21ldHJpY19zY29yZV0KICAgICAgICAgICAgICAgIGNvbnRpbnVlCiAgICAgICAgICAgIGlmIG1ldHJpY19uYW1lIG5vdCBpbiBzZWxmLl9tZXRyaWNfc2NvcmVzOgogICAgICAgICAgICAgICAgc2VsZi5fbWV0cmljX3Njb3Jlc1ttZXRyaWNfbmFtZV0gPSBbXQogICAgICAgICAgICBzZWxmLl9tZXRyaWNfc2NvcmVzW21ldHJpY19uYW1lXS5hcHBlbmQobWV0cmljX3Njb3JlKQoKICAgIGRlZiBvbl90cmFpbl9iZWdpbigKICAgICAgICBzZWxmLAogICAgICAgIGFyZ3M6IFRyYWluaW5nQXJndW1lbnRzLAogICAgICAgIHN0YXRlOiBUcmFpbmVyU3RhdGUsCiAgICAgICAgY29udHJvbDogVHJhaW5lckNvbnRyb2wsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIHNlbGYuX2lzX3RyYWluaW5nID0gVHJ1ZQoKICAgIGRlZiBvbl90cmFpbl9lbmQoCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgIG1vZGVsOiBQcmVUcmFpbmVkTW9kZWwgPSBOb25lLAogICAgICAgIHRva2VuaXplcjogUHJlVHJhaW5lZFRva2VuaXplciA9IE5vbmUsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIHNlbGYuX2xvZ19tZXRyaWNzKCkKCiAgICAgICAgdGVtcF9kaXJlY3RvcnkgPSB0ZW1wZmlsZS5nZXR0ZW1wZGlyKCkKCiAgICAgICAgIyBTYXZlIGFuZCBsb2cgdGhlIHRva2VuaXplcjoKICAgICAgICBpZiB0b2tlbml6ZXIgaXMgbm90IE5vbmU6CiAgICAgICAgICAgICMgU2F2ZSB0b2tlbml6ZXI6CiAgICAgICAgICAgIHRva2VuaXplcl9kaXIgPSBvcy5wYXRoLmpvaW4odGVtcF9kaXJlY3RvcnksICJ0b2tlbml6ZXIiKQogICAgICAgICAgICB0b2tlbml6ZXIuc2F2ZV9wcmV0cmFpbmVkKHNhdmVfZGlyZWN0b3J5PXRva2VuaXplcl9kaXIpCiAgICAgICAgICAgICMgWmlwIHRoZSB0b2tlbml6ZXIgZGlyZWN0b3J5OgogICAgICAgICAgICB0b2tlbml6ZXJfemlwID0gc2h1dGlsLm1ha2VfYXJjaGl2ZSgKICAgICAgICAgICAgICAgIGJhc2VfbmFtZT0idG9rZW5pemVyIiwKICAgICAgICAgICAgICAgIGZvcm1hdD0iemlwIiwKICAgICAgICAgICAgICAgIHJvb3RfZGlyPXRva2VuaXplcl9kaXIsCiAgICAgICAgICAgICkKICAgICAgICAgICAgIyBMb2cgdGhlIHppcCBmaWxlOgogICAgICAgICAgICBzZWxmLl9hcnRpZmFjdHNbInRva2VuaXplciJdID0gc2VsZi5fY29udGV4dC5sb2dfYXJ0aWZhY3QoCiAgICAgICAgICAgICAgICBpdGVtPSJ0b2tlbml6ZXIiLCBsb2NhbF9wYXRoPXRva2VuaXplcl96aXAKICAgICAgICAgICAgKQoKICAgICAgICAjIFNhdmUgdGhlIG1vZGVsOgogICAgICAgIG1vZGVsX2RpciA9IG9zLnBhdGguam9pbih0ZW1wX2RpcmVjdG9yeSwgIm1vZGVsIikKICAgICAgICBtb2RlbC5zYXZlX3ByZXRyYWluZWQoc2F2ZV9kaXJlY3Rvcnk9bW9kZWxfZGlyKQoKICAgICAgICAjIFppcCB0aGUgbW9kZWwgZGlyZWN0b3J5OgogICAgICAgIHNodXRpbC5tYWtlX2FyY2hpdmUoCiAgICAgICAgICAgIGJhc2VfbmFtZT0ibW9kZWwiLAogICAgICAgICAgICBmb3JtYXQ9InppcCIsCiAgICAgICAgICAgIHJvb3RfZGlyPW1vZGVsX2RpciwKICAgICAgICApCgogICAgICAgICMgTG9nIHRoZSBtb2RlbDoKICAgICAgICBzZWxmLl9jb250ZXh0LmxvZ19tb2RlbCgKICAgICAgICAgICAga2V5PSJtb2RlbCIsCiAgICAgICAgICAgIGRiX2tleT1zZWxmLl9tb2RlbF9uYW1lLAogICAgICAgICAgICBtb2RlbF9maWxlPSJtb2RlbC56aXAiLAogICAgICAgICAgICB0YWc9c2VsZi5fdGFnLAogICAgICAgICAgICBmcmFtZXdvcms9Ikh1Z2dpbmcgRmFjZSIsCiAgICAgICAgICAgIGxhYmVscz1zZWxmLl9sYWJlbHMsCiAgICAgICAgICAgIGV4dHJhX2RhdGE9eyoqc2VsZi5fYXJ0aWZhY3RzLCAqKnNlbGYuX2V4dHJhX2RhdGF9LAogICAgICAgICkKCiAgICBkZWYgb25fZXZhbHVhdGUoCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgICoqa3dhcmdzLAogICAgKToKICAgICAgICBzZWxmLl9sb2dfbWV0cmljcygpCgogICAgICAgIGlmIHNlbGYuX2lzX3RyYWluaW5nOgogICAgICAgICAgICByZXR1cm4KCiAgICAgICAgIyBUT0RPOiBVcGRhdGUgdGhlIG1vZGVsIG9iamVjdAoKICAgIGRlZiBfbG9nX21ldHJpY3Moc2VsZik6CiAgICAgICAgZm9yIG1ldHJpY19uYW1lLCBtZXRyaWNfc2NvcmVzIGluIHNlbGYuX21ldHJpY19zY29yZXMuaXRlbXMoKToKICAgICAgICAgICAgc2VsZi5fY29udGV4dC5sb2dfcmVzdWx0KGtleT1tZXRyaWNfbmFtZSwgdmFsdWU9bWV0cmljX3Njb3Jlc1stMV0pCiAgICAgICAgICAgIGlmIGxlbihtZXRyaWNfc2NvcmVzKSA+IDE6CiAgICAgICAgICAgICAgICBzZWxmLl9sb2dfbWV0cmljX3Bsb3QobmFtZT1tZXRyaWNfbmFtZSwgc2NvcmVzPW1ldHJpY19zY29yZXMpCiAgICAgICAgc2VsZi5fY29udGV4dC5jb21taXQoY29tcGxldGVkPUZhbHNlKQoKICAgIGRlZiBfbG9nX21ldHJpY19wbG90KHNlbGYsIG5hbWU6IHN0ciwgc2NvcmVzOiBMaXN0W2Zsb2F0XSk6CiAgICAgICAgIyBJbml0aWFsaXplIGEgcGxvdGx5IGZpZ3VyZToKICAgICAgICBtZXRyaWNfZmlndXJlID0gZ28uRmlndXJlKCkKCiAgICAgICAgIyBBZGQgdGl0bGVzOgogICAgICAgIG1ldHJpY19maWd1cmUudXBkYXRlX2xheW91dCgKICAgICAgICAgICAgdGl0bGU9bmFtZS5jYXBpdGFsaXplKCkucmVwbGFjZSgiXyIsICIgIiksCiAgICAgICAgICAgIHhheGlzX3RpdGxlPSJTYW1wbGVzIiwKICAgICAgICAgICAgeWF4aXNfdGl0bGU9IlNjb3JlcyIsCiAgICAgICAgKQoKICAgICAgICAjIERyYXc6CiAgICAgICAgbWV0cmljX2ZpZ3VyZS5hZGRfdHJhY2UoCiAgICAgICAgICAgIGdvLlNjYXR0ZXIoeD1ucC5hcmFuZ2UobGVuKHNjb3JlcykpLCB5PXNjb3JlcywgbW9kZT0ibGluZXMiKQogICAgICAgICkKCiAgICAgICAgIyBDcmVhdGUgdGhlIHBsb3RseSBhcnRpZmFjdDoKICAgICAgICBhcnRpZmFjdF9uYW1lID0gZiJ7bmFtZX1fcGxvdCIKICAgICAgICBhcnRpZmFjdCA9IFBsb3RseUFydGlmYWN0KGtleT1hcnRpZmFjdF9uYW1lLCBmaWd1cmU9bWV0cmljX2ZpZ3VyZSkKICAgICAgICBzZWxmLl9hcnRpZmFjdHNbYXJ0aWZhY3RfbmFtZV0gPSBzZWxmLl9jb250ZXh0LmxvZ19hcnRpZmFjdChhcnRpZmFjdCkKCgpkZWYgX2FwcGx5X21scnVuX29uX3RyYWluZXIoCiAgICB0cmFpbmVyOiB0cmFuc2Zvcm1lcnMuVHJhaW5lciwKICAgIG1vZGVsX25hbWU6IHN0ciA9IE5vbmUsCiAgICB0YWc6IHN0ciA9ICIiLAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHggPSBOb25lLAogICAgYXV0b19sb2c6IGJvb2wgPSBUcnVlLAogICAgbGFiZWxzOiBEaWN0W3N0ciwgc3RyXSA9IE5vbmUsCiAgICBleHRyYV9kYXRhOiBkaWN0ID0gTm9uZSwKICAgICoqa3dhcmdzLAopOgogICAgIyBHZXQgcGFyYW1ldGVycyBkZWZhdWx0czoKICAgIGlmIGNvbnRleHQgaXMgTm9uZToKICAgICAgICBjb250ZXh0ID0gbWxydW4uZ2V0X29yX2NyZWF0ZV9jdHgoSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UuREVGQVVMVF9DT05URVhUX05BTUUpCgogICAgSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UuYWRkX2ludGVyZmFjZShvYmo9dHJhaW5lcikKCiAgICBpZiBhdXRvX2xvZzoKICAgICAgICB0cmFpbmVyLmFkZF9jYWxsYmFjaygKICAgICAgICAgICAgTUxSdW5DYWxsYmFjaygKICAgICAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgICAgIHRhZz10YWcsCiAgICAgICAgICAgICAgICBsYWJlbHM9bGFiZWxzLAogICAgICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICAgICApCiAgICAgICAgKQoKCmRlZiBfYXBwbHlfbWxydW5fb25fb3B0aW1pemVyKAogICAgb3B0aW1pemVyLAogICAgbW9kZWxfbmFtZTogc3RyID0gTm9uZSwKICAgIHRhZzogc3RyID0gIiIsCiAgICBjb250ZXh0OiBtbHJ1bi5NTENsaWVudEN0eCA9IE5vbmUsCiAgICBhdXRvX2xvZzogYm9vbCA9IFRydWUsCiAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgIGV4dHJhX2RhdGE6IGRpY3QgPSBOb25lLAogICAgKiprd2FyZ3MsCik6CiAgICAjIEdldCBwYXJhbWV0ZXJzIGRlZmF1bHRzOgogICAgaWYgY29udGV4dCBpcyBOb25lOgogICAgICAgIGNvbnRleHQgPSBtbHJ1bi5nZXRfb3JfY3JlYXRlX2N0eCgKICAgICAgICAgICAgSEZPUlRPcHRpbWl6ZXJNTFJ1bkludGVyZmFjZS5ERUZBVUxUX0NPTlRFWFRfTkFNRQogICAgICAgICkKCiAgICBIRk9SVE9wdGltaXplck1MUnVuSW50ZXJmYWNlLmFkZF9pbnRlcmZhY2Uob2JqPW9wdGltaXplcikKCiAgICBpZiBhdXRvX2xvZzoKICAgICAgICBvcHRpbWl6ZXIuZW5hYmxlX2F1dG9fbG9nZ2luZygKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBtb2RlbF9uYW1lPW1vZGVsX25hbWUsCiAgICAgICAgICAgIHRhZz10YWcsCiAgICAgICAgICAgIGxhYmVscz1sYWJlbHMsCiAgICAgICAgICAgIGV4dHJhX2RhdGE9ZXh0cmFfZGF0YSwKICAgICAgICApCgoKZGVmIGFwcGx5X21scnVuKAogICAgaHVnZ2luZ2ZhY2Vfb2JqZWN0LAogICAgbW9kZWxfbmFtZTogc3RyID0gTm9uZSwKICAgIHRhZzogc3RyID0gIiIsCiAgICBjb250ZXh0OiBtbHJ1bi5NTENsaWVudEN0eCA9IE5vbmUsCiAgICBhdXRvX2xvZzogYm9vbCA9IFRydWUsCiAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgIGV4dHJhX2RhdGE6IGRpY3QgPSBOb25lLAogICAgKiprd2FyZ3MsCik6CiAgICAiIiIKICAgIFdyYXAgdGhlIGdpdmVuIG1vZGVsIHdpdGggTUxSdW4ncyBpbnRlcmZhY2UgcHJvdmlkaW5nIGl0IHdpdGggbWxydW4ncyBhZGRpdGlvbmFsIGZlYXR1cmVzLgogICAgOnBhcmFtIGh1Z2dpbmdmYWNlX29iamVjdDogVGhlIG1vZGVsIHRvIHdyYXAuIENhbiBiZSBsb2FkZWQgZnJvbSB0aGUgbW9kZWwgcGF0aCBnaXZlbiBhcyB3ZWxsLgogICAgOnBhcmFtIG1vZGVsX25hbWU6ICAgICAgICAgVGhlIG1vZGVsIG5hbWUgdG8gdXNlIGZvciBzdG9yaW5nIHRoZSBtb2RlbCBhcnRpZmFjdC4gRGVmYXVsdDogIm1vZGVsIi4KICAgIDpwYXJhbSB0YWc6ICAgICAgICAgICAgICAgIFRoZSBtb2RlbCdzIHRhZyB0byBsb2cgd2l0aC4KICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgIE1MUnVuIGNvbnRleHQgdG8gd29yayB3aXRoLiBJZiBubyBjb250ZXh0IGlzIGdpdmVuIGl0IHdpbGwgYmUgcmV0cmlldmVkIHZpYQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ21scnVuLmdldF9vcl9jcmVhdGVfY3R4KE5vbmUpJwogICAgOnBhcmFtIGF1dG9fbG9nOiAgICAgICAgICAgV2hldGhlciB0byBlbmFibGUgTUxSdW4ncyBhdXRvIGxvZ2dpbmcuIERlZmF1bHQ6IFRydWUuCiAgICAiIiIKCiAgICBpZiBpc2luc3RhbmNlKGh1Z2dpbmdmYWNlX29iamVjdCwgdHJhbnNmb3JtZXJzLlRyYWluZXIpOgogICAgICAgIHJldHVybiBfYXBwbHlfbWxydW5fb25fdHJhaW5lcigKICAgICAgICAgICAgdHJhaW5lcj1odWdnaW5nZmFjZV9vYmplY3QsCiAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgdGFnPXRhZywKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBhdXRvX2xvZz1hdXRvX2xvZywKICAgICAgICAgICAgbGFiZWxzPWxhYmVscywKICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICkKICAgIGltcG9ydCBvcHRpbXVtLm9ubnhydW50aW1lIGFzIG9wdGltdW1fb3J0CgogICAgaWYgaXNpbnN0YW5jZShodWdnaW5nZmFjZV9vYmplY3QsIG9wdGltdW1fb3J0Lk9SVE9wdGltaXplcik6CiAgICAgICAgcmV0dXJuIF9hcHBseV9tbHJ1bl9vbl9vcHRpbWl6ZXIoCiAgICAgICAgICAgIG9wdGltaXplcj1odWdnaW5nZmFjZV9vYmplY3QsCiAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgdGFnPXRhZywKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBhdXRvX2xvZz1hdXRvX2xvZywKICAgICAgICAgICAgbGFiZWxzPWxhYmVscywKICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICkKICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yCgoKIyAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tIGZyb20gYXV0b190cmFpbmVyLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KY2xhc3MgS1dBcmdzUHJlZml4ZXM6CiAgICBNT0RFTF9DTEFTUyA9ICJDTEFTU18iCiAgICBGSVQgPSAiRklUXyIKICAgIFRSQUlOID0gIlRSQUlOXyIKICAgIFBSRURJQ1QgPSAiUFJFRElDVF8iCgoKZGVmIF9nZXRfc3ViX2RpY3RfYnlfcHJlZml4KHNyYzogRGljdCwgcHJlZml4X2tleTogc3RyKSAtPiBEaWN0W3N0ciwgQW55XToKICAgICIiIgogICAgQ29sbGVjdCBhbGwgdGhlIGtleXMgZnJvbSB0aGUgZ2l2ZW4gZGljdCB0aGF0IHN0YXJ0cyB3aXRoIHRoZSBnaXZlbiBwcmVmaXggYW5kIGNyZWF0ZXMgYSBuZXcgZGljdGlvbmFyeSB3aXRoIHRoZXNlCiAgICBrZXlzLgoKICAgIDpwYXJhbSBzcmM6ICAgICAgICAgVGhlIHNvdXJjZSBkaWN0IHRvIGV4dHJhY3QgdGhlIHZhbHVlcyBmcm9tLgogICAgOnBhcmFtIHByZWZpeF9rZXk6ICBPbmx5IGtleXMgd2l0aCB0aGlzIHByZWZpeCB3aWxsIGJlIHJldHVybmVkLiBUaGUga2V5cyBpbiB0aGUgcmVzdWx0IGRpY3Qgd2lsbCBiZSB3aXRob3V0IHRoaXMKICAgICAgICAgICAgICAgICAgICAgICAgcHJlZml4LgogICAgIiIiCiAgICByZXR1cm4gewogICAgICAgIGtleS5yZXBsYWNlKHByZWZpeF9rZXksICIiKTogdmFsCiAgICAgICAgZm9yIGtleSwgdmFsIGluIHNyYy5pdGVtcygpCiAgICAgICAgaWYga2V5LnN0YXJ0c3dpdGgocHJlZml4X2tleSkKICAgIH0KCgpkZWYgX2dldF9kYXRhZnJhbWUoCiAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgIGRhdGFzZXQ6IERhdGFJdGVtLAogICAgbGFiZWxfY29sdW1uczogT3B0aW9uYWxbVW5pb25bc3RyLCBMaXN0W3N0cl1dXSA9IE5vbmUsCiAgICBkcm9wX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdLCBpbnQsIExpc3RbaW50XV0gPSBOb25lLAopIC0+IFR1cGxlW3BkLkRhdGFGcmFtZSwgT3B0aW9uYWxbVW5pb25bc3RyLCBMaXN0W3N0cl1dXV06CiAgICAiIiIKICAgIEdldHRpbmcgdGhlIERhdGFGcmFtZSBvZiB0aGUgZGF0YXNldCBhbmQgZHJvcCB0aGUgY29sdW1ucyBhY2NvcmRpbmdseS4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICBNTFJ1biBjb250ZXh0LgogICAgOnBhcmFtIGRhdGFzZXQ6ICAgICAgICAgVGhlIGRhdGFzZXQgdG8gdHJhaW4gdGhlIG1vZGVsIG9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIGVpdGhlciBhIGxpc3Qgb2YgbGlzdHMsIGRpY3QsIFVSSSBvciBhIEZlYXR1cmVWZWN0b3IuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQuIGZvciBSZWdyZXNzaW9uIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBDbGFzc2lmaWNhdGlvbiB0YXNrcy4KICAgIDpwYXJhbSBkcm9wX2NvbHVtbnM6ICAgIHN0ci9pbnQgb3IgYSBsaXN0IG9mIHN0cmluZ3MvaW50cyB0aGF0IHJlcHJlc2VudCB0aGUgY29sdW1uIG5hbWVzL2luZGljZXMgdG8gZHJvcC4KICAgICIiIgogICAgaWYgaXNpbnN0YW5jZShkYXRhc2V0LCAobGlzdCwgZGljdCkpOgogICAgICAgIGRhdGFzZXQgPSBwZC5EYXRhRnJhbWUoZGF0YXNldCkKICAgICAgICAjIENoZWNraW5nIGlmIGRyb3BfY29sdW1ucyBwcm92aWRlZCBieSBpbnRlZ2VyIHR5cGU6CiAgICAgICAgaWYgZHJvcF9jb2x1bW5zOgogICAgICAgICAgICBpZiBpc2luc3RhbmNlKGRyb3BfY29sdW1ucywgc3RyKSBvciAoCiAgICAgICAgICAgICAgICBpc2luc3RhbmNlKGRyb3BfY29sdW1ucywgbGlzdCkKICAgICAgICAgICAgICAgIGFuZCBhbnkoaXNpbnN0YW5jZShjb2wsIHN0cikgZm9yIGNvbCBpbiBkcm9wX2NvbHVtbnMpCiAgICAgICAgICAgICk6CiAgICAgICAgICAgICAgICBjb250ZXh0LmxvZ2dlci5lcnJvcigKICAgICAgICAgICAgICAgICAgICAiZHJvcF9jb2x1bW5zIG11c3QgYmUgYW4gaW50ZWdlci9saXN0IG9mIGludGVnZXJzIGlmIG5vdCBwcm92aWRlZCB3aXRoIGEgVVJJL0ZlYXR1cmVWZWN0b3IgZGF0YXNldCIKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IKICAgICAgICAgICAgZGF0YXNldC5kcm9wKGRyb3BfY29sdW1ucywgYXhpcz0xLCBpbnBsYWNlPVRydWUpCgogICAgICAgIHJldHVybiBkYXRhc2V0LCBsYWJlbF9jb2x1bW5zCgogICAgc3RvcmVfdXJpX3ByZWZpeCwgXyA9IG1scnVuLmRhdGFzdG9yZS5wYXJzZV9zdG9yZV91cmkoZGF0YXNldC5hcnRpZmFjdF91cmwpCiAgICBpZiBtbHJ1bi51dGlscy5TdG9yZVByZWZpeC5GZWF0dXJlVmVjdG9yID09IHN0b3JlX3VyaV9wcmVmaXg6CiAgICAgICAgIyBmZWF0dXJlLXZlY3RvciBjYXNlOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBsYWJlbF9jb2x1bW5zIG9yIGRhdGFzZXQubWV0YS5zdGF0dXMubGFiZWxfY29sdW1uCiAgICAgICAgZGF0YXNldCA9IGZzLmdldF9vZmZsaW5lX2ZlYXR1cmVzKAogICAgICAgICAgICBkYXRhc2V0Lm1ldGEudXJpLCBkcm9wX2NvbHVtbnM9ZHJvcF9jb2x1bW5zCiAgICAgICAgKS50b19kYXRhZnJhbWUoKQoKICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYibGFiZWwgY29sdW1uczoge2xhYmVsX2NvbHVtbnN9IikKICAgIGVsc2U6CiAgICAgICAgIyBzaW1wbGUgVVJMIGNhc2U6CiAgICAgICAgZGF0YXNldCA9IGRhdGFzZXQuYXNfZGYoKQogICAgICAgIGlmIGRyb3BfY29sdW1uczoKICAgICAgICAgICAgaWYgYWxsKGNvbCBpbiBkYXRhc2V0IGZvciBjb2wgaW4gZHJvcF9jb2x1bW5zKToKICAgICAgICAgICAgICAgIGRhdGFzZXQgPSBkYXRhc2V0LmRyb3AoZHJvcF9jb2x1bW5zLCBheGlzPTEpCiAgICAgICAgICAgIGVsc2U6CiAgICAgICAgICAgICAgICBjb250ZXh0LmxvZ2dlci5pbmZvKAogICAgICAgICAgICAgICAgICAgICJub3QgYWxsIG9mIHRoZSBjb2x1bW5zIHRvIGRyb3AgaW4gdGhlIGRhdGFzZXQsIGRyb3AgY29sdW1ucyBwcm9jZXNzIHNraXBwZWQiCiAgICAgICAgICAgICAgICApCiAgICByZXR1cm4gZGF0YXNldCwgbGFiZWxfY29sdW1ucwoKCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSBIdWdnaW5nIEZhY2UgVHJhaW5lciAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQoKCmRlZiBfY3JlYXRlX2NvbXB1dGVfbWV0cmljcyhtZXRyaWNzOiBMaXN0W3N0cl0pIC0+IENhbGxhYmxlW1tFdmFsUHJlZGljdGlvbl0sIERpY3RdOgogICAgIiIiCiAgICBUaGlzIGZ1bmN0aW9uIGNyZWF0ZSBhbmQgcmV0dXJucyBhIGZ1bmN0aW9uIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGNvbXB1dGUgbWV0cmljcyBhdCBldmFsdWF0aW9uLgogICAgOnBhcmFtIG1ldHJpY3M6IExpc3Qgb2YgZGlmZmVyZW50IG1ldHJpY3MgZm9yIGV2YWx1YXRlIHRoZSBtb2RlbCBzdWNoIGFzIGYxLCBhY2N1cmFjeSBldGMuCgogICAgOnJldHVybnM6IEZ1bmN0aW9uIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGNvbXB1dGUgbWV0cmljcyBhdCBldmFsdWF0aW9uLgogICAgICAgICAgICAgTXVzdCB0YWtlIGEgW2BFdmFsUHJlZGljdGlvbmBdIGFuZCByZXR1cm4gYSBkaWN0aW9uYXJ5IHN0cmluZyB0byBtZXRyaWMgdmFsdWVzLgogICAgIiIiCgogICAgZGVmIF9jb21wdXRlX21ldHJpY3MoZXZhbF9wcmVkKToKICAgICAgICBsb2dpdHMsIGxhYmVscyA9IGV2YWxfcHJlZAogICAgICAgIHByZWRpY3Rpb25zID0gbnAuYXJnbWF4KGxvZ2l0cywgYXhpcz0tMSkKICAgICAgICBtZXRyaWNfZGljdF9yZXN1bHRzID0ge30KICAgICAgICBmb3IgbWV0cmljIGluIG1ldHJpY3M6CiAgICAgICAgICAgIGxvYWRfbWV0ID0gbG9hZF9tZXRyaWMobWV0cmljKQogICAgICAgICAgICBtZXRyaWNfcmVzID0gbG9hZF9tZXQuY29tcHV0ZShwcmVkaWN0aW9ucz1wcmVkaWN0aW9ucywgcmVmZXJlbmNlcz1sYWJlbHMpWwogICAgICAgICAgICAgICAgbWV0cmljCiAgICAgICAgICAgIF0KICAgICAgICAgICAgbWV0cmljX2RpY3RfcmVzdWx0c1ttZXRyaWNdID0gbWV0cmljX3JlcwoKICAgICAgICByZXR1cm4gbWV0cmljX2RpY3RfcmVzdWx0cwoKICAgIHJldHVybiBfY29tcHV0ZV9tZXRyaWNzCgoKZGVmIF9lZGl0X2NvbHVtbnMoCiAgICBkYXRhc2V0OiBEYXRhc2V0LAogICAgZHJvcF9jb2x1bW5zOiBMaXN0W3N0cl0gPSBOb25lLAogICAgcmVuYW1lX2NvbHVtbnM6IFtzdHIsIHN0cl0gPSBOb25lLAopIC0+IERhdGFzZXQ6CiAgICAiIiIKICAgIERyb3AgYW5kIHJlbmFtZXMgdGhhdCBjb2x1bW5zIG9mIHRoZSBnaXZlbiBkYXRhc2V0CiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICBEYXRhc2V0IHRvIHByb2Nlc3MKICAgIDpwYXJhbSBkcm9wX2NvbHVtbnM6ICAgIFRoZSBjb2x1bW5zIHRvIGRyb3AgZnJvbSB0aGUgZGF0YXNldC4KICAgIDpwYXJhbSByZW5hbWVfY29sdW1uczogIERpY3Qgb2YgY29sdW1ucyBybyByZW5hbWUgOiB7PG9sZF9uYW1lPjogPG5ld19uYW1lPiwgLi4ufQoKICAgIDpyZXR1cm5zOiBUaGUgZGF0YXNldCBhZnRlciB0aGUgZGVzaXJlZCBwcm9jZXNzCiAgICAiIiIKICAgIGlmIGRyb3BfY29sdW1uczoKICAgICAgICBkYXRhc2V0ID0gZGF0YXNldC5yZW1vdmVfY29sdW1ucyhkcm9wX2NvbHVtbnMpCiAgICBpZiByZW5hbWVfY29sdW1uczoKICAgICAgICBkYXRhc2V0ID0gZGF0YXNldC5yZW5hbWVfY29sdW1ucyhyZW5hbWVfY29sdW1ucykKICAgIHJldHVybiBkYXRhc2V0CgoKZGVmIF9wcmVwYXJlX2RhdGFzZXQoCiAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgIGRhdGFzZXRfbmFtZTogc3RyLAogICAgbGFiZWxfbmFtZTogc3RyID0gTm9uZSwKICAgIGRyb3BfY29sdW1uczogT3B0aW9uYWxbTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBudW1fb2ZfdHJhaW5fc2FtcGxlczogaW50ID0gTm9uZSwKICAgIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZTogZmxvYXQgPSBOb25lLAogICAgcmFuZG9tX3N0YXRlOiBpbnQgPSBOb25lLAopIC0+IFR1cGxlW0RhdGFzZXQsIERhdGFzZXRdOgogICAgIiIiCiAgICBMb2FkaW5nIHRoZSBkYXRhc2V0IGFuZCBlZGl0aW5nIHRoZSBjb2x1bW5zCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgICAgICAgICBNTFJ1biBjb250ZXgKICAgIDpwYXJhbSBkYXRhc2V0X25hbWU6ICAgICAgICAgICAgVGhlIG5hbWUgb2YgdGhlIGRhdGFzZXQgdG8gZ2V0IGZyb20gdGhlIEh1Z2dpbmdGYWNlIGh1YgogICAgOnBhcmFtIGxhYmVsX25hbWU6ICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsIG9mIHRoZSBjb2x1bW4gaW4gdGhlIGRhdGFzZXQuCiAgICA6cGFyYW0gZHJvcF9jb2x1bW5zOiAgICAgICAgICAgIFRoZSBjb2x1bW5zIHRvIGRyb3AgZnJvbSB0aGUgZGF0YXNldC4KICAgIDpwYXJhbSBudW1fb2ZfdHJhaW5fc2FtcGxlczogICAgTWF4IG51bWJlciBvZiB0cmFpbmluZyBzYW1wbGVzLCBmb3IgZGVidWdnaW5nLgogICAgOnBhcmFtIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZTogICBTaG91bGQgYmUgYmV0d2VlbiAwLjAgYW5kIDEuMCBhbmQgcmVwcmVzZW50IHRoZSBwcm9wb3J0aW9uIG9mIHRoZSBkYXRhc2V0IHRvIGluY2x1ZGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW4gdGhlIHRlc3Qgc3BsaXQuCiAgICA6cGFyYW0gcmFuZG9tX3N0YXRlOiAgICAgICAgICAgIFJhbmRvbSBzdGF0ZSBmb3IgdHJhaW5fdGVzdF9zcGxpdAoKICAgICIiIgoKICAgIGNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgZiJMb2FkaW5nIGFuZCBlZGl0aW5nIHtkYXRhc2V0X25hbWV9IGRhdGFzZXQgZnJvbSBIdWdnaW5nIEZhY2UgaHViIgogICAgKQogICAgcmVuYW1lX2NvbHMgPSB7bGFiZWxfbmFtZTogImxhYmVscyJ9CgogICAgIyBMb2FkaW5nIGFuZCBlZGl0aW5nIGRhdGFzZXQ6CiAgICBkYXRhc2V0ID0gbG9hZF9kYXRhc2V0KGRhdGFzZXRfbmFtZSkKCiAgICAjIHRyYWluIHNldAogICAgdHJhaW5fZGF0YXNldCA9IGRhdGFzZXRbInRyYWluIl0KICAgIGlmIG51bV9vZl90cmFpbl9zYW1wbGVzOgogICAgICAgIHRyYWluX2RhdGFzZXQgPSB0cmFpbl9kYXRhc2V0LnNodWZmbGUoc2VlZD1yYW5kb21fc3RhdGUpLnNlbGVjdCgKICAgICAgICAgICAgbGlzdChyYW5nZShudW1fb2ZfdHJhaW5fc2FtcGxlcykpCiAgICAgICAgKQogICAgdHJhaW5fZGF0YXNldCA9IF9lZGl0X2NvbHVtbnModHJhaW5fZGF0YXNldCwgZHJvcF9jb2x1bW5zLCByZW5hbWVfY29scykKCiAgICAjIHRlc3Qgc2V0CiAgICB0ZXN0X2RhdGFzZXQgPSBkYXRhc2V0WyJ0ZXN0Il0KICAgIGlmIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZSBvciBudW1fb2ZfdHJhaW5fc2FtcGxlczoKICAgICAgICB0cmFpbl90ZXN0X3NwbGl0X3NpemUgPSB0cmFpbl90ZXN0X3NwbGl0X3NpemUgb3IgMC4yCiAgICAgICAgbnVtX29mX3Rlc3Rfc2FtcGxlcyA9IGludCgKICAgICAgICAgICAgKHRyYWluX2RhdGFzZXQubnVtX3Jvd3MgKiB0cmFpbl90ZXN0X3NwbGl0X3NpemUpCiAgICAgICAgICAgIC8vICgxIC0gdHJhaW5fdGVzdF9zcGxpdF9zaXplKQogICAgICAgICkKICAgICAgICB0ZXN0X2RhdGFzZXQgPSB0ZXN0X2RhdGFzZXQuc2h1ZmZsZShzZWVkPXJhbmRvbV9zdGF0ZSkuc2VsZWN0KAogICAgICAgICAgICBsaXN0KHJhbmdlKG51bV9vZl90ZXN0X3NhbXBsZXMpKQogICAgICAgICkKICAgIHRlc3RfZGF0YXNldCA9IF9lZGl0X2NvbHVtbnModGVzdF9kYXRhc2V0LCBkcm9wX2NvbHVtbnMsIHJlbmFtZV9jb2xzKQoKICAgIHJldHVybiB0cmFpbl9kYXRhc2V0LCB0ZXN0X2RhdGFzZXQKCgpkZWYgdHJhaW4oCiAgICBjb250ZXh0OiBNTENsaWVudEN0eCwKICAgIGhmX2RhdGFzZXQ6IHN0ciA9IE5vbmUsCiAgICBkYXRhc2V0OiBEYXRhSXRlbSA9IE5vbmUsCiAgICB0ZXN0X3NldDogRGF0YUl0ZW0gPSBOb25lLAogICAgZHJvcF9jb2x1bW5zOiBPcHRpb25hbFtMaXN0W3N0cl1dID0gTm9uZSwKICAgIHByZXRyYWluZWRfdG9rZW5pemVyOiBzdHIgPSBOb25lLAogICAgcHJldHJhaW5lZF9tb2RlbDogc3RyID0gTm9uZSwKICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgbW9kZWxfbmFtZTogc3RyID0gImh1Z2dpbmdmYWNlLW1vZGVsIiwKICAgIGxhYmVsX25hbWU6IHN0ciA9ICJsYWJlbHMiLAogICAgdGV4dF9jb2w6IHN0ciA9ICJ0ZXh0IiwKICAgIG51bV9vZl90cmFpbl9zYW1wbGVzOiBpbnQgPSBOb25lLAogICAgdHJhaW5fdGVzdF9zcGxpdF9zaXplOiBmbG9hdCA9IE5vbmUsCiAgICBtZXRyaWNzOiBMaXN0W3N0cl0gPSBOb25lLAogICAgcmFuZG9tX3N0YXRlOiBpbnQgPSBOb25lLAopOgogICAgIiIiCiAgICBUcmFpbmluZyBhbmQgZXZhbHVhdGluZyBhIHByZXRyYWluZWQgbW9kZWwgd2l0aCBhIHByZXRyYWluZWQgdG9rZW5pemVyIG92ZXIgYSBkYXRhc2V0LgogICAgVGhlIGRhdGFzZXQgY2FuIGJlIGVpdGhlciBiZSB0aGUgbmFtZSBvZiB0aGUgZGF0YXNldCB0aGF0IGNvbnRhaW5zIGluIHRoZSBIdWdnaW5nRmFjZSBodWIsCiAgICBvciBhIFVSSSBvciBhIEZlYXR1cmVWZWN0b3IKCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQKICAgIDpwYXJhbSBoZl9kYXRhc2V0OiAgICAgICAgICAgICAgVGhlIG5hbWUgb2YgdGhlIGRhdGFzZXQgdG8gZ2V0IGZyb20gdGhlIEh1Z2dpbmdGYWNlIGh1YgogICAgOnBhcmFtIGRhdGFzZXQ6ICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byB0cmFpbiB0aGUgbW9kZWwgb24uIENhbiBiZSBlaXRoZXIgYSBVUkkgb3IgYSBGZWF0dXJlVmVjdG9yCiAgICA6cGFyYW0gdGVzdF9zZXQ6ICAgICAgICAgICAgICAgIFRoZSB0ZXN0IHNldCB0byB0cmFpbiB0aGUgbW9kZWwgd2l0aC4KICAgIDpwYXJhbSBkcm9wX2NvbHVtbnM6ICAgICAgICAgICAgVGhlIGNvbHVtbnMgdG8gZHJvcCBmcm9tIHRoZSBkYXRhc2V0LgogICAgOnBhcmFtIHByZXRyYWluZWRfdG9rZW5pemVyOiAgICBUaGUgbmFtZSBvZiB0aGUgcHJldHJhaW5lZCB0b2tlbml6ZXIgZnJvbSB0aGUgSHVnZ2luZ0ZhY2UgaHViLgogICAgOnBhcmFtIHByZXRyYWluZWRfbW9kZWw6ICAgICAgICBUaGUgbmFtZSBvZiB0aGUgcHJldHJhaW5lZCBtb2RlbCBmcm9tIHRoZSBIdWdnaW5nRmFjZSBodWIuCiAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICAgICAgICAgIFRoZSBtb2RlbCdzIG5hbWUgdG8gdXNlIGZvciBzdG9yaW5nIHRoZSBtb2RlbCBhcnRpZmFjdCwgZGVmYXVsdCB0byAnbW9kZWwnCiAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICAgICAgICAgIFRoZSBjbGFzcyBvZiB0aGUgbW9kZWwsIGUuZy4gYHRyYW5zZm9ybWVycy5BdXRvTW9kZWxGb3JTZXF1ZW5jZUNsYXNzaWZpY2F0aW9uYAogICAgOnBhcmFtIGxhYmVsX25hbWU6ICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsIG9mIHRoZSBjb2x1bW4gaW4gdGhlIGRhdGFzZXQuCiAgICA6cGFyYW0gdGV4dF9jb2w6ICAgICAgICAgICAgICAgIFRoZSBpbnB1dCB0ZXh0IGNvbHVtbiB1biB0aGUgZGF0YXNldC4KICAgIDpwYXJhbSBudW1fb2ZfdHJhaW5fc2FtcGxlczogICAgTWF4IG51bWJlciBvZiB0cmFpbmluZyBzYW1wbGVzLCBmb3IgZGVidWdnaW5nLgogICAgOnBhcmFtIHRyYWluX3Rlc3Rfc3BsaXRfc2l6ZTogICBTaG91bGQgYmUgYmV0d2VlbiAwLjAgYW5kIDEuMCBhbmQgcmVwcmVzZW50IHRoZSBwcm9wb3J0aW9uIG9mIHRoZSBkYXRhc2V0IHRvIGluY2x1ZGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaW4gdGhlIHRlc3Qgc3BsaXQuCiAgICA6cGFyYW0gbWV0cmljczogICAgICAgICAgICAgICAgIExpc3Qgb2YgZGlmZmVyZW50IG1ldHJpY3MgZm9yIGV2YWx1YXRlIHRoZSBtb2RlbCBzdWNoIGFzIGYxLCBhY2N1cmFjeSBldGMuCiAgICA6cGFyYW0gcmFuZG9tX3N0YXRlOiAgICAgICAgICAgIFJhbmRvbSBzdGF0ZSBmb3IgdHJhaW5fdGVzdF9zcGxpdAogICAgIiIiCgogICAgaWYgdHJhaW5fdGVzdF9zcGxpdF9zaXplIGlzIE5vbmUgYW5kIHRlc3Rfc2V0IGlzIE5vbmU6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygKICAgICAgICAgICAgIid0cmFpbl90ZXN0X3NwbGl0X3NpemUnIGlzIG5vdCBwcm92aWRlZCwgc2V0dGluZyB0cmFpbl90ZXN0X3NwbGl0X3NpemUgdG8gMC4yIgogICAgICAgICkKICAgICAgICB0cmFpbl90ZXN0X3NwbGl0X3NpemUgPSAwLjIKCiAgICAjIENyZWF0aW5nIHRva2VuaXplcjoKICAgIHRva2VuaXplciA9IEF1dG9Ub2tlbml6ZXIuZnJvbV9wcmV0cmFpbmVkKHByZXRyYWluZWRfdG9rZW5pemVyKQoKICAgIGRlZiBwcmVwcm9jZXNzX2Z1bmN0aW9uKGV4YW1wbGVzKToKICAgICAgICByZXR1cm4gdG9rZW5pemVyKGV4YW1wbGVzW3RleHRfY29sXSwgdHJ1bmNhdGlvbj1UcnVlKQoKICAgICMgcHJlcGFyZSBkYXRhIGZvciB0cmFpbmluZwogICAgaWYgaGZfZGF0YXNldDoKICAgICAgICB0cmFpbl9kYXRhc2V0LCB0ZXN0X2RhdGFzZXQgPSBfcHJlcGFyZV9kYXRhc2V0KAogICAgICAgICAgICBjb250ZXh0LAogICAgICAgICAgICBoZl9kYXRhc2V0LAogICAgICAgICAgICBsYWJlbF9uYW1lLAogICAgICAgICAgICBkcm9wX2NvbHVtbnMsCiAgICAgICAgICAgIG51bV9vZl90cmFpbl9zYW1wbGVzLAogICAgICAgICAgICB0cmFpbl90ZXN0X3NwbGl0X3NpemUsCiAgICAgICAgICAgIHJhbmRvbV9zdGF0ZT1yYW5kb21fc3RhdGUsCiAgICAgICAgKQogICAgZWxpZiBkYXRhc2V0OgogICAgICAgICMgR2V0IERhdGFGcmFtZSBieSBVUkwgb3IgYnkgRmVhdHVyZVZlY3RvcjoKICAgICAgICB0cmFpbl9kYXRhc2V0LCBsYWJlbF9uYW1lID0gX2dldF9kYXRhZnJhbWUoCiAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgZGF0YXNldD1kYXRhc2V0LAogICAgICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX25hbWUsCiAgICAgICAgICAgIGRyb3BfY29sdW1ucz1kcm9wX2NvbHVtbnMsCiAgICAgICAgKQogICAgICAgIGlmIHRlc3Rfc2V0OgogICAgICAgICAgICB0ZXN0X2RhdGFzZXQsIF8gPSBfZ2V0X2RhdGFmcmFtZSgKICAgICAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgIGRhdGFzZXQ9dGVzdF9zZXQsCiAgICAgICAgICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX25hbWUsCiAgICAgICAgICAgICAgICBkcm9wX2NvbHVtbnM9ZHJvcF9jb2x1bW5zLAogICAgICAgICAgICApCiAgICAgICAgZWxzZToKICAgICAgICAgICAgdHJhaW5fZGF0YXNldCwgdGVzdF9kYXRhc2V0ID0gdHJhaW5fdGVzdF9zcGxpdCgKICAgICAgICAgICAgICAgIHRyYWluX2RhdGFzZXQsCiAgICAgICAgICAgICAgICB0ZXN0X3NpemU9dHJhaW5fdGVzdF9zcGxpdF9zaXplLAogICAgICAgICAgICAgICAgcmFuZG9tX3N0YXRlPXJhbmRvbV9zdGF0ZSwKICAgICAgICAgICAgKQogICAgICAgIHRyYWluX2RhdGFzZXQgPSBEYXRhc2V0LmZyb21fcGFuZGFzKHRyYWluX2RhdGFzZXQpCiAgICAgICAgdGVzdF9kYXRhc2V0ID0gRGF0YXNldC5mcm9tX3BhbmRhcyh0ZXN0X2RhdGFzZXQpCiAgICBlbHNlOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICAiVHJhaW5pbmcgZGF0YSB3YXMgbm90IHByb3ZpZGVkLiBBIHRyYWluaW5nIGRhdGFzZXQgaXMgbWFuZGF0b3J5IGZvciB0cmFpbmluZy4iCiAgICAgICAgICAgICIgUGxlYXNlIHByb3ZpZGUgYSB0cmFpbmluZyBzZXQgdXNpbmcgb25lIG9mIHRoZSBhcmd1bWVudHMgJ2hmX2RhdGFzZXQnIG9yICdkYXRhc2V0Jy4iCiAgICAgICAgKQoKICAgICMgTWFwcGluZyBkYXRhc2V0cyB3aXRoIHRoZSB0b2tlbml6ZXI6CiAgICB0b2tlbml6ZWRfdHJhaW4gPSB0cmFpbl9kYXRhc2V0Lm1hcChwcmVwcm9jZXNzX2Z1bmN0aW9uLCBiYXRjaGVkPVRydWUpCiAgICB0b2tlbml6ZWRfdGVzdCA9IHRlc3RfZGF0YXNldC5tYXAocHJlcHJvY2Vzc19mdW5jdGlvbiwgYmF0Y2hlZD1UcnVlKQoKICAgICMgQ3JlYXRpbmcgZGF0YSBjb2xsYXRvciBmb3IgYmF0Y2hpbmc6CiAgICBkYXRhX2NvbGxhdG9yID0gRGF0YUNvbGxhdG9yV2l0aFBhZGRpbmcodG9rZW5pemVyPXRva2VuaXplcikKCiAgICAjIFBhcnNpbmcga3dhcmdzOgogICAgdHJhaW5fa3dhcmdzID0gX2dldF9zdWJfZGljdF9ieV9wcmVmaXgoCiAgICAgICAgc3JjPWNvbnRleHQucGFyYW1ldGVycywgcHJlZml4X2tleT1LV0FyZ3NQcmVmaXhlcy5UUkFJTgogICAgKQogICAgbW9kZWxfY2xhc3Nfa3dhcmdzID0gX2dldF9zdWJfZGljdF9ieV9wcmVmaXgoCiAgICAgICAgc3JjPWNvbnRleHQucGFyYW1ldGVycywgcHJlZml4X2tleT1LV0FyZ3NQcmVmaXhlcy5NT0RFTF9DTEFTUwogICAgKQoKICAgICMgTG9hZGluZyBvdXIgcHJldHJhaW5lZCBtb2RlbDoKICAgIG1vZGVsX2NsYXNzX2t3YXJnc1sicHJldHJhaW5lZF9tb2RlbF9uYW1lX29yX3BhdGgiXSA9ICgKICAgICAgICBtb2RlbF9jbGFzc19rd2FyZ3MuZ2V0KCJwcmV0cmFpbmVkX21vZGVsX25hbWVfb3JfcGF0aCIpIG9yIHByZXRyYWluZWRfbW9kZWwKICAgICkKICAgIHRyYWluX2t3YXJnc1siaHViX3Rva2VuIl0gPSB0cmFpbl9rd2FyZ3MuZ2V0KCJodWJfdG9rZW4iKSBvciBwcmV0cmFpbmVkX3Rva2VuaXplcgogICAgaWYgbm90IG1vZGVsX2NsYXNzX2t3YXJnc1sicHJldHJhaW5lZF9tb2RlbF9uYW1lX29yX3BhdGgiXToKICAgICAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5SdW50aW1lRXJyb3IoCiAgICAgICAgICAgICJNdXN0IHByb3ZpZGUgcHJldHJhaW5lZF9tb2RlbCBuYW1lIGFzICIKICAgICAgICAgICAgImZ1bmN0aW9uIGFyZ3VtZW50IG9yIGluIGV4dHJhIHBhcmFtcyIKICAgICAgICApCiAgICBtb2RlbCA9IGNyZWF0ZV9jbGFzcyhtb2RlbF9jbGFzcykuZnJvbV9wcmV0cmFpbmVkKCoqbW9kZWxfY2xhc3Nfa3dhcmdzKQoKICAgICMgUHJlcGFyaW5nIHRyYWluaW5nIGFyZ3VtZW50czoKICAgIHRyYWluaW5nX2FyZ3MgPSBUcmFpbmluZ0FyZ3VtZW50cygKICAgICAgICAqKnRyYWluX2t3YXJncywKICAgICkKCiAgICBjb21wdXRlX21ldHJpY3MgPSBfY3JlYXRlX2NvbXB1dGVfbWV0cmljcyhtZXRyaWNzKSBpZiBtZXRyaWNzIGVsc2UgTm9uZQogICAgdHJhaW5lciA9IFRyYWluZXIoCiAgICAgICAgbW9kZWw9bW9kZWwsCiAgICAgICAgYXJncz10cmFpbmluZ19hcmdzLAogICAgICAgIHRyYWluX2RhdGFzZXQ9dG9rZW5pemVkX3RyYWluLAogICAgICAgIGV2YWxfZGF0YXNldD10b2tlbml6ZWRfdGVzdCwKICAgICAgICB0b2tlbml6ZXI9dG9rZW5pemVyLAogICAgICAgIGRhdGFfY29sbGF0b3I9ZGF0YV9jb2xsYXRvciwKICAgICAgICBjb21wdXRlX21ldHJpY3M9Y29tcHV0ZV9tZXRyaWNzLAogICAgKQoKICAgIGFwcGx5X21scnVuKHRyYWluZXIsIG1vZGVsX25hbWU9bW9kZWxfbmFtZSkKCiAgICAjIEFwcGx5IHRyYWluaW5nIHdpdGggZXZhbHVhdGlvbjoKICAgIGNvbnRleHQubG9nZ2VyLmluZm8oZiJ0cmFpbmluZyAne21vZGVsX25hbWV9JyIpCiAgICB0cmFpbmVyLnRyYWluKCkKCgpkZWYgX2dldF9tb2RlbF9kaXIobW9kZWxfdXJpOiBzdHIpOgogICAgbW9kZWxfZmlsZSwgXywgXyA9IG1scnVuLmFydGlmYWN0cy5nZXRfbW9kZWwobW9kZWxfdXJpKQogICAgbW9kZWxfZGlyID0gdGVtcGZpbGUuZ2V0dGVtcGRpcigpCiAgICAjIFVuemlwIHRoZSBNb2RlbDoKICAgIHdpdGggemlwZmlsZS5aaXBGaWxlKG1vZGVsX2ZpbGUsICJyIikgYXMgemlwX2ZpbGU6CiAgICAgICAgemlwX2ZpbGUuZXh0cmFjdGFsbChtb2RlbF9kaXIpCgogICAgcmV0dXJuIG1vZGVsX2RpcgoKCmRlZiBvcHRpbWl6ZSgKICAgIG1vZGVsX3BhdGg6IHN0ciwKICAgIG1vZGVsX25hbWU6IHN0ciA9ICJvcHRpbWl6ZWRfbW9kZWwiLAogICAgdGFyZ2V0X2Rpcjogc3RyID0gIi4vb3B0aW1pemVkIiwKICAgIG9wdGltaXphdGlvbl9sZXZlbDogaW50ID0gMSwKKToKICAgICIiIgogICAgT3B0aW1pemluZyB0aGUgdHJhbnNmb3JtZXIgbW9kZWwgdXNpbmcgT05OWCBvcHRpbWl6YXRpb24uCgoKICAgIDpwYXJhbSBtb2RlbF9wYXRoOiAgICAgICAgICBUaGUgcGF0aCBvZiB0aGUgbW9kZWwgdG8gb3B0aW1pemUuCiAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICAgICAgTmFtZSBvZiB0aGUgb3B0aW1pemVkIG1vZGVsLgogICAgOnBhcmFtIHRhcmdldF9kaXI6ICAgICAgICAgIFRoZSBkaXJlY3RvcnkgdG8gc2F2ZSB0aGUgT05OWCBtb2RlbC4KICAgIDpwYXJhbSBvcHRpbWl6YXRpb25fbGV2ZWw6ICBPcHRpbWl6YXRpb24gbGV2ZWwgcGVyZm9ybWVkIGJ5IE9OTlggUnVudGltZSBvZiB0aGUgbG9hZGVkIGdyYXBoLiAoZGVmYXVsdCBpcyAxKQogICAgIiIiCiAgICAjIFdlIGltcG9ydCB0aGVzZSBpbiB0aGUgZnVuY3Rpb24gc2NvcGUgc28gT05OWCB3b24ndCBiZSBtYW5kYXRvcnkgZm9yIHRoZSBvdGhlciBoYW5kbGVyczoKICAgIGZyb20gb3B0aW11bS5vbm54cnVudGltZSBpbXBvcnQgT1JUTW9kZWxGb3JTZXF1ZW5jZUNsYXNzaWZpY2F0aW9uLCBPUlRPcHRpbWl6ZXIKICAgIGZyb20gb3B0aW11bS5vbm54cnVudGltZS5jb25maWd1cmF0aW9uIGltcG9ydCBPcHRpbWl6YXRpb25Db25maWcKCiAgICBtb2RlbF9kaXIgPSBfZ2V0X21vZGVsX2Rpcihtb2RlbF91cmk9bW9kZWxfcGF0aCkKICAgICMgQ3JlYXRpbmcgY29uZmlndXJhdGlvbiBmb3Igb3B0aW1pemF0aW9uIHN0ZXA6CiAgICBvcHRpbWl6YXRpb25fY29uZmlnID0gT3B0aW1pemF0aW9uQ29uZmlnKG9wdGltaXphdGlvbl9sZXZlbD1vcHRpbWl6YXRpb25fbGV2ZWwpCgogICAgIyBDb252ZXJ0aW5nIG91ciBwcmV0cmFpbmVkIG1vZGVsIHRvIGFuIE9OTlgtUnVudGltZSBtb2RlbDoKICAgIG9ydF9tb2RlbCA9IE9SVE1vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbi5mcm9tX3ByZXRyYWluZWQoCiAgICAgICAgbW9kZWxfZGlyLCBmcm9tX3RyYW5zZm9ybWVycz1UcnVlCiAgICApCgogICAgIyBDcmVhdGluZyBhbiBPTk5YLVJ1bnRpbWUgb3B0aW1pemVyIGZyb20gT05OWCBtb2RlbDoKICAgIG9wdGltaXplciA9IE9SVE9wdGltaXplci5mcm9tX3ByZXRyYWluZWQob3J0X21vZGVsKQoKICAgIGFwcGx5X21scnVuKG9wdGltaXplciwgbW9kZWxfbmFtZT1tb2RlbF9uYW1lKQogICAgIyBPcHRpbWl6aW5nIGFuZCBzYXZpbmcgdGhlIE9OTlggbW9kZWw6CiAgICBvcHRpbWl6ZXIub3B0aW1pemUoc2F2ZV9kaXI9dGFyZ2V0X2Rpciwgb3B0aW1pemF0aW9uX2NvbmZpZz1vcHRpbWl6YXRpb25fY29uZmlnKQo=
+ base_image: mlrun/mlrun
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - onnx~=1.14.1
+ - onnxruntime~=1.16.1
+ - optimum~=1.6.4
+ - transformers~=4.26.1
+ - datasets~=2.10.1
+ - scikit-learn~=1.0.2
+ entry_points:
+ add_interface:
+ name: add_interface
+ doc: 'Enrich the object with this interface properties, methods and functions,
+ so it will have this TensorFlow.Keras
+
+ MLRuns features.'
+ parameters:
+ - name: cls
+ - name: obj
+ type: Trainer
+ doc: The object to enrich his interface.
+ - name: restoration
+ type: MLRunInterfaceRestorationType
+ doc: Restoration information tuple as returned from 'remove_interface' in
+ order to add the interface in a certain state.
+ default: null
+ outputs: []
+ lineno: 146
+ has_varargs: false
+ has_kwargs: false
+ mlrun_optimize:
+ name: mlrun_optimize
+ doc: 'MLRun''s tf.keras.Model.fit wrapper. It will setup the optimizer when
+ using horovod. The optimizer must be
+
+ passed in a keyword argument and when using horovod, it must be passed as
+ an Optimizer instance, not a string.
+
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow
+ the instructions above.'
+ parameters:
+ - name: cls
+ outputs: []
+ lineno: 79
+ has_varargs: false
+ has_kwargs: false
+ wrapper:
+ name: wrapper
+ doc: ''
+ parameters:
+ - name: self
+ type: Trainer
+ outputs: []
+ lineno: 173
+ has_varargs: true
+ has_kwargs: true
+ enable_auto_logging:
+ name: enable_auto_logging
+ doc: ''
+ parameters:
+ - name: self
+ - name: context
+ type: MLClientCtx
+ - name: model_name
+ type: str
+ default: model
+ - name: tag
+ type: str
+ default: ''
+ - name: labels
+ type: Dict[str, str]
+ default: null
+ - name: extra_data
+ type: dict
+ default: null
+ outputs: []
+ lineno: 114
+ has_varargs: false
+ has_kwargs: false
+ mlrun_train:
+ name: mlrun_train
+ doc: 'MLRuns tf.keras.Model.fit wrapper. It will setup the optimizer when using
+ horovod. The optimizer must be
+
+ passed in a keyword argument and when using horovod, it must be passed as
+ an Optimizer instance, not a string.
+
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow
+ the instructions above.'
+ parameters:
+ - name: cls
+ outputs: []
+ lineno: 164
+ has_varargs: false
+ has_kwargs: false
+ on_epoch_begin:
+ name: on_epoch_begin
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 220
+ has_varargs: false
+ has_kwargs: true
+ on_epoch_end:
+ name: on_epoch_end
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 229
+ has_varargs: false
+ has_kwargs: true
+ on_log:
+ name: on_log
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ - name: logs
+ type: Dict[str, float]
+ default: null
+ outputs: []
+ lineno: 238
+ has_varargs: false
+ has_kwargs: true
+ on_train_begin:
+ name: on_train_begin
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 262
+ has_varargs: false
+ has_kwargs: true
+ on_train_end:
+ name: on_train_end
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ - name: model
+ type: PreTrainedModel
+ default: null
+ - name: tokenizer
+ type: PreTrainedTokenizer
+ default: null
+ outputs: []
+ lineno: 271
+ has_varargs: false
+ has_kwargs: true
+ on_evaluate:
+ name: on_evaluate
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 322
+ has_varargs: false
+ has_kwargs: true
+ apply_mlrun:
+ name: apply_mlrun
+ doc: Wrap the given model with MLRun's interface providing it with mlrun's additional
+ features.
+ parameters:
+ - name: huggingface_object
+ doc: The model to wrap. Can be loaded from the model path given as well.
+ - name: model_name
+ type: str
+ doc: 'The model name to use for storing the model artifact. Default: "model".'
+ default: null
+ - name: tag
+ type: str
+ doc: The model's tag to log with.
+ default: ''
+ - name: context
+ type: MLClientCtx
+ doc: MLRun context to work with. If no context is given it will be retrieved
+ via 'mlrun.get_or_create_ctx(None)'
+ default: null
+ - name: auto_log
+ type: bool
+ doc: 'Whether to enable MLRun''s auto logging. Default: True.'
+ default: true
+ - name: labels
+ type: Dict[str, str]
+ default: null
+ - name: extra_data
+ type: dict
+ default: null
+ outputs: []
+ lineno: 421
+ has_varargs: false
+ has_kwargs: true
+ train:
+ name: train
+ doc: 'Training and evaluating a pretrained model with a pretrained tokenizer
+ over a dataset.
+
+ The dataset can be either be the name of the dataset that contains in the
+ HuggingFace hub,
+
+ or a URI or a FeatureVector'
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: MLRun context
+ - name: hf_dataset
+ type: str
+ doc: The name of the dataset to get from the HuggingFace hub
+ default: null
+ - name: dataset
+ type: DataItem
+ doc: The dataset to train the model on. Can be either a URI or a FeatureVector
+ default: null
+ - name: test_set
+ type: DataItem
+ doc: The test set to train the model with.
+ default: null
+ - name: drop_columns
+ type: Optional[List[str]]
+ doc: The columns to drop from the dataset.
+ default: null
+ - name: pretrained_tokenizer
+ type: str
+ doc: The name of the pretrained tokenizer from the HuggingFace hub.
+ default: null
+ - name: pretrained_model
+ type: str
+ doc: The name of the pretrained model from the HuggingFace hub.
+ default: null
+ - name: model_class
+ type: str
+ doc: The class of the model, e.g. `transformers.AutoModelForSequenceClassification`
+ default: null
+ - name: model_name
+ type: str
+ doc: The model's name to use for storing the model artifact, default to 'model'
+ default: huggingface-model
+ - name: label_name
+ type: str
+ doc: The target label of the column in the dataset.
+ default: labels
+ - name: text_col
+ type: str
+ doc: The input text column un the dataset.
+ default: text
+ - name: num_of_train_samples
+ type: int
+ doc: Max number of training samples, for debugging.
+ default: null
+ - name: train_test_split_size
+ type: float
+ doc: Should be between 0.0 and 1.0 and represent the proportion of the dataset
+ to include in the test split.
+ default: null
+ - name: metrics
+ type: List[str]
+ doc: List of different metrics for evaluate the model such as f1, accuracy
+ etc.
+ default: null
+ - name: random_state
+ type: int
+ doc: Random state for train_test_split
+ default: null
+ outputs: []
+ lineno: 647
+ has_varargs: false
+ has_kwargs: false
+ preprocess_function:
+ name: preprocess_function
+ doc: ''
+ parameters:
+ - name: examples
+ outputs: []
+ lineno: 696
+ has_varargs: false
+ has_kwargs: false
+ optimize:
+ name: optimize
+ doc: Optimizing the transformer model using ONNX optimization.
+ parameters:
+ - name: model_path
+ type: str
+ doc: The path of the model to optimize.
+ - name: model_name
+ type: str
+ doc: Name of the optimized model.
+ default: optimized_model
+ - name: target_dir
+ type: str
+ doc: The directory to save the ONNX model.
+ default: ./optimized
+ - name: optimization_level
+ type: int
+ doc: Optimization level performed by ONNX Runtime of the loaded graph. (default
+ is 1)
+ default: 1
+ outputs: []
+ lineno: 799
+ has_varargs: false
+ has_kwargs: false
+ description: Automatic train and optimize functions for HuggingFace framework
+ default_handler: train
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/static/hugging_face_classifier_trainer.html b/functions/master/hugging_face_classifier_trainer/0.3.0/static/hugging_face_classifier_trainer.html
new file mode 100644
index 00000000..99a105cb
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/static/hugging_face_classifier_trainer.html
@@ -0,0 +1,972 @@
+
+
+
+
+
+
+
+hugging_face_classifier_trainer.hugging_face_classifier_trainer
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Source code for hugging_face_classifier_trainer.hugging_face_classifier_trainer
+import os
+import shutil
+import tempfile
+import zipfile
+from abc import ABC
+from typing import Any , Callable , Dict , List , Optional , Tuple , Union
+
+import mlrun
+import mlrun.datastore
+import mlrun.utils
+import numpy as np
+import pandas as pd
+import transformers
+from datasets import Dataset , load_dataset , load_metric
+from mlrun import MLClientCtx
+from mlrun import feature_store as fs
+from mlrun.artifacts import Artifact , PlotlyArtifact
+from mlrun.datastore import DataItem
+from mlrun.frameworks._common import CommonTypes , MLRunInterface
+from mlrun.utils import create_class
+from plotly import graph_objects as go
+from sklearn.model_selection import train_test_split
+from transformers import (
+ AutoTokenizer ,
+ DataCollatorWithPadding ,
+ EvalPrediction ,
+ PreTrainedModel ,
+ PreTrainedTokenizer ,
+ Trainer ,
+ TrainerCallback ,
+ TrainerControl ,
+ TrainerState ,
+ TrainingArguments ,
+)
+
+
+# ----------------------from MLRUN--------------------------------
+[docs] class HFORTOptimizerMLRunInterface ( MLRunInterface , ABC ):
+
"""
+
Interface for adding MLRun features for tensorflow keras API.
+
"""
+
+
# MLRun's context default name:
+
DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+
# Attributes to be inserted so the MLRun interface will be fully enabled.
+
_PROPERTIES = {
+
"_auto_log" : False ,
+
"_context" : None ,
+
"_model_name" : "model" ,
+
"_tag" : "" ,
+
"_labels" : None ,
+
"_extra_data" : None ,
+
}
+
_METHODS = [ "enable_auto_logging" ]
+
# Attributes to replace so the MLRun interface will be fully enabled.
+
_REPLACED_METHODS = [
+
"optimize" ,
+
]
+
+
[docs] @classmethod
+
def add_interface (
+
cls ,
+
obj ,
+
restoration : CommonTypes . MLRunInterfaceRestorationType = None ,
+
):
+
"""
+
Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+
MLRun's features.
+
:param obj: The object to enrich his interface.
+
:param restoration: Restoration information tuple as returned from 'remove_interface' in order to
+
add the interface in a certain state.
+
"""
+
super ( HFORTOptimizerMLRunInterface , cls ) . add_interface (
+
obj = obj , restoration = restoration
+
)
+
+
[docs] @classmethod
+
def mlrun_optimize ( cls ):
+
"""
+
MLRun's tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+
passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+
+
raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+
"""
+
+
def wrapper ( self , * args , ** kwargs ):
+
save_dir = cls . _get_function_argument (
+
self . optimize ,
+
argument_name = "save_dir" ,
+
passed_args = args ,
+
passed_kwargs = kwargs ,
+
)[ 0 ]
+
+
# Call the original optimize method:
+
result = self . original_optimize ( * args , ** kwargs )
+
+
if self . _auto_log :
+
# Log the onnx model:
+
self . _context . log_model (
+
key = "model" ,
+
db_key = self . _model_name ,
+
model_file = f " { save_dir } /model_optimized.onnx" ,
+
tag = self . _tag ,
+
framework = "ONNX" ,
+
labels = self . _labels ,
+
extra_data = self . _extra_data ,
+
)
+
+
return result
+
+
return wrapper
+
+
[docs] def enable_auto_logging (
+
self ,
+
context : mlrun . MLClientCtx ,
+
model_name : str = "model" ,
+
tag : str = "" ,
+
labels : Dict [ str , str ] = None ,
+
extra_data : dict = None ,
+
):
+
self . _auto_log = True
+
+
self . _context = context
+
self . _model_name = model_name
+
self . _tag = tag
+
self . _labels = labels
+
self . _extra_data = extra_data
+
+
+[docs] class HFTrainerMLRunInterface ( MLRunInterface , ABC ):
+
"""
+
Interface for adding MLRun features for tensorflow keras API.
+
"""
+
+
# MLRuns context default name:
+
DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+
# Attributes to replace so the MLRun interface will be fully enabled.
+
_REPLACED_METHODS = [
+
"train" ,
+
# "evaluate"
+
]
+
+
[docs] @classmethod
+
def add_interface (
+
cls ,
+
obj : Trainer ,
+
restoration : CommonTypes . MLRunInterfaceRestorationType = None ,
+
):
+
"""
+
Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+
MLRuns features.
+
:param obj: The object to enrich his interface.
+
:param restoration: Restoration information tuple as returned from 'remove_interface' in order to
+
add the interface in a certain state.
+
"""
+
+
super ( HFTrainerMLRunInterface , cls ) . add_interface (
+
obj = obj , restoration = restoration
+
)
+
+
[docs] @classmethod
+
def mlrun_train ( cls ):
+
+
"""
+
MLRuns tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+
passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+
+
raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+
"""
+
+
def wrapper ( self : Trainer , * args , ** kwargs ):
+
# Restore the evaluation method as `train` will use it:
+
# cls._restore_attribute(obj=self, attribute_name="evaluate")
+
+
# Call the original fit method:
+
result = self . original_train ( * args , ** kwargs )
+
+
# Replace the evaluation method again:
+
# cls._replace_function(obj=self, function_name="evaluate")
+
+
return result
+
+
return wrapper
+
+
+[docs] class MLRunCallback ( TrainerCallback ):
+
"""
+
Callback for collecting logs during training / evaluation of the `Trainer` API.
+
"""
+
+
def __init__ (
+
self ,
+
context : mlrun . MLClientCtx = None ,
+
model_name : str = "model" ,
+
tag : str = "" ,
+
labels : Dict [ str , str ] = None ,
+
extra_data : dict = None ,
+
):
+
super () . __init__ ()
+
+
# Store the configurations:
+
self . _context = (
+
context
+
if context is not None
+
else mlrun . get_or_create_ctx ( "./mlrun-huggingface" )
+
)
+
self . _model_name = model_name
+
self . _tag = tag
+
self . _labels = labels
+
self . _extra_data = extra_data if extra_data is not None else {}
+
+
# Set up the logging mode:
+
self . _is_training = False
+
self . _steps : List [ List [ int ]] = []
+
self . _metric_scores : Dict [ str , List [ float ]] = {}
+
self . _artifacts : Dict [ str , Artifact ] = {}
+
+
[docs] def on_epoch_begin (
+
self ,
+
args : TrainingArguments ,
+
state : TrainerState ,
+
control : TrainerControl ,
+
** kwargs ,
+
):
+
self . _steps . append ([])
+
+
[docs] def on_epoch_end (
+
self ,
+
args : TrainingArguments ,
+
state : TrainerState ,
+
control : TrainerControl ,
+
** kwargs ,
+
):
+
self . _log_metrics ()
+
+
[docs] def on_log (
+
self ,
+
args : TrainingArguments ,
+
state : TrainerState ,
+
control : TrainerControl ,
+
logs : Dict [ str , float ] = None ,
+
** kwargs ,
+
):
+
recent_logs = state . log_history [ - 1 ] . copy ()
+
+
recent_logs . pop ( "epoch" )
+
current_step = int ( recent_logs . pop ( "step" ))
+
if current_step not in self . _steps [ - 1 ]:
+
self . _steps [ - 1 ] . append ( current_step )
+
+
for metric_name , metric_score in recent_logs . items ():
+
if metric_name . startswith ( "train_" ):
+
if metric_name . split ( "train_" )[ 1 ] not in self . _metric_scores :
+
self . _metric_scores [ metric_name ] = [ metric_score ]
+
continue
+
if metric_name not in self . _metric_scores :
+
self . _metric_scores [ metric_name ] = []
+
self . _metric_scores [ metric_name ] . append ( metric_score )
+
+
[docs] def on_train_begin (
+
self ,
+
args : TrainingArguments ,
+
state : TrainerState ,
+
control : TrainerControl ,
+
** kwargs ,
+
):
+
self . _is_training = True
+
+
[docs] def on_train_end (
+
self ,
+
args : TrainingArguments ,
+
state : TrainerState ,
+
control : TrainerControl ,
+
model : PreTrainedModel = None ,
+
tokenizer : PreTrainedTokenizer = None ,
+
** kwargs ,
+
):
+
self . _log_metrics ()
+
+
temp_directory = tempfile . gettempdir ()
+
+
# Save and log the tokenizer:
+
if tokenizer is not None :
+
# Save tokenizer:
+
tokenizer_dir = os . path . join ( temp_directory , "tokenizer" )
+
tokenizer . save_pretrained ( save_directory = tokenizer_dir )
+
# Zip the tokenizer directory:
+
tokenizer_zip = shutil . make_archive (
+
base_name = "tokenizer" ,
+
format = "zip" ,
+
root_dir = tokenizer_dir ,
+
)
+
# Log the zip file:
+
self . _artifacts [ "tokenizer" ] = self . _context . log_artifact (
+
item = "tokenizer" , local_path = tokenizer_zip
+
)
+
+
# Save the model:
+
model_dir = os . path . join ( temp_directory , "model" )
+
model . save_pretrained ( save_directory = model_dir )
+
+
# Zip the model directory:
+
shutil . make_archive (
+
base_name = "model" ,
+
format = "zip" ,
+
root_dir = model_dir ,
+
)
+
+
# Log the model:
+
self . _context . log_model (
+
key = "model" ,
+
db_key = self . _model_name ,
+
model_file = "model.zip" ,
+
tag = self . _tag ,
+
framework = "Hugging Face" ,
+
labels = self . _labels ,
+
extra_data = { ** self . _artifacts , ** self . _extra_data },
+
)
+
+
[docs] def on_evaluate (
+
self ,
+
args : TrainingArguments ,
+
state : TrainerState ,
+
control : TrainerControl ,
+
** kwargs ,
+
):
+
self . _log_metrics ()
+
+
if self . _is_training :
+
return
+
+
# TODO: Update the model object
+
+
def _log_metrics ( self ):
+
for metric_name , metric_scores in self . _metric_scores . items ():
+
self . _context . log_result ( key = metric_name , value = metric_scores [ - 1 ])
+
if len ( metric_scores ) > 1 :
+
self . _log_metric_plot ( name = metric_name , scores = metric_scores )
+
self . _context . commit ( completed = False )
+
+
def _log_metric_plot ( self , name : str , scores : List [ float ]):
+
# Initialize a plotly figure:
+
metric_figure = go . Figure ()
+
+
# Add titles:
+
metric_figure . update_layout (
+
title = name . capitalize () . replace ( "_" , " " ),
+
xaxis_title = "Samples" ,
+
yaxis_title = "Scores" ,
+
)
+
+
# Draw:
+
metric_figure . add_trace (
+
go . Scatter ( x = np . arange ( len ( scores )), y = scores , mode = "lines" )
+
)
+
+
# Create the plotly artifact:
+
artifact_name = f " { name } _plot"
+
artifact = PlotlyArtifact ( key = artifact_name , figure = metric_figure )
+
self . _artifacts [ artifact_name ] = self . _context . log_artifact ( artifact )
+
+
+def _apply_mlrun_on_trainer (
+ trainer : transformers . Trainer ,
+ model_name : str = None ,
+ tag : str = "" ,
+ context : mlrun . MLClientCtx = None ,
+ auto_log : bool = True ,
+ labels : Dict [ str , str ] = None ,
+ extra_data : dict = None ,
+ ** kwargs ,
+):
+ # Get parameters defaults:
+ if context is None :
+ context = mlrun . get_or_create_ctx ( HFTrainerMLRunInterface . DEFAULT_CONTEXT_NAME )
+
+ HFTrainerMLRunInterface . add_interface ( obj = trainer )
+
+ if auto_log :
+ trainer . add_callback (
+ MLRunCallback (
+ context = context ,
+ model_name = model_name ,
+ tag = tag ,
+ labels = labels ,
+ extra_data = extra_data ,
+ )
+ )
+
+
+def _apply_mlrun_on_optimizer (
+ optimizer ,
+ model_name : str = None ,
+ tag : str = "" ,
+ context : mlrun . MLClientCtx = None ,
+ auto_log : bool = True ,
+ labels : Dict [ str , str ] = None ,
+ extra_data : dict = None ,
+ ** kwargs ,
+):
+ # Get parameters defaults:
+ if context is None :
+ context = mlrun . get_or_create_ctx (
+ HFORTOptimizerMLRunInterface . DEFAULT_CONTEXT_NAME
+ )
+
+ HFORTOptimizerMLRunInterface . add_interface ( obj = optimizer )
+
+ if auto_log :
+ optimizer . enable_auto_logging (
+ context = context ,
+ model_name = model_name ,
+ tag = tag ,
+ labels = labels ,
+ extra_data = extra_data ,
+ )
+
+
+[docs] def apply_mlrun (
+
huggingface_object ,
+
model_name : str = None ,
+
tag : str = "" ,
+
context : mlrun . MLClientCtx = None ,
+
auto_log : bool = True ,
+
labels : Dict [ str , str ] = None ,
+
extra_data : dict = None ,
+
** kwargs ,
+
):
+
"""
+
Wrap the given model with MLRun's interface providing it with mlrun's additional features.
+
:param huggingface_object: The model to wrap. Can be loaded from the model path given as well.
+
:param model_name: The model name to use for storing the model artifact. Default: "model".
+
:param tag: The model's tag to log with.
+
:param context: MLRun context to work with. If no context is given it will be retrieved via
+
'mlrun.get_or_create_ctx(None)'
+
:param auto_log: Whether to enable MLRun's auto logging. Default: True.
+
"""
+
+
if isinstance ( huggingface_object , transformers . Trainer ):
+
return _apply_mlrun_on_trainer (
+
trainer = huggingface_object ,
+
model_name = model_name ,
+
tag = tag ,
+
context = context ,
+
auto_log = auto_log ,
+
labels = labels ,
+
extra_data = extra_data ,
+
)
+
import optimum.onnxruntime as optimum_ort
+
+
if isinstance ( huggingface_object , optimum_ort . ORTOptimizer ):
+
return _apply_mlrun_on_optimizer (
+
optimizer = huggingface_object ,
+
model_name = model_name ,
+
tag = tag ,
+
context = context ,
+
auto_log = auto_log ,
+
labels = labels ,
+
extra_data = extra_data ,
+
)
+
raise mlrun . errors . MLRunInvalidArgumentError
+
+
+# ---------------------- from auto_trainer--------------------------------
+[docs] class KWArgsPrefixes :
+
MODEL_CLASS = "CLASS_"
+
FIT = "FIT_"
+
TRAIN = "TRAIN_"
+
PREDICT = "PREDICT_"
+
+
+def _get_sub_dict_by_prefix ( src : Dict , prefix_key : str ) -> Dict [ str , Any ]:
+ """
+ Collect all the keys from the given dict that starts with the given prefix and creates a new dictionary with these
+ keys.
+
+ :param src: The source dict to extract the values from.
+ :param prefix_key: Only keys with this prefix will be returned. The keys in the result dict will be without this
+ prefix.
+ """
+ return {
+ key . replace ( prefix_key , "" ): val
+ for key , val in src . items ()
+ if key . startswith ( prefix_key )
+ }
+
+
+def _get_dataframe (
+ context : MLClientCtx ,
+ dataset : DataItem ,
+ label_columns : Optional [ Union [ str , List [ str ]]] = None ,
+ drop_columns : Union [ str , List [ str ], int , List [ int ]] = None ,
+) -> Tuple [ pd . DataFrame , Optional [ Union [ str , List [ str ]]]]:
+ """
+ Getting the DataFrame of the dataset and drop the columns accordingly.
+
+ :param context: MLRun context.
+ :param dataset: The dataset to train the model on.
+ Can be either a list of lists, dict, URI or a FeatureVector.
+ :param label_columns: The target label(s) of the column(s) in the dataset. for Regression or
+ Classification tasks.
+ :param drop_columns: str/int or a list of strings/ints that represent the column names/indices to drop.
+ """
+ if isinstance ( dataset , ( list , dict )):
+ dataset = pd . DataFrame ( dataset )
+ # Checking if drop_columns provided by integer type:
+ if drop_columns :
+ if isinstance ( drop_columns , str ) or (
+ isinstance ( drop_columns , list )
+ and any ( isinstance ( col , str ) for col in drop_columns )
+ ):
+ context . logger . error (
+ "drop_columns must be an integer/list of integers if not provided with a URI/FeatureVector dataset"
+ )
+ raise ValueError
+ dataset . drop ( drop_columns , axis = 1 , inplace = True )
+
+ return dataset , label_columns
+
+ store_uri_prefix , _ = mlrun . datastore . parse_store_uri ( dataset . artifact_url )
+ if mlrun . utils . StorePrefix . FeatureVector == store_uri_prefix :
+ # feature-vector case:
+ label_columns = label_columns or dataset . meta . status . label_column
+ dataset = fs . get_offline_features (
+ dataset . meta . uri , drop_columns = drop_columns
+ ) . to_dataframe ()
+
+ context . logger . info ( f "label columns: { label_columns } " )
+ else :
+ # simple URL case:
+ dataset = dataset . as_df ()
+ if drop_columns :
+ if all ( col in dataset for col in drop_columns ):
+ dataset = dataset . drop ( drop_columns , axis = 1 )
+ else :
+ context . logger . info (
+ "not all of the columns to drop in the dataset, drop columns process skipped"
+ )
+ return dataset , label_columns
+
+
+# ---------------------- Hugging Face Trainer --------------------------------
+
+
+def _create_compute_metrics ( metrics : List [ str ]) -> Callable [[ EvalPrediction ], Dict ]:
+ """
+ This function create and returns a function that will be used to compute metrics at evaluation.
+ :param metrics: List of different metrics for evaluate the model such as f1, accuracy etc.
+
+ :returns: Function that will be used to compute metrics at evaluation.
+ Must take a [`EvalPrediction`] and return a dictionary string to metric values.
+ """
+
+ def _compute_metrics ( eval_pred ):
+ logits , labels = eval_pred
+ predictions = np . argmax ( logits , axis =- 1 )
+ metric_dict_results = {}
+ for metric in metrics :
+ load_met = load_metric ( metric )
+ metric_res = load_met . compute ( predictions = predictions , references = labels )[
+ metric
+ ]
+ metric_dict_results [ metric ] = metric_res
+
+ return metric_dict_results
+
+ return _compute_metrics
+
+
+def _edit_columns (
+ dataset : Dataset ,
+ drop_columns : List [ str ] = None ,
+ rename_columns : [ str , str ] = None ,
+) -> Dataset :
+ """
+ Drop and renames that columns of the given dataset
+ :param dataset: Dataset to process
+ :param drop_columns: The columns to drop from the dataset.
+ :param rename_columns: Dict of columns ro rename : {<old_name>: <new_name>, ...}
+
+ :returns: The dataset after the desired process
+ """
+ if drop_columns :
+ dataset = dataset . remove_columns ( drop_columns )
+ if rename_columns :
+ dataset = dataset . rename_columns ( rename_columns )
+ return dataset
+
+
+def _prepare_dataset (
+ context : MLClientCtx ,
+ dataset_name : str ,
+ label_name : str = None ,
+ drop_columns : Optional [ List [ str ]] = None ,
+ num_of_train_samples : int = None ,
+ train_test_split_size : float = None ,
+ random_state : int = None ,
+) -> Tuple [ Dataset , Dataset ]:
+ """
+ Loading the dataset and editing the columns
+
+ :param context: MLRun contex
+ :param dataset_name: The name of the dataset to get from the HuggingFace hub
+ :param label_name: The target label of the column in the dataset.
+ :param drop_columns: The columns to drop from the dataset.
+ :param num_of_train_samples: Max number of training samples, for debugging.
+ :param train_test_split_size: Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+ in the test split.
+ :param random_state: Random state for train_test_split
+
+ """
+
+ context . logger . info (
+ f "Loading and editing { dataset_name } dataset from Hugging Face hub"
+ )
+ rename_cols = { label_name : "labels" }
+
+ # Loading and editing dataset:
+ dataset = load_dataset ( dataset_name )
+
+ # train set
+ train_dataset = dataset [ "train" ]
+ if num_of_train_samples :
+ train_dataset = train_dataset . shuffle ( seed = random_state ) . select (
+ list ( range ( num_of_train_samples ))
+ )
+ train_dataset = _edit_columns ( train_dataset , drop_columns , rename_cols )
+
+ # test set
+ test_dataset = dataset [ "test" ]
+ if train_test_split_size or num_of_train_samples :
+ train_test_split_size = train_test_split_size or 0.2
+ num_of_test_samples = int (
+ ( train_dataset . num_rows * train_test_split_size )
+ // ( 1 - train_test_split_size )
+ )
+ test_dataset = test_dataset . shuffle ( seed = random_state ) . select (
+ list ( range ( num_of_test_samples ))
+ )
+ test_dataset = _edit_columns ( test_dataset , drop_columns , rename_cols )
+
+ return train_dataset , test_dataset
+
+
+[docs] def train (
+
context : MLClientCtx ,
+
hf_dataset : str = None ,
+
dataset : DataItem = None ,
+
test_set : DataItem = None ,
+
drop_columns : Optional [ List [ str ]] = None ,
+
pretrained_tokenizer : str = None ,
+
pretrained_model : str = None ,
+
model_class : str = None ,
+
model_name : str = "huggingface-model" ,
+
label_name : str = "labels" ,
+
text_col : str = "text" ,
+
num_of_train_samples : int = None ,
+
train_test_split_size : float = None ,
+
metrics : List [ str ] = None ,
+
random_state : int = None ,
+
):
+
"""
+
Training and evaluating a pretrained model with a pretrained tokenizer over a dataset.
+
The dataset can be either be the name of the dataset that contains in the HuggingFace hub,
+
or a URI or a FeatureVector
+
+
:param context: MLRun context
+
:param hf_dataset: The name of the dataset to get from the HuggingFace hub
+
:param dataset: The dataset to train the model on. Can be either a URI or a FeatureVector
+
:param test_set: The test set to train the model with.
+
:param drop_columns: The columns to drop from the dataset.
+
:param pretrained_tokenizer: The name of the pretrained tokenizer from the HuggingFace hub.
+
:param pretrained_model: The name of the pretrained model from the HuggingFace hub.
+
:param model_name: The model's name to use for storing the model artifact, default to 'model'
+
:param model_class: The class of the model, e.g. `transformers.AutoModelForSequenceClassification`
+
:param label_name: The target label of the column in the dataset.
+
:param text_col: The input text column un the dataset.
+
:param num_of_train_samples: Max number of training samples, for debugging.
+
:param train_test_split_size: Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+
in the test split.
+
:param metrics: List of different metrics for evaluate the model such as f1, accuracy etc.
+
:param random_state: Random state for train_test_split
+
"""
+
+
if train_test_split_size is None and test_set is None :
+
context . logger . info (
+
"'train_test_split_size' is not provided, setting train_test_split_size to 0.2"
+
)
+
train_test_split_size = 0.2
+
+
# Creating tokenizer:
+
tokenizer = AutoTokenizer . from_pretrained ( pretrained_tokenizer )
+
+
def preprocess_function ( examples ):
+
return tokenizer ( examples [ text_col ], truncation = True )
+
+
# prepare data for training
+
if hf_dataset :
+
train_dataset , test_dataset = _prepare_dataset (
+
context ,
+
hf_dataset ,
+
label_name ,
+
drop_columns ,
+
num_of_train_samples ,
+
train_test_split_size ,
+
random_state = random_state ,
+
)
+
elif dataset :
+
# Get DataFrame by URL or by FeatureVector:
+
train_dataset , label_name = _get_dataframe (
+
context = context ,
+
dataset = dataset ,
+
label_columns = label_name ,
+
drop_columns = drop_columns ,
+
)
+
if test_set :
+
test_dataset , _ = _get_dataframe (
+
context = context ,
+
dataset = test_set ,
+
label_columns = label_name ,
+
drop_columns = drop_columns ,
+
)
+
else :
+
train_dataset , test_dataset = train_test_split (
+
train_dataset ,
+
test_size = train_test_split_size ,
+
random_state = random_state ,
+
)
+
train_dataset = Dataset . from_pandas ( train_dataset )
+
test_dataset = Dataset . from_pandas ( test_dataset )
+
else :
+
raise mlrun . errors . MLRunInvalidArgumentError (
+
"Training data was not provided. A training dataset is mandatory for training."
+
" Please provide a training set using one of the arguments 'hf_dataset' or 'dataset'."
+
)
+
+
# Mapping datasets with the tokenizer:
+
tokenized_train = train_dataset . map ( preprocess_function , batched = True )
+
tokenized_test = test_dataset . map ( preprocess_function , batched = True )
+
+
# Creating data collator for batching:
+
data_collator = DataCollatorWithPadding ( tokenizer = tokenizer )
+
+
# Parsing kwargs:
+
train_kwargs = _get_sub_dict_by_prefix (
+
src = context . parameters , prefix_key = KWArgsPrefixes . TRAIN
+
)
+
model_class_kwargs = _get_sub_dict_by_prefix (
+
src = context . parameters , prefix_key = KWArgsPrefixes . MODEL_CLASS
+
)
+
+
# Loading our pretrained model:
+
model_class_kwargs [ "pretrained_model_name_or_path" ] = (
+
model_class_kwargs . get ( "pretrained_model_name_or_path" ) or pretrained_model
+
)
+
train_kwargs [ "hub_token" ] = train_kwargs . get ( "hub_token" ) or pretrained_tokenizer
+
if not model_class_kwargs [ "pretrained_model_name_or_path" ]:
+
raise mlrun . errors . MLRunRuntimeError (
+
"Must provide pretrained_model name as "
+
"function argument or in extra params"
+
)
+
model = create_class ( model_class ) . from_pretrained ( ** model_class_kwargs )
+
+
# Preparing training arguments:
+
training_args = TrainingArguments (
+
** train_kwargs ,
+
)
+
+
compute_metrics = _create_compute_metrics ( metrics ) if metrics else None
+
trainer = Trainer (
+
model = model ,
+
args = training_args ,
+
train_dataset = tokenized_train ,
+
eval_dataset = tokenized_test ,
+
tokenizer = tokenizer ,
+
data_collator = data_collator ,
+
compute_metrics = compute_metrics ,
+
)
+
+
apply_mlrun ( trainer , model_name = model_name )
+
+
# Apply training with evaluation:
+
context . logger . info ( f "training ' { model_name } '" )
+
trainer . train ()
+
+
+def _get_model_dir ( model_uri : str ):
+ model_file , _ , _ = mlrun . artifacts . get_model ( model_uri )
+ model_dir = tempfile . gettempdir ()
+ # Unzip the Model:
+ with zipfile . ZipFile ( model_file , "r" ) as zip_file :
+ zip_file . extractall ( model_dir )
+
+ return model_dir
+
+
+[docs] def optimize (
+
model_path : str ,
+
model_name : str = "optimized_model" ,
+
target_dir : str = "./optimized" ,
+
optimization_level : int = 1 ,
+
):
+
"""
+
Optimizing the transformer model using ONNX optimization.
+
+
+
:param model_path: The path of the model to optimize.
+
:param model_name: Name of the optimized model.
+
:param target_dir: The directory to save the ONNX model.
+
:param optimization_level: Optimization level performed by ONNX Runtime of the loaded graph. (default is 1)
+
"""
+
# We import these in the function scope so ONNX won't be mandatory for the other handlers:
+
from optimum.onnxruntime import ORTModelForSequenceClassification , ORTOptimizer
+
from optimum.onnxruntime.configuration import OptimizationConfig
+
+
model_dir = _get_model_dir ( model_uri = model_path )
+
# Creating configuration for optimization step:
+
optimization_config = OptimizationConfig ( optimization_level = optimization_level )
+
+
# Converting our pretrained model to an ONNX-Runtime model:
+
ort_model = ORTModelForSequenceClassification . from_pretrained (
+
model_dir , from_transformers = True
+
)
+
+
# Creating an ONNX-Runtime optimizer from ONNX model:
+
optimizer = ORTOptimizer . from_pretrained ( ort_model )
+
+
apply_mlrun ( optimizer , model_name = model_name )
+
# Optimizing and saving the ONNX model:
+
optimizer . optimize ( save_dir = target_dir , optimization_config = optimization_config )
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/static/item.html b/functions/master/hugging_face_classifier_trainer/0.3.0/static/item.html
new file mode 100644
index 00000000..70a200c7
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/static/item.html
@@ -0,0 +1,55 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+apiVersion: v1
+categories:
+- deep-learning
+- huggingface
+- machine-learning
+- model-training
+description: Automatic train and optimize functions for HuggingFace framework
+doc: ''
+example: hugging_face_classifier_trainer.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ author: davids
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.6.1
+name: hugging_face_classifier_trainer
+platformVersion: 3.5.5
+spec:
+ filename: hugging_face_classifier_trainer.py
+ handler: train
+ image: mlrun/mlrun
+ kind: job
+ requirements:
+ - onnx~=1.14.1
+ - onnxruntime~=1.16.1
+ - optimum~=1.6.4
+ - transformers~=4.26.1
+ - datasets~=2.10.1
+ - scikit-learn~=1.0.2
+url: ''
+version: 0.3.0
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/0.3.0/static/source.html b/functions/master/hugging_face_classifier_trainer/0.3.0/static/source.html
new file mode 100644
index 00000000..6eee51f5
--- /dev/null
+++ b/functions/master/hugging_face_classifier_trainer/0.3.0/static/source.html
@@ -0,0 +1,854 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+import os
+import shutil
+import tempfile
+import zipfile
+from abc import ABC
+from typing import Any, Callable, Dict, List, Optional, Tuple, Union
+
+import mlrun
+import mlrun.datastore
+import mlrun.utils
+import numpy as np
+import pandas as pd
+import transformers
+from datasets import Dataset, load_dataset, load_metric
+from mlrun import MLClientCtx
+from mlrun import feature_store as fs
+from mlrun.artifacts import Artifact, PlotlyArtifact
+from mlrun.datastore import DataItem
+from mlrun.frameworks._common import CommonTypes, MLRunInterface
+from mlrun.utils import create_class
+from plotly import graph_objects as go
+from sklearn.model_selection import train_test_split
+from transformers import (
+ AutoTokenizer,
+ DataCollatorWithPadding,
+ EvalPrediction,
+ PreTrainedModel,
+ PreTrainedTokenizer,
+ Trainer,
+ TrainerCallback,
+ TrainerControl,
+ TrainerState,
+ TrainingArguments,
+)
+
+
+# ----------------------from MLRUN--------------------------------
+class HFORTOptimizerMLRunInterface(MLRunInterface, ABC):
+ """
+ Interface for adding MLRun features for tensorflow keras API.
+ """
+
+ # MLRun's context default name:
+ DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+ # Attributes to be inserted so the MLRun interface will be fully enabled.
+ _PROPERTIES = {
+ "_auto_log": False,
+ "_context": None,
+ "_model_name": "model",
+ "_tag": "",
+ "_labels": None,
+ "_extra_data": None,
+ }
+ _METHODS = ["enable_auto_logging"]
+ # Attributes to replace so the MLRun interface will be fully enabled.
+ _REPLACED_METHODS = [
+ "optimize",
+ ]
+
+ @classmethod
+ def add_interface(
+ cls,
+ obj,
+ restoration: CommonTypes.MLRunInterfaceRestorationType = None,
+ ):
+ """
+ Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+ MLRun's features.
+ :param obj: The object to enrich his interface.
+ :param restoration: Restoration information tuple as returned from 'remove_interface' in order to
+ add the interface in a certain state.
+ """
+ super(HFORTOptimizerMLRunInterface, cls).add_interface(
+ obj=obj, restoration=restoration
+ )
+
+ @classmethod
+ def mlrun_optimize(cls):
+ """
+ MLRun's tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+ passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+ """
+
+ def wrapper(self, *args, **kwargs):
+ save_dir = cls._get_function_argument(
+ self.optimize,
+ argument_name="save_dir",
+ passed_args=args,
+ passed_kwargs=kwargs,
+ )[0]
+
+ # Call the original optimize method:
+ result = self.original_optimize(*args, **kwargs)
+
+ if self._auto_log:
+ # Log the onnx model:
+ self._context.log_model(
+ key="model",
+ db_key=self._model_name,
+ model_file=f"{save_dir}/model_optimized.onnx",
+ tag=self._tag,
+ framework="ONNX",
+ labels=self._labels,
+ extra_data=self._extra_data,
+ )
+
+ return result
+
+ return wrapper
+
+ def enable_auto_logging(
+ self,
+ context: mlrun.MLClientCtx,
+ model_name: str = "model",
+ tag: str = "",
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ ):
+ self._auto_log = True
+
+ self._context = context
+ self._model_name = model_name
+ self._tag = tag
+ self._labels = labels
+ self._extra_data = extra_data
+
+
+class HFTrainerMLRunInterface(MLRunInterface, ABC):
+ """
+ Interface for adding MLRun features for tensorflow keras API.
+ """
+
+ # MLRuns context default name:
+ DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+ # Attributes to replace so the MLRun interface will be fully enabled.
+ _REPLACED_METHODS = [
+ "train",
+ # "evaluate"
+ ]
+
+ @classmethod
+ def add_interface(
+ cls,
+ obj: Trainer,
+ restoration: CommonTypes.MLRunInterfaceRestorationType = None,
+ ):
+ """
+ Enrich the object with this interface properties, methods and functions, so it will have this TensorFlow.Keras
+ MLRuns features.
+ :param obj: The object to enrich his interface.
+ :param restoration: Restoration information tuple as returned from 'remove_interface' in order to
+ add the interface in a certain state.
+ """
+
+ super(HFTrainerMLRunInterface, cls).add_interface(
+ obj=obj, restoration=restoration
+ )
+
+ @classmethod
+ def mlrun_train(cls):
+
+ """
+ MLRuns tf.keras.Model.fit wrapper. It will setup the optimizer when using horovod. The optimizer must be
+ passed in a keyword argument and when using horovod, it must be passed as an Optimizer instance, not a string.
+
+ raise MLRunInvalidArgumentError: In case the optimizer provided did not follow the instructions above.
+ """
+
+ def wrapper(self: Trainer, *args, **kwargs):
+ # Restore the evaluation method as `train` will use it:
+ # cls._restore_attribute(obj=self, attribute_name="evaluate")
+
+ # Call the original fit method:
+ result = self.original_train(*args, **kwargs)
+
+ # Replace the evaluation method again:
+ # cls._replace_function(obj=self, function_name="evaluate")
+
+ return result
+
+ return wrapper
+
+
+class MLRunCallback(TrainerCallback):
+ """
+ Callback for collecting logs during training / evaluation of the `Trainer` API.
+ """
+
+ def __init__(
+ self,
+ context: mlrun.MLClientCtx = None,
+ model_name: str = "model",
+ tag: str = "",
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ ):
+ super().__init__()
+
+ # Store the configurations:
+ self._context = (
+ context
+ if context is not None
+ else mlrun.get_or_create_ctx("./mlrun-huggingface")
+ )
+ self._model_name = model_name
+ self._tag = tag
+ self._labels = labels
+ self._extra_data = extra_data if extra_data is not None else {}
+
+ # Set up the logging mode:
+ self._is_training = False
+ self._steps: List[List[int]] = []
+ self._metric_scores: Dict[str, List[float]] = {}
+ self._artifacts: Dict[str, Artifact] = {}
+
+ def on_epoch_begin(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._steps.append([])
+
+ def on_epoch_end(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._log_metrics()
+
+ def on_log(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ logs: Dict[str, float] = None,
+ **kwargs,
+ ):
+ recent_logs = state.log_history[-1].copy()
+
+ recent_logs.pop("epoch")
+ current_step = int(recent_logs.pop("step"))
+ if current_step not in self._steps[-1]:
+ self._steps[-1].append(current_step)
+
+ for metric_name, metric_score in recent_logs.items():
+ if metric_name.startswith("train_"):
+ if metric_name.split("train_")[1] not in self._metric_scores:
+ self._metric_scores[metric_name] = [metric_score]
+ continue
+ if metric_name not in self._metric_scores:
+ self._metric_scores[metric_name] = []
+ self._metric_scores[metric_name].append(metric_score)
+
+ def on_train_begin(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._is_training = True
+
+ def on_train_end(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ model: PreTrainedModel = None,
+ tokenizer: PreTrainedTokenizer = None,
+ **kwargs,
+ ):
+ self._log_metrics()
+
+ temp_directory = tempfile.gettempdir()
+
+ # Save and log the tokenizer:
+ if tokenizer is not None:
+ # Save tokenizer:
+ tokenizer_dir = os.path.join(temp_directory, "tokenizer")
+ tokenizer.save_pretrained(save_directory=tokenizer_dir)
+ # Zip the tokenizer directory:
+ tokenizer_zip = shutil.make_archive(
+ base_name="tokenizer",
+ format="zip",
+ root_dir=tokenizer_dir,
+ )
+ # Log the zip file:
+ self._artifacts["tokenizer"] = self._context.log_artifact(
+ item="tokenizer", local_path=tokenizer_zip
+ )
+
+ # Save the model:
+ model_dir = os.path.join(temp_directory, "model")
+ model.save_pretrained(save_directory=model_dir)
+
+ # Zip the model directory:
+ shutil.make_archive(
+ base_name="model",
+ format="zip",
+ root_dir=model_dir,
+ )
+
+ # Log the model:
+ self._context.log_model(
+ key="model",
+ db_key=self._model_name,
+ model_file="model.zip",
+ tag=self._tag,
+ framework="Hugging Face",
+ labels=self._labels,
+ extra_data={**self._artifacts, **self._extra_data},
+ )
+
+ def on_evaluate(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ self._log_metrics()
+
+ if self._is_training:
+ return
+
+ # TODO: Update the model object
+
+ def _log_metrics(self):
+ for metric_name, metric_scores in self._metric_scores.items():
+ self._context.log_result(key=metric_name, value=metric_scores[-1])
+ if len(metric_scores) > 1:
+ self._log_metric_plot(name=metric_name, scores=metric_scores)
+ self._context.commit(completed=False)
+
+ def _log_metric_plot(self, name: str, scores: List[float]):
+ # Initialize a plotly figure:
+ metric_figure = go.Figure()
+
+ # Add titles:
+ metric_figure.update_layout(
+ title=name.capitalize().replace("_", " "),
+ xaxis_title="Samples",
+ yaxis_title="Scores",
+ )
+
+ # Draw:
+ metric_figure.add_trace(
+ go.Scatter(x=np.arange(len(scores)), y=scores, mode="lines")
+ )
+
+ # Create the plotly artifact:
+ artifact_name = f"{name}_plot"
+ artifact = PlotlyArtifact(key=artifact_name, figure=metric_figure)
+ self._artifacts[artifact_name] = self._context.log_artifact(artifact)
+
+
+def _apply_mlrun_on_trainer(
+ trainer: transformers.Trainer,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ # Get parameters defaults:
+ if context is None:
+ context = mlrun.get_or_create_ctx(HFTrainerMLRunInterface.DEFAULT_CONTEXT_NAME)
+
+ HFTrainerMLRunInterface.add_interface(obj=trainer)
+
+ if auto_log:
+ trainer.add_callback(
+ MLRunCallback(
+ context=context,
+ model_name=model_name,
+ tag=tag,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ )
+
+
+def _apply_mlrun_on_optimizer(
+ optimizer,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ # Get parameters defaults:
+ if context is None:
+ context = mlrun.get_or_create_ctx(
+ HFORTOptimizerMLRunInterface.DEFAULT_CONTEXT_NAME
+ )
+
+ HFORTOptimizerMLRunInterface.add_interface(obj=optimizer)
+
+ if auto_log:
+ optimizer.enable_auto_logging(
+ context=context,
+ model_name=model_name,
+ tag=tag,
+ labels=labels,
+ extra_data=extra_data,
+ )
+
+
+def apply_mlrun(
+ huggingface_object,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ """
+ Wrap the given model with MLRun's interface providing it with mlrun's additional features.
+ :param huggingface_object: The model to wrap. Can be loaded from the model path given as well.
+ :param model_name: The model name to use for storing the model artifact. Default: "model".
+ :param tag: The model's tag to log with.
+ :param context: MLRun context to work with. If no context is given it will be retrieved via
+ 'mlrun.get_or_create_ctx(None)'
+ :param auto_log: Whether to enable MLRun's auto logging. Default: True.
+ """
+
+ if isinstance(huggingface_object, transformers.Trainer):
+ return _apply_mlrun_on_trainer(
+ trainer=huggingface_object,
+ model_name=model_name,
+ tag=tag,
+ context=context,
+ auto_log=auto_log,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ import optimum.onnxruntime as optimum_ort
+
+ if isinstance(huggingface_object, optimum_ort.ORTOptimizer):
+ return _apply_mlrun_on_optimizer(
+ optimizer=huggingface_object,
+ model_name=model_name,
+ tag=tag,
+ context=context,
+ auto_log=auto_log,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ raise mlrun.errors.MLRunInvalidArgumentError
+
+
+# ---------------------- from auto_trainer--------------------------------
+class KWArgsPrefixes:
+ MODEL_CLASS = "CLASS_"
+ FIT = "FIT_"
+ TRAIN = "TRAIN_"
+ PREDICT = "PREDICT_"
+
+
+def _get_sub_dict_by_prefix(src: Dict, prefix_key: str) -> Dict[str, Any]:
+ """
+ Collect all the keys from the given dict that starts with the given prefix and creates a new dictionary with these
+ keys.
+
+ :param src: The source dict to extract the values from.
+ :param prefix_key: Only keys with this prefix will be returned. The keys in the result dict will be without this
+ prefix.
+ """
+ return {
+ key.replace(prefix_key, ""): val
+ for key, val in src.items()
+ if key.startswith(prefix_key)
+ }
+
+
+def _get_dataframe(
+ context: MLClientCtx,
+ dataset: DataItem,
+ label_columns: Optional[Union[str, List[str]]] = None,
+ drop_columns: Union[str, List[str], int, List[int]] = None,
+) -> Tuple[pd.DataFrame, Optional[Union[str, List[str]]]]:
+ """
+ Getting the DataFrame of the dataset and drop the columns accordingly.
+
+ :param context: MLRun context.
+ :param dataset: The dataset to train the model on.
+ Can be either a list of lists, dict, URI or a FeatureVector.
+ :param label_columns: The target label(s) of the column(s) in the dataset. for Regression or
+ Classification tasks.
+ :param drop_columns: str/int or a list of strings/ints that represent the column names/indices to drop.
+ """
+ if isinstance(dataset, (list, dict)):
+ dataset = pd.DataFrame(dataset)
+ # Checking if drop_columns provided by integer type:
+ if drop_columns:
+ if isinstance(drop_columns, str) or (
+ isinstance(drop_columns, list)
+ and any(isinstance(col, str) for col in drop_columns)
+ ):
+ context.logger.error(
+ "drop_columns must be an integer/list of integers if not provided with a URI/FeatureVector dataset"
+ )
+ raise ValueError
+ dataset.drop(drop_columns, axis=1, inplace=True)
+
+ return dataset, label_columns
+
+ store_uri_prefix, _ = mlrun.datastore.parse_store_uri(dataset.artifact_url)
+ if mlrun.utils.StorePrefix.FeatureVector == store_uri_prefix:
+ # feature-vector case:
+ label_columns = label_columns or dataset.meta.status.label_column
+ dataset = fs.get_offline_features(
+ dataset.meta.uri, drop_columns=drop_columns
+ ).to_dataframe()
+
+ context.logger.info(f"label columns: {label_columns}")
+ else:
+ # simple URL case:
+ dataset = dataset.as_df()
+ if drop_columns:
+ if all(col in dataset for col in drop_columns):
+ dataset = dataset.drop(drop_columns, axis=1)
+ else:
+ context.logger.info(
+ "not all of the columns to drop in the dataset, drop columns process skipped"
+ )
+ return dataset, label_columns
+
+
+# ---------------------- Hugging Face Trainer --------------------------------
+
+
+def _create_compute_metrics(metrics: List[str]) -> Callable[[EvalPrediction], Dict]:
+ """
+ This function create and returns a function that will be used to compute metrics at evaluation.
+ :param metrics: List of different metrics for evaluate the model such as f1, accuracy etc.
+
+ :returns: Function that will be used to compute metrics at evaluation.
+ Must take a [`EvalPrediction`] and return a dictionary string to metric values.
+ """
+
+ def _compute_metrics(eval_pred):
+ logits, labels = eval_pred
+ predictions = np.argmax(logits, axis=-1)
+ metric_dict_results = {}
+ for metric in metrics:
+ load_met = load_metric(metric)
+ metric_res = load_met.compute(predictions=predictions, references=labels)[
+ metric
+ ]
+ metric_dict_results[metric] = metric_res
+
+ return metric_dict_results
+
+ return _compute_metrics
+
+
+def _edit_columns(
+ dataset: Dataset,
+ drop_columns: List[str] = None,
+ rename_columns: [str, str] = None,
+) -> Dataset:
+ """
+ Drop and renames that columns of the given dataset
+ :param dataset: Dataset to process
+ :param drop_columns: The columns to drop from the dataset.
+ :param rename_columns: Dict of columns ro rename : {: , ...}
+
+ :returns: The dataset after the desired process
+ """
+ if drop_columns:
+ dataset = dataset.remove_columns(drop_columns)
+ if rename_columns:
+ dataset = dataset.rename_columns(rename_columns)
+ return dataset
+
+
+def _prepare_dataset(
+ context: MLClientCtx,
+ dataset_name: str,
+ label_name: str = None,
+ drop_columns: Optional[List[str]] = None,
+ num_of_train_samples: int = None,
+ train_test_split_size: float = None,
+ random_state: int = None,
+) -> Tuple[Dataset, Dataset]:
+ """
+ Loading the dataset and editing the columns
+
+ :param context: MLRun contex
+ :param dataset_name: The name of the dataset to get from the HuggingFace hub
+ :param label_name: The target label of the column in the dataset.
+ :param drop_columns: The columns to drop from the dataset.
+ :param num_of_train_samples: Max number of training samples, for debugging.
+ :param train_test_split_size: Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+ in the test split.
+ :param random_state: Random state for train_test_split
+
+ """
+
+ context.logger.info(
+ f"Loading and editing {dataset_name} dataset from Hugging Face hub"
+ )
+ rename_cols = {label_name: "labels"}
+
+ # Loading and editing dataset:
+ dataset = load_dataset(dataset_name)
+
+ # train set
+ train_dataset = dataset["train"]
+ if num_of_train_samples:
+ train_dataset = train_dataset.shuffle(seed=random_state).select(
+ list(range(num_of_train_samples))
+ )
+ train_dataset = _edit_columns(train_dataset, drop_columns, rename_cols)
+
+ # test set
+ test_dataset = dataset["test"]
+ if train_test_split_size or num_of_train_samples:
+ train_test_split_size = train_test_split_size or 0.2
+ num_of_test_samples = int(
+ (train_dataset.num_rows * train_test_split_size)
+ // (1 - train_test_split_size)
+ )
+ test_dataset = test_dataset.shuffle(seed=random_state).select(
+ list(range(num_of_test_samples))
+ )
+ test_dataset = _edit_columns(test_dataset, drop_columns, rename_cols)
+
+ return train_dataset, test_dataset
+
+
+def train(
+ context: MLClientCtx,
+ hf_dataset: str = None,
+ dataset: DataItem = None,
+ test_set: DataItem = None,
+ drop_columns: Optional[List[str]] = None,
+ pretrained_tokenizer: str = None,
+ pretrained_model: str = None,
+ model_class: str = None,
+ model_name: str = "huggingface-model",
+ label_name: str = "labels",
+ text_col: str = "text",
+ num_of_train_samples: int = None,
+ train_test_split_size: float = None,
+ metrics: List[str] = None,
+ random_state: int = None,
+):
+ """
+ Training and evaluating a pretrained model with a pretrained tokenizer over a dataset.
+ The dataset can be either be the name of the dataset that contains in the HuggingFace hub,
+ or a URI or a FeatureVector
+
+ :param context: MLRun context
+ :param hf_dataset: The name of the dataset to get from the HuggingFace hub
+ :param dataset: The dataset to train the model on. Can be either a URI or a FeatureVector
+ :param test_set: The test set to train the model with.
+ :param drop_columns: The columns to drop from the dataset.
+ :param pretrained_tokenizer: The name of the pretrained tokenizer from the HuggingFace hub.
+ :param pretrained_model: The name of the pretrained model from the HuggingFace hub.
+ :param model_name: The model's name to use for storing the model artifact, default to 'model'
+ :param model_class: The class of the model, e.g. `transformers.AutoModelForSequenceClassification`
+ :param label_name: The target label of the column in the dataset.
+ :param text_col: The input text column un the dataset.
+ :param num_of_train_samples: Max number of training samples, for debugging.
+ :param train_test_split_size: Should be between 0.0 and 1.0 and represent the proportion of the dataset to include
+ in the test split.
+ :param metrics: List of different metrics for evaluate the model such as f1, accuracy etc.
+ :param random_state: Random state for train_test_split
+ """
+
+ if train_test_split_size is None and test_set is None:
+ context.logger.info(
+ "'train_test_split_size' is not provided, setting train_test_split_size to 0.2"
+ )
+ train_test_split_size = 0.2
+
+ # Creating tokenizer:
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_tokenizer)
+
+ def preprocess_function(examples):
+ return tokenizer(examples[text_col], truncation=True)
+
+ # prepare data for training
+ if hf_dataset:
+ train_dataset, test_dataset = _prepare_dataset(
+ context,
+ hf_dataset,
+ label_name,
+ drop_columns,
+ num_of_train_samples,
+ train_test_split_size,
+ random_state=random_state,
+ )
+ elif dataset:
+ # Get DataFrame by URL or by FeatureVector:
+ train_dataset, label_name = _get_dataframe(
+ context=context,
+ dataset=dataset,
+ label_columns=label_name,
+ drop_columns=drop_columns,
+ )
+ if test_set:
+ test_dataset, _ = _get_dataframe(
+ context=context,
+ dataset=test_set,
+ label_columns=label_name,
+ drop_columns=drop_columns,
+ )
+ else:
+ train_dataset, test_dataset = train_test_split(
+ train_dataset,
+ test_size=train_test_split_size,
+ random_state=random_state,
+ )
+ train_dataset = Dataset.from_pandas(train_dataset)
+ test_dataset = Dataset.from_pandas(test_dataset)
+ else:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ "Training data was not provided. A training dataset is mandatory for training."
+ " Please provide a training set using one of the arguments 'hf_dataset' or 'dataset'."
+ )
+
+ # Mapping datasets with the tokenizer:
+ tokenized_train = train_dataset.map(preprocess_function, batched=True)
+ tokenized_test = test_dataset.map(preprocess_function, batched=True)
+
+ # Creating data collator for batching:
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
+
+ # Parsing kwargs:
+ train_kwargs = _get_sub_dict_by_prefix(
+ src=context.parameters, prefix_key=KWArgsPrefixes.TRAIN
+ )
+ model_class_kwargs = _get_sub_dict_by_prefix(
+ src=context.parameters, prefix_key=KWArgsPrefixes.MODEL_CLASS
+ )
+
+ # Loading our pretrained model:
+ model_class_kwargs["pretrained_model_name_or_path"] = (
+ model_class_kwargs.get("pretrained_model_name_or_path") or pretrained_model
+ )
+ train_kwargs["hub_token"] = train_kwargs.get("hub_token") or pretrained_tokenizer
+ if not model_class_kwargs["pretrained_model_name_or_path"]:
+ raise mlrun.errors.MLRunRuntimeError(
+ "Must provide pretrained_model name as "
+ "function argument or in extra params"
+ )
+ model = create_class(model_class).from_pretrained(**model_class_kwargs)
+
+ # Preparing training arguments:
+ training_args = TrainingArguments(
+ **train_kwargs,
+ )
+
+ compute_metrics = _create_compute_metrics(metrics) if metrics else None
+ trainer = Trainer(
+ model=model,
+ args=training_args,
+ train_dataset=tokenized_train,
+ eval_dataset=tokenized_test,
+ tokenizer=tokenizer,
+ data_collator=data_collator,
+ compute_metrics=compute_metrics,
+ )
+
+ apply_mlrun(trainer, model_name=model_name)
+
+ # Apply training with evaluation:
+ context.logger.info(f"training '{model_name}'")
+ trainer.train()
+
+
+def _get_model_dir(model_uri: str):
+ model_file, _, _ = mlrun.artifacts.get_model(model_uri)
+ model_dir = tempfile.gettempdir()
+ # Unzip the Model:
+ with zipfile.ZipFile(model_file, "r") as zip_file:
+ zip_file.extractall(model_dir)
+
+ return model_dir
+
+
+def optimize(
+ model_path: str,
+ model_name: str = "optimized_model",
+ target_dir: str = "./optimized",
+ optimization_level: int = 1,
+):
+ """
+ Optimizing the transformer model using ONNX optimization.
+
+
+ :param model_path: The path of the model to optimize.
+ :param model_name: Name of the optimized model.
+ :param target_dir: The directory to save the ONNX model.
+ :param optimization_level: Optimization level performed by ONNX Runtime of the loaded graph. (default is 1)
+ """
+ # We import these in the function scope so ONNX won't be mandatory for the other handlers:
+ from optimum.onnxruntime import ORTModelForSequenceClassification, ORTOptimizer
+ from optimum.onnxruntime.configuration import OptimizationConfig
+
+ model_dir = _get_model_dir(model_uri=model_path)
+ # Creating configuration for optimization step:
+ optimization_config = OptimizationConfig(optimization_level=optimization_level)
+
+ # Converting our pretrained model to an ONNX-Runtime model:
+ ort_model = ORTModelForSequenceClassification.from_pretrained(
+ model_dir, from_transformers=True
+ )
+
+ # Creating an ONNX-Runtime optimizer from ONNX model:
+ optimizer = ORTOptimizer.from_pretrained(ort_model)
+
+ apply_mlrun(optimizer, model_name=model_name)
+ # Optimizing and saving the ONNX model:
+ optimizer.optimize(save_dir=target_dir, optimization_config=optimization_config)
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_classifier_trainer/latest/src/function.yaml b/functions/master/hugging_face_classifier_trainer/latest/src/function.yaml
index eb223b2b..65f5aeb1 100644
--- a/functions/master/hugging_face_classifier_trainer/latest/src/function.yaml
+++ b/functions/master/hugging_face_classifier_trainer/latest/src/function.yaml
@@ -2,11 +2,13 @@ kind: job
metadata:
name: hugging-face-classifier-trainer
tag: ''
- hash: e8113e81f04c96fc9a8a94e717dea81ee3e05a18
+ hash: f9d8aa4a2c66e24fa418bb163829adc3e2ada06c
project: ''
labels:
author: davids
categories:
+ - deep-learning
+ - huggingface
- machine-learning
- model-training
spec:
diff --git a/functions/master/hugging_face_classifier_trainer/latest/src/item.yaml b/functions/master/hugging_face_classifier_trainer/latest/src/item.yaml
index 3c087765..332902b3 100755
--- a/functions/master/hugging_face_classifier_trainer/latest/src/item.yaml
+++ b/functions/master/hugging_face_classifier_trainer/latest/src/item.yaml
@@ -1,5 +1,7 @@
apiVersion: v1
categories:
+- deep-learning
+- huggingface
- machine-learning
- model-training
description: Automatic train and optimize functions for HuggingFace framework
@@ -28,4 +30,4 @@ spec:
- datasets~=2.10.1
- scikit-learn~=1.0.2
url: ''
-version: 0.2.0
+version: 0.3.0
diff --git a/functions/master/hugging_face_classifier_trainer/latest/static/function.html b/functions/master/hugging_face_classifier_trainer/latest/static/function.html
index 2bf1ffb9..08fe9f21 100644
--- a/functions/master/hugging_face_classifier_trainer/latest/static/function.html
+++ b/functions/master/hugging_face_classifier_trainer/latest/static/function.html
@@ -19,11 +19,13 @@
metadata:
name: hugging-face-classifier-trainer
tag: ''
- hash: e8113e81f04c96fc9a8a94e717dea81ee3e05a18
+ hash: f9d8aa4a2c66e24fa418bb163829adc3e2ada06c
project: ''
labels:
author: davids
categories:
+ - deep-learning
+ - huggingface
- machine-learning
- model-training
spec:
diff --git a/functions/master/hugging_face_classifier_trainer/latest/static/item.html b/functions/master/hugging_face_classifier_trainer/latest/static/item.html
index 7db7e49b..70a200c7 100644
--- a/functions/master/hugging_face_classifier_trainer/latest/static/item.html
+++ b/functions/master/hugging_face_classifier_trainer/latest/static/item.html
@@ -17,6 +17,8 @@
apiVersion: v1
categories:
+- deep-learning
+- huggingface
- machine-learning
- model-training
description: Automatic train and optimize functions for HuggingFace framework
@@ -45,7 +47,7 @@
- datasets~=2.10.1
- scikit-learn~=1.0.2
url: ''
-version: 0.2.0
+version: 0.3.0
diff --git a/functions/master/hugging_face_serving/1.1.0/src/function.yaml b/functions/master/hugging_face_serving/1.1.0/src/function.yaml
new file mode 100644
index 00000000..764fc1cf
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/src/function.yaml
@@ -0,0 +1,46 @@
+kind: serving
+metadata:
+ name: hugging-face-serving
+ tag: ''
+ hash: 1a489a57da861f129eb26e933f34e58927e41195
+ project: ''
+ labels:
+ author: yonish
+ categories:
+ - huggingface
+ - genai
+ - model-serving
+ - machine-learning
+spec:
+ command: ''
+ args: []
+ image: mlrun/ml-models
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSBpbXBvcnRsaWIgaW1wb3J0IGltcG9ydF9tb2R1bGUKZnJvbSB0eXBpbmcgaW1wb3J0IExpc3QKCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBwaXBlbGluZQoKaW1wb3J0IG1scnVuLnNlcnZpbmcKClBBQ0tBR0VfTU9EVUxFID0gInRyYW5zZm9ybWVycyIKU0VSSUFMSVpBQkxFX1RZUEVTID0gW2RpY3QsIGxpc3QsIHR1cGxlLCBzdHIsIGludCwgZmxvYXRdCgoKY2xhc3MgSHVnZ2luZ0ZhY2VNb2RlbFNlcnZlcihtbHJ1bi5zZXJ2aW5nLlYyTW9kZWxTZXJ2ZXIsIEFCQyk6CiAgICAiIiIKICAgIEh1Z2dpbmcgRmFjZSBNb2RlbCBzZXJ2aW5nIGNsYXNzLCBpbmhlcml0aW5nIHRoZSBWMk1vZGVsU2VydmVyIGNsYXNzIGZvciBiZWluZyBpbml0aWFsaXplZCBhdXRvbWF0aWNhbGx5IGJ5IHRoZQogICAgbW9kZWwgc2VydmVyIGFuZCBiZSBhYmxlIHRvIHJ1biBsb2NhbGx5IGFzIHBhcnQgb2YgYSBudWNsaW8gc2VydmVybGVzcyBmdW5jdGlvbiwgb3IgYXMgcGFydCBvZiBhIHJlYWwtdGltZSBwaXBlbGluZS4KICAgICIiIgoKICAgIGRlZiBfX2luaXRfXygKICAgICAgICBzZWxmLAogICAgICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgICAgIG5hbWU6IHN0ciwKICAgICAgICB0YXNrOiBzdHIsCiAgICAgICAgbW9kZWxfcGF0aDogc3RyID0gTm9uZSwKICAgICAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9jbGFzczogc3RyID0gTm9uZSwKICAgICAgICBmcmFtZXdvcms6IHN0ciA9IE5vbmUsCiAgICAgICAgKipjbGFzc19hcmdzLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBJbml0aWFsaXplIGEgc2VydmluZyBjbGFzcyBmb3IgYSBIdWdnaW5nIGZhY2UgbW9kZWwuCgogICAgICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgIFRoZSBtbHJ1biBjb250ZXh0IHRvIHdvcmsgd2l0aAogICAgICAgIDpwYXJhbSBuYW1lOiAgICAgICAgICAgIFRoZSBuYW1lIG9mIHRoaXMgc2VydmVyIHRvIGJlIGluaXRpYWxpemVkCiAgICAgICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgTm90IGluIHVzZS4gV2hlbiBhZGRpbmcgYSBtb2RlbCBwYXNzIGFueSBzdHJpbmcgdmFsdWUKICAgICAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICBUaGUgbW9kZWwncyBuYW1lIGluIHRoZSBIdWdnaW5nIEZhY2UgaHViCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYG5scHRvd24vYmVydC1iYXNlLW11bHRpbGluZ3VhbC11bmNhc2VkLXNlbnRpbWVudGAKICAgICAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICBUaGUgbW9kZWwncyBjbGFzcyB0eXBlIG9iamVjdCB3aGljaCBjYW4gYmUgcGFzc2VkIGFzIHRoZSBjbGFzcydzIG5hbWUgKHN0cmluZykuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTXVzdCBiZSBwcm92aWRlZCBhbmQgdG8gYmUgbWF0Y2hlZCB3aXRoIGBtb2RlbF9uYW1lYC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlLmcuLCBgQXV0b01vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbmAKICAgICAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6ICBUaGUgdG9rZW5pemVyJ3MgbmFtZSBpbiB0aGUgSHVnZ2luZyBGYWNlIGh1YgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGUuZy4sIGBubHB0b3duL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtdW5jYXNlZC1zZW50aW1lbnRgCiAgICAgICAgOnBhcmFtIHRva2VuaXplcl9jbGFzczogVGhlIG1vZGVsJ3MgY2xhc3MgdHlwZSBvYmplY3Qgd2hpY2ggY2FuIGJlIHBhc3NlZCBhcyB0aGUgY2xhc3MncyBuYW1lIChzdHJpbmcpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE11c3QgYmUgcHJvdmlkZWQgYW5kIHRvIGJlIG1hdGNoZWQgd2l0aCBgbW9kZWxfbmFtZWAuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYEF1dG9Ub2tlbml6ZXJgCiAgICAgICAgOnBhcmFtIGZyYW1ld29yazogICAgICAgVGhlIGZyYW1ld29yayB0byB1c2UsIGVpdGhlciBgInB0ImAgZm9yIFB5VG9yY2ggb3IgYCJ0ZiJgIGZvciBUZW5zb3JGbG93LiBUaGUgc3BlY2lmaWVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZnJhbWV3b3JrIG11c3QgYmUgaW5zdGFsbGVkLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElmIG5vIGZyYW1ld29yayBpcyBzcGVjaWZpZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUgb25lIGN1cnJlbnRseSBpbnN0YWxsZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgbm8gZnJhbWV3b3JrIGlzIHNwZWNpZmllZCBhbmQgYm90aCBmcmFtZXdvcmtzIGFyZSBpbnN0YWxsZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcmsgb2YgdGhlIGBtb2RlbGAsIG9yIHRvIFB5VG9yY2ggaWYgbm8gbW9kZWwgaXMgcHJvdmlkZWQuCiAgICAgICAgOnBhcmFtIGNsYXNzX2FyZ3M6ICAgICAgLQogICAgICAgICIiIgogICAgICAgIHN1cGVyKEh1Z2dpbmdGYWNlTW9kZWxTZXJ2ZXIsIHNlbGYpLl9faW5pdF9fKAogICAgICAgICAgICBjb250ZXh0PWNvbnRleHQsCiAgICAgICAgICAgIG5hbWU9bmFtZSwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICAqKmNsYXNzX2FyZ3MsCiAgICAgICAgKQogICAgICAgIHNlbGYudGFzayA9IHRhc2sKICAgICAgICBzZWxmLm1vZGVsID0gTm9uZQogICAgICAgIHNlbGYudG9rZW5pemVyID0gTm9uZQogICAgICAgIHNlbGYubW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLnRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyX25hbWUKICAgICAgICBzZWxmLm1vZGVsX2NsYXNzID0gbW9kZWxfY2xhc3MKICAgICAgICBzZWxmLnRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcl9jbGFzcwogICAgICAgIHNlbGYuZnJhbWV3b3JrID0gZnJhbWV3b3JrCiAgICAgICAgc2VsZi5waXBlID0gTm9uZQoKICAgIGRlZiBsb2FkKHNlbGYpOgogICAgICAgICIiImxvYWQgYW5kIGluaXRpYWxpemUgdGhlIG1vZGVsIGFuZC9vciBvdGhlciBlbGVtZW50cyIiIgogICAgICAgIGlmIHNlbGYubW9kZWxfY2xhc3M6CiAgICAgICAgICAgIG1vZGVsX29iamVjdCA9IGdldGF0dHIoaW1wb3J0X21vZHVsZShQQUNLQUdFX01PRFVMRSksIHNlbGYubW9kZWxfY2xhc3MpCiAgICAgICAgICAgIHNlbGYubW9kZWwgPSBtb2RlbF9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYubW9kZWxfbmFtZSkKICAgICAgICBpZiBzZWxmLnRva2VuaXplcl9jbGFzczoKICAgICAgICAgICAgdG9rZW5pemVyX29iamVjdCA9IGdldGF0dHIoCiAgICAgICAgICAgICAgICBpbXBvcnRfbW9kdWxlKFBBQ0tBR0VfTU9EVUxFKSwgc2VsZi50b2tlbml6ZXJfY2xhc3MKICAgICAgICAgICAgKQogICAgICAgICAgICBzZWxmLnRva2VuaXplciA9IHRva2VuaXplcl9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYudG9rZW5pemVyX25hbWUpCiAgICAgICAgc2VsZi5waXBlID0gcGlwZWxpbmUoCiAgICAgICAgICAgIHRhc2s9c2VsZi50YXNrLAogICAgICAgICAgICBtb2RlbD1zZWxmLm1vZGVsIG9yIHNlbGYubW9kZWxfbmFtZSwKICAgICAgICAgICAgdG9rZW5pemVyPXNlbGYudG9rZW5pemVyLAogICAgICAgICAgICBmcmFtZXdvcms9c2VsZi5mcmFtZXdvcmssCiAgICAgICAgKQoKICAgIGRlZiBwcmVkaWN0KHNlbGYsIGJvZHk6IGRpY3QpIC0+IExpc3Q6CiAgICAgICAgIiIiR2VuZXJhdGUgbW9kZWwgcHJlZGljdGlvbnMgZnJvbSBzYW1wbGUuIiIiCiAgICAgICAgaWYgc2VsZi5waXBlIGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIlBsZWFzZSB1c2UgYC5sb2FkKClgIikKICAgICAgICB0cnk6CiAgICAgICAgICAgIGlmIGlzaW5zdGFuY2UoYm9keVsiaW5wdXRzIl1bMF0sIGRpY3QpOgogICAgICAgICAgICAgICAgcmVzdWx0ID0gW3NlbGYucGlwZSgqKl9pbnB1dCkgZm9yIF9pbnB1dCBpbiBib2R5WyJpbnB1dHMiXV0KICAgICAgICAgICAgZWxzZToKICAgICAgICAgICAgICAgIHJlc3VsdCA9IHNlbGYucGlwZShib2R5WyJpbnB1dHMiXSkKICAgICAgICAgICAgIyByZXBsYWNlIGxpc3Qgb2YgbGlzdHMgb2YgZGljdHMgaW50byBhIGxpc3Qgb2YgZGljdHM6CiAgICAgICAgICAgIGlmIGFsbChpc2luc3RhbmNlKHJlcywgbGlzdCkgZm9yIHJlcyBpbiByZXN1bHQpOgogICAgICAgICAgICAgICAgbmV3X3Jlc3VsdCA9IFtyZXNbMF0gZm9yIHJlcyBpbiByZXN1bHRdCiAgICAgICAgICAgICAgICByZXN1bHQgPSBuZXdfcmVzdWx0CgogICAgICAgICAgICBub25fc2VyaWFsaXphYmxlX3R5cGVzID0gW10KICAgICAgICAgICAgZm9yIHJlcyBpbiByZXN1bHQ6CiAgICAgICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gcmVzLml0ZW1zKCk6CiAgICAgICAgICAgICAgICAgICAgaWYgdHlwZSh2YWwpIG5vdCBpbiBTRVJJQUxJWkFCTEVfVFlQRVM6CiAgICAgICAgICAgICAgICAgICAgICAgIG5vbl9zZXJpYWxpemFibGVfdHlwZXMuYXBwZW5kKHN0cih0eXBlKHZhbCkpKQogICAgICAgICAgICAgICAgICAgICAgICByZXNba2V5XSA9IHN0cih2YWwpCiAgICAgICAgICAgIGlmIG5vbl9zZXJpYWxpemFibGVfdHlwZXM6CiAgICAgICAgICAgICAgICBzZWxmLmNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgICAgICAgICAgICAgZiJOb24tc2VyaWFsaXphYmxlIHR5cGVzOiB7bm9uX3NlcmlhbGl6YWJsZV90eXBlc30gd2VyZSBjYXN0ZWQgdG8gc3RyaW5ncyIKICAgICAgICAgICAgICAgICkKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigiRmFpbGVkIHRvIHByZWRpY3QgJXMiICUgZSkKICAgICAgICByZXR1cm4gcmVzdWx0Cgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - transformers==4.21.3
+ - tensorflow==2.9.2
+ description: Generic Hugging Face model server.
+ default_handler: ''
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
+ priority_class_name: ''
+ preemption_mode: prevent
+ min_replicas: 1
+ max_replicas: 4
+ source: ''
+ function_kind: serving_v2
+ function_handler: hugging_face_serving:handler
+ base_image_pull: false
+ default_class: HuggingFaceModelServer
+ secret_sources: []
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
diff --git a/functions/master/hugging_face_serving/1.1.0/src/hugging_face_serving.ipynb b/functions/master/hugging_face_serving/1.1.0/src/hugging_face_serving.ipynb
new file mode 100644
index 00000000..94baf9ff
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/src/hugging_face_serving.ipynb
@@ -0,0 +1,252 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Hugging Face 🤗 Serving"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import mlrun"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Importing the Hugging Face 🤗 model serving function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "serving_function = mlrun.import_function('function.yaml')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Adding a pretrained model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "serving_function.add_model(\n",
+ " 'mymodel',\n",
+ " class_name='HuggingFaceModelServer',\n",
+ " model_path='123', # This is not used, just for enabling the process.\n",
+ " \n",
+ " task=\"sentiment-analysis\",\n",
+ " model_class=\"AutoModelForSequenceClassification\",\n",
+ " model_name=\"nlptown/bert-base-multilingual-uncased-sentiment\",\n",
+ " tokenizer_class=\"AutoTokenizer\",\n",
+ " tokenizer_name=\"nlptown/bert-base-multilingual-uncased-sentiment\",\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Testing the pipeline locally"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2022-09-07 08:54:42,419 [info] model mymodel was loaded\n",
+ "> 2022-09-07 08:54:42,420 [info] Loaded ['mymodel']\n"
+ ]
+ }
+ ],
+ "source": [
+ "server = serving_function.to_mock_server()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "prediction: [{'label': '5 stars', 'score': 0.7272651791572571}]\n"
+ ]
+ }
+ ],
+ "source": [
+ "result = server.test(\n",
+ " '/v2/models/mymodel',\n",
+ " body={\"inputs\": [\"Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.\"]}\n",
+ ")\n",
+ "print(f\"prediction: {result['outputs']}\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Adding a default model from 🤗"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "serving_function.add_model(\n",
+ " 'default-model',\n",
+ " class_name='HuggingFaceModelServer',\n",
+ " model_path='123', # This is not used, just for enabling the process.\n",
+ " \n",
+ " task=\"sentiment-analysis\",\n",
+ " framework='pt', # Use `pt` for pytorch and `tf` for tensorflow.\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Deploy the pipeline to our k8s cluster"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2022-09-07 08:54:42,487 [info] Starting remote function deploy\n",
+ "2022-09-07 08:54:43 (info) Deploying function\n",
+ "2022-09-07 08:54:43 (info) Building\n",
+ "2022-09-07 08:54:44 (info) Staging files and preparing base images\n",
+ "2022-09-07 08:54:44 (info) Building processor image\n",
+ "2022-09-07 08:56:29 (info) Build complete\n",
+ "> 2022-09-07 08:57:09,536 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-default-hugging-face-serving.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-hugging-face-serving-default.default-tenant.app.yh43.iguazio-cd1.com/']}\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'http://default-hugging-face-serving-default.default-tenant.app.yh43.iguazio-cd1.com/'"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "serving_function.deploy()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Infer our sentences through our model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2022-09-07 08:57:09,616 [info] invoking function: {'method': 'POST', 'path': 'http://nuclio-default-hugging-face-serving.default-tenant.svc.cluster.local:8080/v2/models/default-model/predict'}\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "{'id': 'f7753a17-fa84-44fa-9264-1dc65172d05c',\n",
+ " 'model_name': 'default-model',\n",
+ " 'outputs': [{'label': 'POSITIVE', 'score': 0.9993784427642822}]}"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "serving_function.invoke(\n",
+ " path='v2/models/default-model/predict',\n",
+ " body={\"inputs\": [\"We are delighted that we can serve 🤗 Transformers with MLRun.\"]})"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/functions/master/hugging_face_serving/1.1.0/src/hugging_face_serving.py b/functions/master/hugging_face_serving/1.1.0/src/hugging_face_serving.py
new file mode 100644
index 00000000..06dc4207
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/src/hugging_face_serving.py
@@ -0,0 +1,129 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from abc import ABC
+from importlib import import_module
+from typing import List
+
+from transformers import pipeline
+
+import mlrun.serving
+
+PACKAGE_MODULE = "transformers"
+SERIALIZABLE_TYPES = [dict, list, tuple, str, int, float]
+
+
+class HuggingFaceModelServer(mlrun.serving.V2ModelServer, ABC):
+ """
+ Hugging Face Model serving class, inheriting the V2ModelServer class for being initialized automatically by the
+ model server and be able to run locally as part of a nuclio serverless function, or as part of a real-time pipeline.
+ """
+
+ def __init__(
+ self,
+ context: mlrun.MLClientCtx,
+ name: str,
+ task: str,
+ model_path: str = None,
+ model_name: str = None,
+ model_class: str = None,
+ tokenizer_name: str = None,
+ tokenizer_class: str = None,
+ framework: str = None,
+ **class_args,
+ ):
+ """
+ Initialize a serving class for a Hugging face model.
+
+ :param context: The mlrun context to work with
+ :param name: The name of this server to be initialized
+ :param model_path: Not in use. When adding a model pass any string value
+ :param model_name: The model's name in the Hugging Face hub
+ e.g., `nlptown/bert-base-multilingual-uncased-sentiment`
+ :param model_class: The model's class type object which can be passed as the class's name (string).
+ Must be provided and to be matched with `model_name`.
+ e.g., `AutoModelForSequenceClassification`
+ :param tokenizer_name: The tokenizer's name in the Hugging Face hub
+ e.g., `nlptown/bert-base-multilingual-uncased-sentiment`
+ :param tokenizer_class: The model's class type object which can be passed as the class's name (string).
+ Must be provided and to be matched with `model_name`.
+ e.g., `AutoTokenizer`
+ :param framework: The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified
+ framework must be installed.
+ If no framework is specified, will default to the one currently installed.
+ If no framework is specified and both frameworks are installed, will default to the
+ framework of the `model`, or to PyTorch if no model is provided.
+ :param class_args: -
+ """
+ super(HuggingFaceModelServer, self).__init__(
+ context=context,
+ name=name,
+ model_path=model_path,
+ **class_args,
+ )
+ self.task = task
+ self.model = None
+ self.tokenizer = None
+ self.model_name = model_name
+ self.tokenizer_name = tokenizer_name
+ self.model_class = model_class
+ self.tokenizer_class = tokenizer_class
+ self.framework = framework
+ self.pipe = None
+
+ def load(self):
+ """load and initialize the model and/or other elements"""
+ if self.model_class:
+ model_object = getattr(import_module(PACKAGE_MODULE), self.model_class)
+ self.model = model_object.from_pretrained(self.model_name)
+ if self.tokenizer_class:
+ tokenizer_object = getattr(
+ import_module(PACKAGE_MODULE), self.tokenizer_class
+ )
+ self.tokenizer = tokenizer_object.from_pretrained(self.tokenizer_name)
+ self.pipe = pipeline(
+ task=self.task,
+ model=self.model or self.model_name,
+ tokenizer=self.tokenizer,
+ framework=self.framework,
+ )
+
+ def predict(self, body: dict) -> List:
+ """Generate model predictions from sample."""
+ if self.pipe is None:
+ raise ValueError("Please use `.load()`")
+ try:
+ if isinstance(body["inputs"][0], dict):
+ result = [self.pipe(**_input) for _input in body["inputs"]]
+ else:
+ result = self.pipe(body["inputs"])
+ # replace list of lists of dicts into a list of dicts:
+ if all(isinstance(res, list) for res in result):
+ new_result = [res[0] for res in result]
+ result = new_result
+
+ non_serializable_types = []
+ for res in result:
+ for key, val in res.items():
+ if type(val) not in SERIALIZABLE_TYPES:
+ non_serializable_types.append(str(type(val)))
+ res[key] = str(val)
+ if non_serializable_types:
+ self.context.logger.info(
+ f"Non-serializable types: {non_serializable_types} were casted to strings"
+ )
+ except Exception as e:
+ raise Exception("Failed to predict %s" % e)
+ return result
diff --git a/functions/master/hugging_face_serving/1.1.0/src/item.yaml b/functions/master/hugging_face_serving/1.1.0/src/item.yaml
new file mode 100644
index 00000000..d1f78769
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/src/item.yaml
@@ -0,0 +1,32 @@
+apiVersion: v1
+categories:
+- huggingface
+- genai
+- model-serving
+- machine-learning
+description: Generic Hugging Face model server.
+doc: ''
+example: hugging_face_serving.ipynb
+generationDate: 2022-09-05:17-00
+hidden: false
+icon: ''
+labels:
+ author: yonish
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.1.0
+name: hugging_face_serving
+platformVersion: ''
+spec:
+ customFields:
+ default_class: HuggingFaceModelServer
+ filename: hugging_face_serving.py
+ handler: handler
+ image: mlrun/ml-models
+ kind: serving
+ requirements:
+ - transformers==4.21.3
+ - tensorflow==2.9.2
+url: ''
+version: 1.1.0
+test_valid: false
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/1.1.0/src/requirements.txt b/functions/master/hugging_face_serving/1.1.0/src/requirements.txt
new file mode 100644
index 00000000..56d9116d
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/src/requirements.txt
@@ -0,0 +1,2 @@
+transformers
+numpy
diff --git a/functions/master/hugging_face_serving/1.1.0/src/test_hugging_face_serving.py b/functions/master/hugging_face_serving/1.1.0/src/test_hugging_face_serving.py
new file mode 100644
index 00000000..6fdc02dd
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/src/test_hugging_face_serving.py
@@ -0,0 +1,119 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import numpy as np
+import pytest
+
+import mlrun
+
+CLASS_NAME = "HuggingFaceModelServer"
+
+PIPELINES = [
+ {
+ "task": "sentiment-analysis",
+ "example": "We are very happy to show you the 🤗 Transformers library.",
+ "result_keys": ["label", "score"],
+ },
+ {
+ "task": "text-generation",
+ "example": {
+ "text_inputs": "Hello, I'm a language model",
+ "max_length": 20,
+ "num_return_sequences": 1,
+ },
+ "result_keys": ["generated_text"],
+ },
+ {
+ "task": "ner",
+ "example": "My name is Wolfgang",
+ "result_keys": ["entity", "score", "index", "word", "start", "end"],
+ },
+ {
+ "task": "question-answering",
+ "example": {
+ "question": "Where do I live?",
+ "context": "My name is Merve and I live in İstanbul.",
+ },
+ "result_keys": ["score", "start", "end", "answer"],
+ },
+ {
+ "task": "fill-mask",
+ "example": "Paris is the of France.",
+ "result_keys": ["score", "token", "token_str", "sequence"],
+ },
+ {
+ "task": "summarization",
+ "example": "Paris is the capital and most populous city of France,"
+ " with an estimated population of 2,175,601 residents as of 2018,"
+ " in an area of more than 105 square kilometres (41 square miles)."
+ " The City of Paris is the centre and seat of government of the region"
+ " and province of Île-de-France, or Paris Region, which has an estimated population of 12,174,880,"
+ " or about 18 percent of the population of France as of 2017.",
+ "result_keys": ["summary_text"],
+ },
+ {
+ "task": "translation_en_to_fr",
+ "example": "How old are you?",
+ "result_keys": ["translation_text"],
+ },
+]
+
+
+@pytest.mark.parametrize("pipeline", PIPELINES)
+def test_default_models(pipeline):
+ serving_function = mlrun.import_function("function.yaml")
+ serving_function.add_model(
+ pipeline["task"],
+ class_name=CLASS_NAME,
+ model_path="123", # This is not used, just for enabling the process.
+ task=pipeline["task"],
+ )
+ server = serving_function.to_mock_server()
+ result = server.test(
+ f'/v2/models/{pipeline["task"]}', body={"inputs": [pipeline["example"]]}
+ )
+ prediction = result["outputs"][0]
+ assert all(
+ result_key in prediction.keys() for result_key in pipeline["result_keys"]
+ )
+
+
+def test_local_model_serving():
+
+ serving_function = mlrun.import_function("function.yaml")
+
+ # Adding model:
+ serving_function.add_model(
+ "model1",
+ class_name=CLASS_NAME,
+ model_path="123", # This is not used, just for enabling the process.
+ task="sentiment-analysis",
+ model_class="TFAutoModelForSequenceClassification",
+ model_name="nlptown/bert-base-multilingual-uncased-sentiment",
+ tokenizer_class="AutoTokenizer",
+ tokenizer_name="nlptown/bert-base-multilingual-uncased-sentiment",
+ )
+
+ server = serving_function.to_mock_server()
+ result = server.test(
+ "/v2/models/model1",
+ body={
+ "inputs": [
+ "Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers."
+ ]
+ },
+ )
+
+ prediction = result["outputs"][0]
+ assert prediction["label"] == "5 stars" and np.isclose(prediction["score"], 0.72727)
diff --git a/functions/master/hugging_face_serving/1.1.0/static/documentation.html b/functions/master/hugging_face_serving/1.1.0/static/documentation.html
new file mode 100644
index 00000000..ab2b2bea
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/static/documentation.html
@@ -0,0 +1,239 @@
+
+
+
+
+
+
+
+hugging_face_serving package
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
hugging_face_serving package
+
+
+
+
+
+
+hugging_face_serving package
+
+
+hugging_face_serving.hugging_face_serving module
+
+
+class hugging_face_serving.hugging_face_serving. HuggingFaceModelServer ( context : mlrun.execution.MLClientCtx , name : str , task : str , model_path : Optional [ str ] = None , model_name : Optional [ str ] = None , model_class : Optional [ str ] = None , tokenizer_name : Optional [ str ] = None , tokenizer_class : Optional [ str ] = None , framework : Optional [ str ] = None , ** class_args ) [source]
+Bases: mlrun.serving.v2_serving.V2ModelServer
, abc.ABC
+Hugging Face Model serving class, inheriting the V2ModelServer class for being initialized automatically by the
+model server and be able to run locally as part of a nuclio serverless function, or as part of a real-time pipeline.
+
+
+load ( ) [source]
+load and initialize the model and/or other elements
+
+
+
+predict ( body : dict ) → List [source]
+Generate model predictions from sample.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/1.1.0/static/example.html b/functions/master/hugging_face_serving/1.1.0/static/example.html
new file mode 100644
index 00000000..19e1859b
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/static/example.html
@@ -0,0 +1,395 @@
+
+
+
+
+
+
+
+Hugging Face 🤗 Serving
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Hugging Face 🤗 Serving
+
+
+
+
+
+
+Hugging Face 🤗 Serving
+
+
+Importing the Hugging Face 🤗 model serving function
+
+
+
+Adding a pretrained model
+
+
+
+
<mlrun.serving.states.TaskStep at 0x7fc3ec3a7a50>
+
+
+
+
+
+
+Testing the pipeline locally
+
+
+
+
> 2022-09-07 08:54:42,419 [info] model mymodel was loaded
+> 2022-09-07 08:54:42,420 [info] Loaded ['mymodel']
+
+
+
+
+
+
+
+
prediction: [{'label': '5 stars', 'score': 0.7272651791572571}]
+
+
+
+
+
+
+Adding a default model from 🤗
+
+
+
+
<mlrun.serving.states.TaskStep at 0x7fc2d3472f10>
+
+
+
+
+
+
+Deploy the pipeline to our k8s cluster
+
+
+
+
> 2022-09-07 08:54:42,487 [info] Starting remote function deploy
+2022-09-07 08:54:43 (info) Deploying function
+2022-09-07 08:54:43 (info) Building
+2022-09-07 08:54:44 (info) Staging files and preparing base images
+2022-09-07 08:54:44 (info) Building processor image
+2022-09-07 08:56:29 (info) Build complete
+> 2022-09-07 08:57:09,536 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-default-hugging-face-serving.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-hugging-face-serving-default.default-tenant.app.yh43.iguazio-cd1.com/']}
+
+
+
'http://default-hugging-face-serving-default.default-tenant.app.yh43.iguazio-cd1.com/'
+
+
+
+
+
+
+Infer our sentences through our model
+
+
+
+
> 2022-09-07 08:57:09,616 [info] invoking function: {'method': 'POST', 'path': 'http://nuclio-default-hugging-face-serving.default-tenant.svc.cluster.local:8080/v2/models/default-model/predict'}
+
+
+
{'id': 'f7753a17-fa84-44fa-9264-1dc65172d05c',
+ 'model_name': 'default-model',
+ 'outputs': [{'label': 'POSITIVE', 'score': 0.9993784427642822}]}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/1.1.0/static/function.html b/functions/master/hugging_face_serving/1.1.0/static/function.html
new file mode 100644
index 00000000..5163d6a0
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/static/function.html
@@ -0,0 +1,68 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+kind: serving
+metadata:
+ name: hugging-face-serving
+ tag: ''
+ hash: 1a489a57da861f129eb26e933f34e58927e41195
+ project: ''
+ labels:
+ author: yonish
+ categories:
+ - huggingface
+ - genai
+ - model-serving
+ - machine-learning
+spec:
+ command: ''
+ args: []
+ image: mlrun/ml-models
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSBpbXBvcnRsaWIgaW1wb3J0IGltcG9ydF9tb2R1bGUKZnJvbSB0eXBpbmcgaW1wb3J0IExpc3QKCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBwaXBlbGluZQoKaW1wb3J0IG1scnVuLnNlcnZpbmcKClBBQ0tBR0VfTU9EVUxFID0gInRyYW5zZm9ybWVycyIKU0VSSUFMSVpBQkxFX1RZUEVTID0gW2RpY3QsIGxpc3QsIHR1cGxlLCBzdHIsIGludCwgZmxvYXRdCgoKY2xhc3MgSHVnZ2luZ0ZhY2VNb2RlbFNlcnZlcihtbHJ1bi5zZXJ2aW5nLlYyTW9kZWxTZXJ2ZXIsIEFCQyk6CiAgICAiIiIKICAgIEh1Z2dpbmcgRmFjZSBNb2RlbCBzZXJ2aW5nIGNsYXNzLCBpbmhlcml0aW5nIHRoZSBWMk1vZGVsU2VydmVyIGNsYXNzIGZvciBiZWluZyBpbml0aWFsaXplZCBhdXRvbWF0aWNhbGx5IGJ5IHRoZQogICAgbW9kZWwgc2VydmVyIGFuZCBiZSBhYmxlIHRvIHJ1biBsb2NhbGx5IGFzIHBhcnQgb2YgYSBudWNsaW8gc2VydmVybGVzcyBmdW5jdGlvbiwgb3IgYXMgcGFydCBvZiBhIHJlYWwtdGltZSBwaXBlbGluZS4KICAgICIiIgoKICAgIGRlZiBfX2luaXRfXygKICAgICAgICBzZWxmLAogICAgICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgICAgIG5hbWU6IHN0ciwKICAgICAgICB0YXNrOiBzdHIsCiAgICAgICAgbW9kZWxfcGF0aDogc3RyID0gTm9uZSwKICAgICAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9jbGFzczogc3RyID0gTm9uZSwKICAgICAgICBmcmFtZXdvcms6IHN0ciA9IE5vbmUsCiAgICAgICAgKipjbGFzc19hcmdzLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBJbml0aWFsaXplIGEgc2VydmluZyBjbGFzcyBmb3IgYSBIdWdnaW5nIGZhY2UgbW9kZWwuCgogICAgICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgIFRoZSBtbHJ1biBjb250ZXh0IHRvIHdvcmsgd2l0aAogICAgICAgIDpwYXJhbSBuYW1lOiAgICAgICAgICAgIFRoZSBuYW1lIG9mIHRoaXMgc2VydmVyIHRvIGJlIGluaXRpYWxpemVkCiAgICAgICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgTm90IGluIHVzZS4gV2hlbiBhZGRpbmcgYSBtb2RlbCBwYXNzIGFueSBzdHJpbmcgdmFsdWUKICAgICAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICBUaGUgbW9kZWwncyBuYW1lIGluIHRoZSBIdWdnaW5nIEZhY2UgaHViCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYG5scHRvd24vYmVydC1iYXNlLW11bHRpbGluZ3VhbC11bmNhc2VkLXNlbnRpbWVudGAKICAgICAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICBUaGUgbW9kZWwncyBjbGFzcyB0eXBlIG9iamVjdCB3aGljaCBjYW4gYmUgcGFzc2VkIGFzIHRoZSBjbGFzcydzIG5hbWUgKHN0cmluZykuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTXVzdCBiZSBwcm92aWRlZCBhbmQgdG8gYmUgbWF0Y2hlZCB3aXRoIGBtb2RlbF9uYW1lYC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlLmcuLCBgQXV0b01vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbmAKICAgICAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6ICBUaGUgdG9rZW5pemVyJ3MgbmFtZSBpbiB0aGUgSHVnZ2luZyBGYWNlIGh1YgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGUuZy4sIGBubHB0b3duL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtdW5jYXNlZC1zZW50aW1lbnRgCiAgICAgICAgOnBhcmFtIHRva2VuaXplcl9jbGFzczogVGhlIG1vZGVsJ3MgY2xhc3MgdHlwZSBvYmplY3Qgd2hpY2ggY2FuIGJlIHBhc3NlZCBhcyB0aGUgY2xhc3MncyBuYW1lIChzdHJpbmcpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE11c3QgYmUgcHJvdmlkZWQgYW5kIHRvIGJlIG1hdGNoZWQgd2l0aCBgbW9kZWxfbmFtZWAuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYEF1dG9Ub2tlbml6ZXJgCiAgICAgICAgOnBhcmFtIGZyYW1ld29yazogICAgICAgVGhlIGZyYW1ld29yayB0byB1c2UsIGVpdGhlciBgInB0ImAgZm9yIFB5VG9yY2ggb3IgYCJ0ZiJgIGZvciBUZW5zb3JGbG93LiBUaGUgc3BlY2lmaWVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZnJhbWV3b3JrIG11c3QgYmUgaW5zdGFsbGVkLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElmIG5vIGZyYW1ld29yayBpcyBzcGVjaWZpZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUgb25lIGN1cnJlbnRseSBpbnN0YWxsZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgbm8gZnJhbWV3b3JrIGlzIHNwZWNpZmllZCBhbmQgYm90aCBmcmFtZXdvcmtzIGFyZSBpbnN0YWxsZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcmsgb2YgdGhlIGBtb2RlbGAsIG9yIHRvIFB5VG9yY2ggaWYgbm8gbW9kZWwgaXMgcHJvdmlkZWQuCiAgICAgICAgOnBhcmFtIGNsYXNzX2FyZ3M6ICAgICAgLQogICAgICAgICIiIgogICAgICAgIHN1cGVyKEh1Z2dpbmdGYWNlTW9kZWxTZXJ2ZXIsIHNlbGYpLl9faW5pdF9fKAogICAgICAgICAgICBjb250ZXh0PWNvbnRleHQsCiAgICAgICAgICAgIG5hbWU9bmFtZSwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICAqKmNsYXNzX2FyZ3MsCiAgICAgICAgKQogICAgICAgIHNlbGYudGFzayA9IHRhc2sKICAgICAgICBzZWxmLm1vZGVsID0gTm9uZQogICAgICAgIHNlbGYudG9rZW5pemVyID0gTm9uZQogICAgICAgIHNlbGYubW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLnRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyX25hbWUKICAgICAgICBzZWxmLm1vZGVsX2NsYXNzID0gbW9kZWxfY2xhc3MKICAgICAgICBzZWxmLnRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcl9jbGFzcwogICAgICAgIHNlbGYuZnJhbWV3b3JrID0gZnJhbWV3b3JrCiAgICAgICAgc2VsZi5waXBlID0gTm9uZQoKICAgIGRlZiBsb2FkKHNlbGYpOgogICAgICAgICIiImxvYWQgYW5kIGluaXRpYWxpemUgdGhlIG1vZGVsIGFuZC9vciBvdGhlciBlbGVtZW50cyIiIgogICAgICAgIGlmIHNlbGYubW9kZWxfY2xhc3M6CiAgICAgICAgICAgIG1vZGVsX29iamVjdCA9IGdldGF0dHIoaW1wb3J0X21vZHVsZShQQUNLQUdFX01PRFVMRSksIHNlbGYubW9kZWxfY2xhc3MpCiAgICAgICAgICAgIHNlbGYubW9kZWwgPSBtb2RlbF9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYubW9kZWxfbmFtZSkKICAgICAgICBpZiBzZWxmLnRva2VuaXplcl9jbGFzczoKICAgICAgICAgICAgdG9rZW5pemVyX29iamVjdCA9IGdldGF0dHIoCiAgICAgICAgICAgICAgICBpbXBvcnRfbW9kdWxlKFBBQ0tBR0VfTU9EVUxFKSwgc2VsZi50b2tlbml6ZXJfY2xhc3MKICAgICAgICAgICAgKQogICAgICAgICAgICBzZWxmLnRva2VuaXplciA9IHRva2VuaXplcl9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYudG9rZW5pemVyX25hbWUpCiAgICAgICAgc2VsZi5waXBlID0gcGlwZWxpbmUoCiAgICAgICAgICAgIHRhc2s9c2VsZi50YXNrLAogICAgICAgICAgICBtb2RlbD1zZWxmLm1vZGVsIG9yIHNlbGYubW9kZWxfbmFtZSwKICAgICAgICAgICAgdG9rZW5pemVyPXNlbGYudG9rZW5pemVyLAogICAgICAgICAgICBmcmFtZXdvcms9c2VsZi5mcmFtZXdvcmssCiAgICAgICAgKQoKICAgIGRlZiBwcmVkaWN0KHNlbGYsIGJvZHk6IGRpY3QpIC0+IExpc3Q6CiAgICAgICAgIiIiR2VuZXJhdGUgbW9kZWwgcHJlZGljdGlvbnMgZnJvbSBzYW1wbGUuIiIiCiAgICAgICAgaWYgc2VsZi5waXBlIGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIlBsZWFzZSB1c2UgYC5sb2FkKClgIikKICAgICAgICB0cnk6CiAgICAgICAgICAgIGlmIGlzaW5zdGFuY2UoYm9keVsiaW5wdXRzIl1bMF0sIGRpY3QpOgogICAgICAgICAgICAgICAgcmVzdWx0ID0gW3NlbGYucGlwZSgqKl9pbnB1dCkgZm9yIF9pbnB1dCBpbiBib2R5WyJpbnB1dHMiXV0KICAgICAgICAgICAgZWxzZToKICAgICAgICAgICAgICAgIHJlc3VsdCA9IHNlbGYucGlwZShib2R5WyJpbnB1dHMiXSkKICAgICAgICAgICAgIyByZXBsYWNlIGxpc3Qgb2YgbGlzdHMgb2YgZGljdHMgaW50byBhIGxpc3Qgb2YgZGljdHM6CiAgICAgICAgICAgIGlmIGFsbChpc2luc3RhbmNlKHJlcywgbGlzdCkgZm9yIHJlcyBpbiByZXN1bHQpOgogICAgICAgICAgICAgICAgbmV3X3Jlc3VsdCA9IFtyZXNbMF0gZm9yIHJlcyBpbiByZXN1bHRdCiAgICAgICAgICAgICAgICByZXN1bHQgPSBuZXdfcmVzdWx0CgogICAgICAgICAgICBub25fc2VyaWFsaXphYmxlX3R5cGVzID0gW10KICAgICAgICAgICAgZm9yIHJlcyBpbiByZXN1bHQ6CiAgICAgICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gcmVzLml0ZW1zKCk6CiAgICAgICAgICAgICAgICAgICAgaWYgdHlwZSh2YWwpIG5vdCBpbiBTRVJJQUxJWkFCTEVfVFlQRVM6CiAgICAgICAgICAgICAgICAgICAgICAgIG5vbl9zZXJpYWxpemFibGVfdHlwZXMuYXBwZW5kKHN0cih0eXBlKHZhbCkpKQogICAgICAgICAgICAgICAgICAgICAgICByZXNba2V5XSA9IHN0cih2YWwpCiAgICAgICAgICAgIGlmIG5vbl9zZXJpYWxpemFibGVfdHlwZXM6CiAgICAgICAgICAgICAgICBzZWxmLmNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgICAgICAgICAgICAgZiJOb24tc2VyaWFsaXphYmxlIHR5cGVzOiB7bm9uX3NlcmlhbGl6YWJsZV90eXBlc30gd2VyZSBjYXN0ZWQgdG8gc3RyaW5ncyIKICAgICAgICAgICAgICAgICkKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigiRmFpbGVkIHRvIHByZWRpY3QgJXMiICUgZSkKICAgICAgICByZXR1cm4gcmVzdWx0Cgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - transformers==4.21.3
+ - tensorflow==2.9.2
+ description: Generic Hugging Face model server.
+ default_handler: ''
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
+ priority_class_name: ''
+ preemption_mode: prevent
+ min_replicas: 1
+ max_replicas: 4
+ source: ''
+ function_kind: serving_v2
+ function_handler: hugging_face_serving:handler
+ base_image_pull: false
+ default_class: HuggingFaceModelServer
+ secret_sources: []
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/1.1.0/static/hugging_face_serving.html b/functions/master/hugging_face_serving/1.1.0/static/hugging_face_serving.html
new file mode 100644
index 00000000..b87689f0
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/static/hugging_face_serving.html
@@ -0,0 +1,269 @@
+
+
+
+
+
+
+
+hugging_face_serving.hugging_face_serving
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Source code for hugging_face_serving.hugging_face_serving
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from abc import ABC
+from importlib import import_module
+from typing import List
+
+from transformers import pipeline
+
+import mlrun.serving
+
+PACKAGE_MODULE = "transformers"
+SERIALIZABLE_TYPES = [ dict , list , tuple , str , int , float ]
+
+
+[docs] class HuggingFaceModelServer ( mlrun . serving . V2ModelServer , ABC ):
+
"""
+
Hugging Face Model serving class, inheriting the V2ModelServer class for being initialized automatically by the
+
model server and be able to run locally as part of a nuclio serverless function, or as part of a real-time pipeline.
+
"""
+
+
def __init__ (
+
self ,
+
context : mlrun . MLClientCtx ,
+
name : str ,
+
task : str ,
+
model_path : str = None ,
+
model_name : str = None ,
+
model_class : str = None ,
+
tokenizer_name : str = None ,
+
tokenizer_class : str = None ,
+
framework : str = None ,
+
** class_args ,
+
):
+
"""
+
Initialize a serving class for a Hugging face model.
+
+
:param context: The mlrun context to work with
+
:param name: The name of this server to be initialized
+
:param model_path: Not in use. When adding a model pass any string value
+
:param model_name: The model's name in the Hugging Face hub
+
e.g., `nlptown/bert-base-multilingual-uncased-sentiment`
+
:param model_class: The model's class type object which can be passed as the class's name (string).
+
Must be provided and to be matched with `model_name`.
+
e.g., `AutoModelForSequenceClassification`
+
:param tokenizer_name: The tokenizer's name in the Hugging Face hub
+
e.g., `nlptown/bert-base-multilingual-uncased-sentiment`
+
:param tokenizer_class: The model's class type object which can be passed as the class's name (string).
+
Must be provided and to be matched with `model_name`.
+
e.g., `AutoTokenizer`
+
:param framework: The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified
+
framework must be installed.
+
If no framework is specified, will default to the one currently installed.
+
If no framework is specified and both frameworks are installed, will default to the
+
framework of the `model`, or to PyTorch if no model is provided.
+
:param class_args: -
+
"""
+
super ( HuggingFaceModelServer , self ) . __init__ (
+
context = context ,
+
name = name ,
+
model_path = model_path ,
+
** class_args ,
+
)
+
self . task = task
+
self . model = None
+
self . tokenizer = None
+
self . model_name = model_name
+
self . tokenizer_name = tokenizer_name
+
self . model_class = model_class
+
self . tokenizer_class = tokenizer_class
+
self . framework = framework
+
self . pipe = None
+
+
[docs] def load ( self ):
+
"""load and initialize the model and/or other elements"""
+
if self . model_class :
+
model_object = getattr ( import_module ( PACKAGE_MODULE ), self . model_class )
+
self . model = model_object . from_pretrained ( self . model_name )
+
if self . tokenizer_class :
+
tokenizer_object = getattr (
+
import_module ( PACKAGE_MODULE ), self . tokenizer_class
+
)
+
self . tokenizer = tokenizer_object . from_pretrained ( self . tokenizer_name )
+
self . pipe = pipeline (
+
task = self . task ,
+
model = self . model or self . model_name ,
+
tokenizer = self . tokenizer ,
+
framework = self . framework ,
+
)
+
+
[docs] def predict ( self , body : dict ) -> List :
+
"""Generate model predictions from sample."""
+
if self . pipe is None :
+
raise ValueError ( "Please use `.load()`" )
+
try :
+
if isinstance ( body [ "inputs" ][ 0 ], dict ):
+
result = [ self . pipe ( ** _input ) for _input in body [ "inputs" ]]
+
else :
+
result = self . pipe ( body [ "inputs" ])
+
# replace list of lists of dicts into a list of dicts:
+
if all ( isinstance ( res , list ) for res in result ):
+
new_result = [ res [ 0 ] for res in result ]
+
result = new_result
+
+
non_serializable_types = []
+
for res in result :
+
for key , val in res . items ():
+
if type ( val ) not in SERIALIZABLE_TYPES :
+
non_serializable_types . append ( str ( type ( val )))
+
res [ key ] = str ( val )
+
if non_serializable_types :
+
self . context . logger . info (
+
f "Non-serializable types: { non_serializable_types } were casted to strings"
+
)
+
except Exception as e :
+
raise Exception ( "Failed to predict %s " % e )
+
return result
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/1.1.0/static/item.html b/functions/master/hugging_face_serving/1.1.0/static/item.html
new file mode 100644
index 00000000..6dc1e112
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/static/item.html
@@ -0,0 +1,53 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+apiVersion: v1
+categories:
+- huggingface
+- genai
+- model-serving
+- machine-learning
+description: Generic Hugging Face model server.
+doc: ''
+example: hugging_face_serving.ipynb
+generationDate: 2022-09-05:17-00
+hidden: false
+icon: ''
+labels:
+ author: yonish
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.1.0
+name: hugging_face_serving
+platformVersion: ''
+spec:
+ customFields:
+ default_class: HuggingFaceModelServer
+ filename: hugging_face_serving.py
+ handler: handler
+ image: mlrun/ml-models
+ kind: serving
+ requirements:
+ - transformers==4.21.3
+ - tensorflow==2.9.2
+url: ''
+version: 1.1.0
+test_valid: false
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/1.1.0/static/source.html b/functions/master/hugging_face_serving/1.1.0/static/source.html
new file mode 100644
index 00000000..2826f166
--- /dev/null
+++ b/functions/master/hugging_face_serving/1.1.0/static/source.html
@@ -0,0 +1,151 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+
+from abc import ABC
+from importlib import import_module
+from typing import List
+
+from transformers import pipeline
+
+import mlrun.serving
+
+PACKAGE_MODULE = "transformers"
+SERIALIZABLE_TYPES = [dict, list, tuple, str, int, float]
+
+
+class HuggingFaceModelServer(mlrun.serving.V2ModelServer, ABC):
+ """
+ Hugging Face Model serving class, inheriting the V2ModelServer class for being initialized automatically by the
+ model server and be able to run locally as part of a nuclio serverless function, or as part of a real-time pipeline.
+ """
+
+ def __init__(
+ self,
+ context: mlrun.MLClientCtx,
+ name: str,
+ task: str,
+ model_path: str = None,
+ model_name: str = None,
+ model_class: str = None,
+ tokenizer_name: str = None,
+ tokenizer_class: str = None,
+ framework: str = None,
+ **class_args,
+ ):
+ """
+ Initialize a serving class for a Hugging face model.
+
+ :param context: The mlrun context to work with
+ :param name: The name of this server to be initialized
+ :param model_path: Not in use. When adding a model pass any string value
+ :param model_name: The model's name in the Hugging Face hub
+ e.g., `nlptown/bert-base-multilingual-uncased-sentiment`
+ :param model_class: The model's class type object which can be passed as the class's name (string).
+ Must be provided and to be matched with `model_name`.
+ e.g., `AutoModelForSequenceClassification`
+ :param tokenizer_name: The tokenizer's name in the Hugging Face hub
+ e.g., `nlptown/bert-base-multilingual-uncased-sentiment`
+ :param tokenizer_class: The model's class type object which can be passed as the class's name (string).
+ Must be provided and to be matched with `model_name`.
+ e.g., `AutoTokenizer`
+ :param framework: The framework to use, either `"pt"` for PyTorch or `"tf"` for TensorFlow. The specified
+ framework must be installed.
+ If no framework is specified, will default to the one currently installed.
+ If no framework is specified and both frameworks are installed, will default to the
+ framework of the `model`, or to PyTorch if no model is provided.
+ :param class_args: -
+ """
+ super(HuggingFaceModelServer, self).__init__(
+ context=context,
+ name=name,
+ model_path=model_path,
+ **class_args,
+ )
+ self.task = task
+ self.model = None
+ self.tokenizer = None
+ self.model_name = model_name
+ self.tokenizer_name = tokenizer_name
+ self.model_class = model_class
+ self.tokenizer_class = tokenizer_class
+ self.framework = framework
+ self.pipe = None
+
+ def load(self):
+ """load and initialize the model and/or other elements"""
+ if self.model_class:
+ model_object = getattr(import_module(PACKAGE_MODULE), self.model_class)
+ self.model = model_object.from_pretrained(self.model_name)
+ if self.tokenizer_class:
+ tokenizer_object = getattr(
+ import_module(PACKAGE_MODULE), self.tokenizer_class
+ )
+ self.tokenizer = tokenizer_object.from_pretrained(self.tokenizer_name)
+ self.pipe = pipeline(
+ task=self.task,
+ model=self.model or self.model_name,
+ tokenizer=self.tokenizer,
+ framework=self.framework,
+ )
+
+ def predict(self, body: dict) -> List:
+ """Generate model predictions from sample."""
+ if self.pipe is None:
+ raise ValueError("Please use `.load()`")
+ try:
+ if isinstance(body["inputs"][0], dict):
+ result = [self.pipe(**_input) for _input in body["inputs"]]
+ else:
+ result = self.pipe(body["inputs"])
+ # replace list of lists of dicts into a list of dicts:
+ if all(isinstance(res, list) for res in result):
+ new_result = [res[0] for res in result]
+ result = new_result
+
+ non_serializable_types = []
+ for res in result:
+ for key, val in res.items():
+ if type(val) not in SERIALIZABLE_TYPES:
+ non_serializable_types.append(str(type(val)))
+ res[key] = str(val)
+ if non_serializable_types:
+ self.context.logger.info(
+ f"Non-serializable types: {non_serializable_types} were casted to strings"
+ )
+ except Exception as e:
+ raise Exception("Failed to predict %s" % e)
+ return result
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/latest/src/function.yaml b/functions/master/hugging_face_serving/latest/src/function.yaml
index e1bb3b0c..764fc1cf 100644
--- a/functions/master/hugging_face_serving/latest/src/function.yaml
+++ b/functions/master/hugging_face_serving/latest/src/function.yaml
@@ -2,11 +2,13 @@ kind: serving
metadata:
name: hugging-face-serving
tag: ''
- hash: 39bfca7b639022fa03f5ca87f85f9e17fc837b70
+ hash: 1a489a57da861f129eb26e933f34e58927e41195
project: ''
labels:
author: yonish
categories:
+ - huggingface
+ - genai
- model-serving
- machine-learning
spec:
@@ -14,37 +16,28 @@ spec:
args: []
image: mlrun/ml-models
build:
- commands:
- - python -m pip install transformers==4.21.3 tensorflow==2.9.2
- code_origin: https://github.com/mlrun/functions.git#250244b2527c5ce8a82438b4340df34de6e19dc3:/Users/yonatanshelach/yoni/projects/functions/hugging_face_serving/hugging_face_serving.py
- origin_filename: /Users/yonatanshelach/yoni/projects/functions/hugging_face_serving/hugging_face_serving.py
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSBpbXBvcnRsaWIgaW1wb3J0IGltcG9ydF9tb2R1bGUKZnJvbSB0eXBpbmcgaW1wb3J0IExpc3QKCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBwaXBlbGluZQoKaW1wb3J0IG1scnVuLnNlcnZpbmcKClBBQ0tBR0VfTU9EVUxFID0gInRyYW5zZm9ybWVycyIKU0VSSUFMSVpBQkxFX1RZUEVTID0gW2RpY3QsIGxpc3QsIHR1cGxlLCBzdHIsIGludCwgZmxvYXRdCgoKY2xhc3MgSHVnZ2luZ0ZhY2VNb2RlbFNlcnZlcihtbHJ1bi5zZXJ2aW5nLlYyTW9kZWxTZXJ2ZXIsIEFCQyk6CiAgICAiIiIKICAgIEh1Z2dpbmcgRmFjZSBNb2RlbCBzZXJ2aW5nIGNsYXNzLCBpbmhlcml0aW5nIHRoZSBWMk1vZGVsU2VydmVyIGNsYXNzIGZvciBiZWluZyBpbml0aWFsaXplZCBhdXRvbWF0aWNhbGx5IGJ5IHRoZQogICAgbW9kZWwgc2VydmVyIGFuZCBiZSBhYmxlIHRvIHJ1biBsb2NhbGx5IGFzIHBhcnQgb2YgYSBudWNsaW8gc2VydmVybGVzcyBmdW5jdGlvbiwgb3IgYXMgcGFydCBvZiBhIHJlYWwtdGltZSBwaXBlbGluZS4KICAgICIiIgoKICAgIGRlZiBfX2luaXRfXygKICAgICAgICBzZWxmLAogICAgICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgICAgIG5hbWU6IHN0ciwKICAgICAgICB0YXNrOiBzdHIsCiAgICAgICAgbW9kZWxfcGF0aDogc3RyID0gTm9uZSwKICAgICAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9jbGFzczogc3RyID0gTm9uZSwKICAgICAgICBmcmFtZXdvcms6IHN0ciA9IE5vbmUsCiAgICAgICAgKipjbGFzc19hcmdzLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBJbml0aWFsaXplIGEgc2VydmluZyBjbGFzcyBmb3IgYSBIdWdnaW5nIGZhY2UgbW9kZWwuCgogICAgICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgIFRoZSBtbHJ1biBjb250ZXh0IHRvIHdvcmsgd2l0aAogICAgICAgIDpwYXJhbSBuYW1lOiAgICAgICAgICAgIFRoZSBuYW1lIG9mIHRoaXMgc2VydmVyIHRvIGJlIGluaXRpYWxpemVkCiAgICAgICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgTm90IGluIHVzZS4gV2hlbiBhZGRpbmcgYSBtb2RlbCBwYXNzIGFueSBzdHJpbmcgdmFsdWUKICAgICAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICBUaGUgbW9kZWwncyBuYW1lIGluIHRoZSBIdWdnaW5nIEZhY2UgaHViCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYG5scHRvd24vYmVydC1iYXNlLW11bHRpbGluZ3VhbC11bmNhc2VkLXNlbnRpbWVudGAKICAgICAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICBUaGUgbW9kZWwncyBjbGFzcyB0eXBlIG9iamVjdCB3aGljaCBjYW4gYmUgcGFzc2VkIGFzIHRoZSBjbGFzcydzIG5hbWUgKHN0cmluZykuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTXVzdCBiZSBwcm92aWRlZCBhbmQgdG8gYmUgbWF0Y2hlZCB3aXRoIGBtb2RlbF9uYW1lYC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlLmcuLCBgQXV0b01vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbmAKICAgICAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6ICBUaGUgdG9rZW5pemVyJ3MgbmFtZSBpbiB0aGUgSHVnZ2luZyBGYWNlIGh1YgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGUuZy4sIGBubHB0b3duL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtdW5jYXNlZC1zZW50aW1lbnRgCiAgICAgICAgOnBhcmFtIHRva2VuaXplcl9jbGFzczogVGhlIG1vZGVsJ3MgY2xhc3MgdHlwZSBvYmplY3Qgd2hpY2ggY2FuIGJlIHBhc3NlZCBhcyB0aGUgY2xhc3MncyBuYW1lIChzdHJpbmcpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE11c3QgYmUgcHJvdmlkZWQgYW5kIHRvIGJlIG1hdGNoZWQgd2l0aCBgbW9kZWxfbmFtZWAuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYEF1dG9Ub2tlbml6ZXJgCiAgICAgICAgOnBhcmFtIGZyYW1ld29yazogICAgICAgVGhlIGZyYW1ld29yayB0byB1c2UsIGVpdGhlciBgInB0ImAgZm9yIFB5VG9yY2ggb3IgYCJ0ZiJgIGZvciBUZW5zb3JGbG93LiBUaGUgc3BlY2lmaWVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZnJhbWV3b3JrIG11c3QgYmUgaW5zdGFsbGVkLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElmIG5vIGZyYW1ld29yayBpcyBzcGVjaWZpZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUgb25lIGN1cnJlbnRseSBpbnN0YWxsZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgbm8gZnJhbWV3b3JrIGlzIHNwZWNpZmllZCBhbmQgYm90aCBmcmFtZXdvcmtzIGFyZSBpbnN0YWxsZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcmsgb2YgdGhlIGBtb2RlbGAsIG9yIHRvIFB5VG9yY2ggaWYgbm8gbW9kZWwgaXMgcHJvdmlkZWQuCiAgICAgICAgOnBhcmFtIGNsYXNzX2FyZ3M6ICAgICAgLQogICAgICAgICIiIgogICAgICAgIHN1cGVyKEh1Z2dpbmdGYWNlTW9kZWxTZXJ2ZXIsIHNlbGYpLl9faW5pdF9fKAogICAgICAgICAgICBjb250ZXh0PWNvbnRleHQsCiAgICAgICAgICAgIG5hbWU9bmFtZSwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICAqKmNsYXNzX2FyZ3MsCiAgICAgICAgKQogICAgICAgIHNlbGYudGFzayA9IHRhc2sKICAgICAgICBzZWxmLm1vZGVsID0gTm9uZQogICAgICAgIHNlbGYudG9rZW5pemVyID0gTm9uZQogICAgICAgIHNlbGYubW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLnRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyX25hbWUKICAgICAgICBzZWxmLm1vZGVsX2NsYXNzID0gbW9kZWxfY2xhc3MKICAgICAgICBzZWxmLnRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcl9jbGFzcwogICAgICAgIHNlbGYuZnJhbWV3b3JrID0gZnJhbWV3b3JrCiAgICAgICAgc2VsZi5waXBlID0gTm9uZQoKICAgIGRlZiBsb2FkKHNlbGYpOgogICAgICAgICIiImxvYWQgYW5kIGluaXRpYWxpemUgdGhlIG1vZGVsIGFuZC9vciBvdGhlciBlbGVtZW50cyIiIgogICAgICAgIGlmIHNlbGYubW9kZWxfY2xhc3M6CiAgICAgICAgICAgIG1vZGVsX29iamVjdCA9IGdldGF0dHIoaW1wb3J0X21vZHVsZShQQUNLQUdFX01PRFVMRSksIHNlbGYubW9kZWxfY2xhc3MpCiAgICAgICAgICAgIHNlbGYubW9kZWwgPSBtb2RlbF9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYubW9kZWxfbmFtZSkKICAgICAgICBpZiBzZWxmLnRva2VuaXplcl9jbGFzczoKICAgICAgICAgICAgdG9rZW5pemVyX29iamVjdCA9IGdldGF0dHIoCiAgICAgICAgICAgICAgICBpbXBvcnRfbW9kdWxlKFBBQ0tBR0VfTU9EVUxFKSwgc2VsZi50b2tlbml6ZXJfY2xhc3MKICAgICAgICAgICAgKQogICAgICAgICAgICBzZWxmLnRva2VuaXplciA9IHRva2VuaXplcl9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYudG9rZW5pemVyX25hbWUpCiAgICAgICAgc2VsZi5waXBlID0gcGlwZWxpbmUoCiAgICAgICAgICAgIHRhc2s9c2VsZi50YXNrLAogICAgICAgICAgICBtb2RlbD1zZWxmLm1vZGVsIG9yIHNlbGYubW9kZWxfbmFtZSwKICAgICAgICAgICAgdG9rZW5pemVyPXNlbGYudG9rZW5pemVyLAogICAgICAgICAgICBmcmFtZXdvcms9c2VsZi5mcmFtZXdvcmssCiAgICAgICAgKQoKICAgIGRlZiBwcmVkaWN0KHNlbGYsIGJvZHk6IGRpY3QpIC0+IExpc3Q6CiAgICAgICAgIiIiR2VuZXJhdGUgbW9kZWwgcHJlZGljdGlvbnMgZnJvbSBzYW1wbGUuIiIiCiAgICAgICAgaWYgc2VsZi5waXBlIGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIlBsZWFzZSB1c2UgYC5sb2FkKClgIikKICAgICAgICB0cnk6CiAgICAgICAgICAgIGlmIGlzaW5zdGFuY2UoYm9keVsiaW5wdXRzIl1bMF0sIGRpY3QpOgogICAgICAgICAgICAgICAgcmVzdWx0ID0gW3NlbGYucGlwZSgqKl9pbnB1dCkgZm9yIF9pbnB1dCBpbiBib2R5WyJpbnB1dHMiXV0KICAgICAgICAgICAgZWxzZToKICAgICAgICAgICAgICAgIHJlc3VsdCA9IHNlbGYucGlwZShib2R5WyJpbnB1dHMiXSkKICAgICAgICAgICAgIyByZXBsYWNlIGxpc3Qgb2YgbGlzdHMgb2YgZGljdHMgaW50byBhIGxpc3Qgb2YgZGljdHM6CiAgICAgICAgICAgIGlmIGFsbChpc2luc3RhbmNlKHJlcywgbGlzdCkgZm9yIHJlcyBpbiByZXN1bHQpOgogICAgICAgICAgICAgICAgbmV3X3Jlc3VsdCA9IFtyZXNbMF0gZm9yIHJlcyBpbiByZXN1bHRdCiAgICAgICAgICAgICAgICByZXN1bHQgPSBuZXdfcmVzdWx0CgogICAgICAgICAgICBub25fc2VyaWFsaXphYmxlX3R5cGVzID0gW10KICAgICAgICAgICAgZm9yIHJlcyBpbiByZXN1bHQ6CiAgICAgICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gcmVzLml0ZW1zKCk6CiAgICAgICAgICAgICAgICAgICAgaWYgdHlwZSh2YWwpIG5vdCBpbiBTRVJJQUxJWkFCTEVfVFlQRVM6CiAgICAgICAgICAgICAgICAgICAgICAgIG5vbl9zZXJpYWxpemFibGVfdHlwZXMuYXBwZW5kKHN0cih0eXBlKHZhbCkpKQogICAgICAgICAgICAgICAgICAgICAgICByZXNba2V5XSA9IHN0cih2YWwpCiAgICAgICAgICAgIGlmIG5vbl9zZXJpYWxpemFibGVfdHlwZXM6CiAgICAgICAgICAgICAgICBzZWxmLmNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgICAgICAgICAgICAgZiJOb24tc2VyaWFsaXphYmxlIHR5cGVzOiB7bm9uX3NlcmlhbGl6YWJsZV90eXBlc30gd2VyZSBjYXN0ZWQgdG8gc3RyaW5ncyIKICAgICAgICAgICAgICAgICkKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigiRmFpbGVkIHRvIHByZWRpY3QgJXMiICUgZSkKICAgICAgICByZXR1cm4gcmVzdWx0Cgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - transformers==4.21.3
+ - tensorflow==2.9.2
description: Generic Hugging Face model server.
- default_handler: handler
+ default_handler: ''
disable_auto_mount: false
- env: []
+ clone_target_dir: ''
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
priority_class_name: ''
preemption_mode: prevent
min_replicas: 1
max_replicas: 4
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: hugging-face-serving
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /Users/yonatanshelach/yoni/projects/functions/hugging_face_serving/hugging_face_serving.py
- spec:
- runtime: python
- handler: hugging_face_serving:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSBpbXBvcnRsaWIgaW1wb3J0IGltcG9ydF9tb2R1bGUKZnJvbSB0eXBpbmcgaW1wb3J0IExpc3QKCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBwaXBlbGluZQoKaW1wb3J0IG1scnVuLnNlcnZpbmcKClBBQ0tBR0VfTU9EVUxFID0gInRyYW5zZm9ybWVycyIKU0VSSUFMSVpBQkxFX1RZUEVTID0gW2RpY3QsIGxpc3QsIHR1cGxlLCBzdHIsIGludCwgZmxvYXRdCgoKY2xhc3MgSHVnZ2luZ0ZhY2VNb2RlbFNlcnZlcihtbHJ1bi5zZXJ2aW5nLlYyTW9kZWxTZXJ2ZXIsIEFCQyk6CiAgICAiIiIKICAgIEh1Z2dpbmcgRmFjZSBNb2RlbCBzZXJ2aW5nIGNsYXNzLCBpbmhlcml0aW5nIHRoZSBWMk1vZGVsU2VydmVyIGNsYXNzIGZvciBiZWluZyBpbml0aWFsaXplZCBhdXRvbWF0aWNhbGx5IGJ5IHRoZQogICAgbW9kZWwgc2VydmVyIGFuZCBiZSBhYmxlIHRvIHJ1biBsb2NhbGx5IGFzIHBhcnQgb2YgYSBudWNsaW8gc2VydmVybGVzcyBmdW5jdGlvbiwgb3IgYXMgcGFydCBvZiBhIHJlYWwtdGltZSBwaXBlbGluZS4KICAgICIiIgoKICAgIGRlZiBfX2luaXRfXygKICAgICAgICBzZWxmLAogICAgICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgICAgIG5hbWU6IHN0ciwKICAgICAgICB0YXNrOiBzdHIsCiAgICAgICAgbW9kZWxfcGF0aDogc3RyID0gTm9uZSwKICAgICAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9jbGFzczogc3RyID0gTm9uZSwKICAgICAgICBmcmFtZXdvcms6IHN0ciA9IE5vbmUsCiAgICAgICAgKipjbGFzc19hcmdzLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBJbml0aWFsaXplIGEgc2VydmluZyBjbGFzcyBmb3IgYSBIdWdnaW5nIGZhY2UgbW9kZWwuCgogICAgICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgIFRoZSBtbHJ1biBjb250ZXh0IHRvIHdvcmsgd2l0aAogICAgICAgIDpwYXJhbSBuYW1lOiAgICAgICAgICAgIFRoZSBuYW1lIG9mIHRoaXMgc2VydmVyIHRvIGJlIGluaXRpYWxpemVkCiAgICAgICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgTm90IGluIHVzZS4gV2hlbiBhZGRpbmcgYSBtb2RlbCBwYXNzIGFueSBzdHJpbmcgdmFsdWUKICAgICAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICBUaGUgbW9kZWwncyBuYW1lIGluIHRoZSBIdWdnaW5nIEZhY2UgaHViCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYG5scHRvd24vYmVydC1iYXNlLW11bHRpbGluZ3VhbC11bmNhc2VkLXNlbnRpbWVudGAKICAgICAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICBUaGUgbW9kZWwncyBjbGFzcyB0eXBlIG9iamVjdCB3aGljaCBjYW4gYmUgcGFzc2VkIGFzIHRoZSBjbGFzcydzIG5hbWUgKHN0cmluZykuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTXVzdCBiZSBwcm92aWRlZCBhbmQgdG8gYmUgbWF0Y2hlZCB3aXRoIGBtb2RlbF9uYW1lYC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlLmcuLCBgQXV0b01vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbmAKICAgICAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6ICBUaGUgdG9rZW5pemVyJ3MgbmFtZSBpbiB0aGUgSHVnZ2luZyBGYWNlIGh1YgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGUuZy4sIGBubHB0b3duL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtdW5jYXNlZC1zZW50aW1lbnRgCiAgICAgICAgOnBhcmFtIHRva2VuaXplcl9jbGFzczogVGhlIG1vZGVsJ3MgY2xhc3MgdHlwZSBvYmplY3Qgd2hpY2ggY2FuIGJlIHBhc3NlZCBhcyB0aGUgY2xhc3MncyBuYW1lIChzdHJpbmcpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE11c3QgYmUgcHJvdmlkZWQgYW5kIHRvIGJlIG1hdGNoZWQgd2l0aCBgbW9kZWxfbmFtZWAuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYEF1dG9Ub2tlbml6ZXJgCiAgICAgICAgOnBhcmFtIGZyYW1ld29yazogICAgICAgVGhlIGZyYW1ld29yayB0byB1c2UsIGVpdGhlciBgInB0ImAgZm9yIFB5VG9yY2ggb3IgYCJ0ZiJgIGZvciBUZW5zb3JGbG93LiBUaGUgc3BlY2lmaWVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZnJhbWV3b3JrIG11c3QgYmUgaW5zdGFsbGVkLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElmIG5vIGZyYW1ld29yayBpcyBzcGVjaWZpZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUgb25lIGN1cnJlbnRseSBpbnN0YWxsZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgbm8gZnJhbWV3b3JrIGlzIHNwZWNpZmllZCBhbmQgYm90aCBmcmFtZXdvcmtzIGFyZSBpbnN0YWxsZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcmsgb2YgdGhlIGBtb2RlbGAsIG9yIHRvIFB5VG9yY2ggaWYgbm8gbW9kZWwgaXMgcHJvdmlkZWQuCiAgICAgICAgOnBhcmFtIGNsYXNzX2FyZ3M6ICAgICAgLQogICAgICAgICIiIgogICAgICAgIHN1cGVyKEh1Z2dpbmdGYWNlTW9kZWxTZXJ2ZXIsIHNlbGYpLl9faW5pdF9fKAogICAgICAgICAgICBjb250ZXh0PWNvbnRleHQsCiAgICAgICAgICAgIG5hbWU9bmFtZSwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICAqKmNsYXNzX2FyZ3MsCiAgICAgICAgKQogICAgICAgIHNlbGYudGFzayA9IHRhc2sKICAgICAgICBzZWxmLm1vZGVsID0gTm9uZQogICAgICAgIHNlbGYudG9rZW5pemVyID0gTm9uZQogICAgICAgIHNlbGYubW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLnRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyX25hbWUKICAgICAgICBzZWxmLm1vZGVsX2NsYXNzID0gbW9kZWxfY2xhc3MKICAgICAgICBzZWxmLnRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcl9jbGFzcwogICAgICAgIHNlbGYuZnJhbWV3b3JrID0gZnJhbWV3b3JrCiAgICAgICAgc2VsZi5waXBlID0gTm9uZQoKICAgIGRlZiBsb2FkKHNlbGYpOgogICAgICAgICIiImxvYWQgYW5kIGluaXRpYWxpemUgdGhlIG1vZGVsIGFuZC9vciBvdGhlciBlbGVtZW50cyIiIgogICAgICAgIGlmIHNlbGYubW9kZWxfY2xhc3M6CiAgICAgICAgICAgIG1vZGVsX29iamVjdCA9IGdldGF0dHIoaW1wb3J0X21vZHVsZShQQUNLQUdFX01PRFVMRSksIHNlbGYubW9kZWxfY2xhc3MpCiAgICAgICAgICAgIHNlbGYubW9kZWwgPSBtb2RlbF9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYubW9kZWxfbmFtZSkKICAgICAgICBpZiBzZWxmLnRva2VuaXplcl9jbGFzczoKICAgICAgICAgICAgdG9rZW5pemVyX29iamVjdCA9IGdldGF0dHIoCiAgICAgICAgICAgICAgICBpbXBvcnRfbW9kdWxlKFBBQ0tBR0VfTU9EVUxFKSwgc2VsZi50b2tlbml6ZXJfY2xhc3MKICAgICAgICAgICAgKQogICAgICAgICAgICBzZWxmLnRva2VuaXplciA9IHRva2VuaXplcl9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYudG9rZW5pemVyX25hbWUpCiAgICAgICAgc2VsZi5waXBlID0gcGlwZWxpbmUoCiAgICAgICAgICAgIHRhc2s9c2VsZi50YXNrLAogICAgICAgICAgICBtb2RlbD1zZWxmLm1vZGVsIG9yIHNlbGYubW9kZWxfbmFtZSwKICAgICAgICAgICAgdG9rZW5pemVyPXNlbGYudG9rZW5pemVyLAogICAgICAgICAgICBmcmFtZXdvcms9c2VsZi5mcmFtZXdvcmssCiAgICAgICAgKQoKICAgIGRlZiBwcmVkaWN0KHNlbGYsIGJvZHk6IGRpY3QpIC0+IExpc3Q6CiAgICAgICAgIiIiR2VuZXJhdGUgbW9kZWwgcHJlZGljdGlvbnMgZnJvbSBzYW1wbGUuIiIiCiAgICAgICAgaWYgc2VsZi5waXBlIGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIlBsZWFzZSB1c2UgYC5sb2FkKClgIikKICAgICAgICB0cnk6CiAgICAgICAgICAgIGlmIGlzaW5zdGFuY2UoYm9keVsiaW5wdXRzIl1bMF0sIGRpY3QpOgogICAgICAgICAgICAgICAgcmVzdWx0ID0gW3NlbGYucGlwZSgqKl9pbnB1dCkgZm9yIF9pbnB1dCBpbiBib2R5WyJpbnB1dHMiXV0KICAgICAgICAgICAgZWxzZToKICAgICAgICAgICAgICAgIHJlc3VsdCA9IHNlbGYucGlwZShib2R5WyJpbnB1dHMiXSkKICAgICAgICAgICAgIyByZXBsYWNlIGxpc3Qgb2YgbGlzdHMgb2YgZGljdHMgaW50byBhIGxpc3Qgb2YgZGljdHM6CiAgICAgICAgICAgIGlmIGFsbChpc2luc3RhbmNlKHJlcywgbGlzdCkgZm9yIHJlcyBpbiByZXN1bHQpOgogICAgICAgICAgICAgICAgbmV3X3Jlc3VsdCA9IFtyZXNbMF0gZm9yIHJlcyBpbiByZXN1bHRdCiAgICAgICAgICAgICAgICByZXN1bHQgPSBuZXdfcmVzdWx0CgogICAgICAgICAgICBub25fc2VyaWFsaXphYmxlX3R5cGVzID0gW10KICAgICAgICAgICAgZm9yIHJlcyBpbiByZXN1bHQ6CiAgICAgICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gcmVzLml0ZW1zKCk6CiAgICAgICAgICAgICAgICAgICAgaWYgdHlwZSh2YWwpIG5vdCBpbiBTRVJJQUxJWkFCTEVfVFlQRVM6CiAgICAgICAgICAgICAgICAgICAgICAgIG5vbl9zZXJpYWxpemFibGVfdHlwZXMuYXBwZW5kKHN0cih0eXBlKHZhbCkpKQogICAgICAgICAgICAgICAgICAgICAgICByZXNba2V5XSA9IHN0cih2YWwpCiAgICAgICAgICAgIGlmIG5vbl9zZXJpYWxpemFibGVfdHlwZXM6CiAgICAgICAgICAgICAgICBzZWxmLmNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgICAgICAgICAgICAgZiJOb24tc2VyaWFsaXphYmxlIHR5cGVzOiB7bm9uX3NlcmlhbGl6YWJsZV90eXBlc30gd2VyZSBjYXN0ZWQgdG8gc3RyaW5ncyIKICAgICAgICAgICAgICAgICkKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigiRmFpbGVkIHRvIHByZWRpY3QgJXMiICUgZSkKICAgICAgICByZXR1cm4gcmVzdWx0Cgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
source: ''
function_kind: serving_v2
+ function_handler: hugging_face_serving:handler
+ base_image_pull: false
default_class: HuggingFaceModelServer
secret_sources: []
affinity: null
diff --git a/functions/master/hugging_face_serving/latest/src/item.yaml b/functions/master/hugging_face_serving/latest/src/item.yaml
index f7fa9263..d1f78769 100644
--- a/functions/master/hugging_face_serving/latest/src/item.yaml
+++ b/functions/master/hugging_face_serving/latest/src/item.yaml
@@ -1,5 +1,7 @@
apiVersion: v1
categories:
+- huggingface
+- genai
- model-serving
- machine-learning
description: Generic Hugging Face model server.
@@ -26,4 +28,5 @@ spec:
- transformers==4.21.3
- tensorflow==2.9.2
url: ''
-version: 1.0.0
+version: 1.1.0
+test_valid: false
\ No newline at end of file
diff --git a/functions/master/hugging_face_serving/latest/static/function.html b/functions/master/hugging_face_serving/latest/static/function.html
index c155e675..5163d6a0 100644
--- a/functions/master/hugging_face_serving/latest/static/function.html
+++ b/functions/master/hugging_face_serving/latest/static/function.html
@@ -19,11 +19,13 @@
metadata:
name: hugging-face-serving
tag: ''
- hash: 39bfca7b639022fa03f5ca87f85f9e17fc837b70
+ hash: 1a489a57da861f129eb26e933f34e58927e41195
project: ''
labels:
author: yonish
categories:
+ - huggingface
+ - genai
- model-serving
- machine-learning
spec:
@@ -31,37 +33,28 @@
args: []
image: mlrun/ml-models
build:
- commands:
- - python -m pip install transformers==4.21.3 tensorflow==2.9.2
- code_origin: https://github.com/mlrun/functions.git#250244b2527c5ce8a82438b4340df34de6e19dc3:/Users/yonatanshelach/yoni/projects/functions/hugging_face_serving/hugging_face_serving.py
- origin_filename: /Users/yonatanshelach/yoni/projects/functions/hugging_face_serving/hugging_face_serving.py
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSBpbXBvcnRsaWIgaW1wb3J0IGltcG9ydF9tb2R1bGUKZnJvbSB0eXBpbmcgaW1wb3J0IExpc3QKCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBwaXBlbGluZQoKaW1wb3J0IG1scnVuLnNlcnZpbmcKClBBQ0tBR0VfTU9EVUxFID0gInRyYW5zZm9ybWVycyIKU0VSSUFMSVpBQkxFX1RZUEVTID0gW2RpY3QsIGxpc3QsIHR1cGxlLCBzdHIsIGludCwgZmxvYXRdCgoKY2xhc3MgSHVnZ2luZ0ZhY2VNb2RlbFNlcnZlcihtbHJ1bi5zZXJ2aW5nLlYyTW9kZWxTZXJ2ZXIsIEFCQyk6CiAgICAiIiIKICAgIEh1Z2dpbmcgRmFjZSBNb2RlbCBzZXJ2aW5nIGNsYXNzLCBpbmhlcml0aW5nIHRoZSBWMk1vZGVsU2VydmVyIGNsYXNzIGZvciBiZWluZyBpbml0aWFsaXplZCBhdXRvbWF0aWNhbGx5IGJ5IHRoZQogICAgbW9kZWwgc2VydmVyIGFuZCBiZSBhYmxlIHRvIHJ1biBsb2NhbGx5IGFzIHBhcnQgb2YgYSBudWNsaW8gc2VydmVybGVzcyBmdW5jdGlvbiwgb3IgYXMgcGFydCBvZiBhIHJlYWwtdGltZSBwaXBlbGluZS4KICAgICIiIgoKICAgIGRlZiBfX2luaXRfXygKICAgICAgICBzZWxmLAogICAgICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgICAgIG5hbWU6IHN0ciwKICAgICAgICB0YXNrOiBzdHIsCiAgICAgICAgbW9kZWxfcGF0aDogc3RyID0gTm9uZSwKICAgICAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9jbGFzczogc3RyID0gTm9uZSwKICAgICAgICBmcmFtZXdvcms6IHN0ciA9IE5vbmUsCiAgICAgICAgKipjbGFzc19hcmdzLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBJbml0aWFsaXplIGEgc2VydmluZyBjbGFzcyBmb3IgYSBIdWdnaW5nIGZhY2UgbW9kZWwuCgogICAgICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgIFRoZSBtbHJ1biBjb250ZXh0IHRvIHdvcmsgd2l0aAogICAgICAgIDpwYXJhbSBuYW1lOiAgICAgICAgICAgIFRoZSBuYW1lIG9mIHRoaXMgc2VydmVyIHRvIGJlIGluaXRpYWxpemVkCiAgICAgICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgTm90IGluIHVzZS4gV2hlbiBhZGRpbmcgYSBtb2RlbCBwYXNzIGFueSBzdHJpbmcgdmFsdWUKICAgICAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICBUaGUgbW9kZWwncyBuYW1lIGluIHRoZSBIdWdnaW5nIEZhY2UgaHViCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYG5scHRvd24vYmVydC1iYXNlLW11bHRpbGluZ3VhbC11bmNhc2VkLXNlbnRpbWVudGAKICAgICAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICBUaGUgbW9kZWwncyBjbGFzcyB0eXBlIG9iamVjdCB3aGljaCBjYW4gYmUgcGFzc2VkIGFzIHRoZSBjbGFzcydzIG5hbWUgKHN0cmluZykuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTXVzdCBiZSBwcm92aWRlZCBhbmQgdG8gYmUgbWF0Y2hlZCB3aXRoIGBtb2RlbF9uYW1lYC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlLmcuLCBgQXV0b01vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbmAKICAgICAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6ICBUaGUgdG9rZW5pemVyJ3MgbmFtZSBpbiB0aGUgSHVnZ2luZyBGYWNlIGh1YgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGUuZy4sIGBubHB0b3duL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtdW5jYXNlZC1zZW50aW1lbnRgCiAgICAgICAgOnBhcmFtIHRva2VuaXplcl9jbGFzczogVGhlIG1vZGVsJ3MgY2xhc3MgdHlwZSBvYmplY3Qgd2hpY2ggY2FuIGJlIHBhc3NlZCBhcyB0aGUgY2xhc3MncyBuYW1lIChzdHJpbmcpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE11c3QgYmUgcHJvdmlkZWQgYW5kIHRvIGJlIG1hdGNoZWQgd2l0aCBgbW9kZWxfbmFtZWAuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYEF1dG9Ub2tlbml6ZXJgCiAgICAgICAgOnBhcmFtIGZyYW1ld29yazogICAgICAgVGhlIGZyYW1ld29yayB0byB1c2UsIGVpdGhlciBgInB0ImAgZm9yIFB5VG9yY2ggb3IgYCJ0ZiJgIGZvciBUZW5zb3JGbG93LiBUaGUgc3BlY2lmaWVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZnJhbWV3b3JrIG11c3QgYmUgaW5zdGFsbGVkLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElmIG5vIGZyYW1ld29yayBpcyBzcGVjaWZpZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUgb25lIGN1cnJlbnRseSBpbnN0YWxsZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgbm8gZnJhbWV3b3JrIGlzIHNwZWNpZmllZCBhbmQgYm90aCBmcmFtZXdvcmtzIGFyZSBpbnN0YWxsZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcmsgb2YgdGhlIGBtb2RlbGAsIG9yIHRvIFB5VG9yY2ggaWYgbm8gbW9kZWwgaXMgcHJvdmlkZWQuCiAgICAgICAgOnBhcmFtIGNsYXNzX2FyZ3M6ICAgICAgLQogICAgICAgICIiIgogICAgICAgIHN1cGVyKEh1Z2dpbmdGYWNlTW9kZWxTZXJ2ZXIsIHNlbGYpLl9faW5pdF9fKAogICAgICAgICAgICBjb250ZXh0PWNvbnRleHQsCiAgICAgICAgICAgIG5hbWU9bmFtZSwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICAqKmNsYXNzX2FyZ3MsCiAgICAgICAgKQogICAgICAgIHNlbGYudGFzayA9IHRhc2sKICAgICAgICBzZWxmLm1vZGVsID0gTm9uZQogICAgICAgIHNlbGYudG9rZW5pemVyID0gTm9uZQogICAgICAgIHNlbGYubW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLnRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyX25hbWUKICAgICAgICBzZWxmLm1vZGVsX2NsYXNzID0gbW9kZWxfY2xhc3MKICAgICAgICBzZWxmLnRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcl9jbGFzcwogICAgICAgIHNlbGYuZnJhbWV3b3JrID0gZnJhbWV3b3JrCiAgICAgICAgc2VsZi5waXBlID0gTm9uZQoKICAgIGRlZiBsb2FkKHNlbGYpOgogICAgICAgICIiImxvYWQgYW5kIGluaXRpYWxpemUgdGhlIG1vZGVsIGFuZC9vciBvdGhlciBlbGVtZW50cyIiIgogICAgICAgIGlmIHNlbGYubW9kZWxfY2xhc3M6CiAgICAgICAgICAgIG1vZGVsX29iamVjdCA9IGdldGF0dHIoaW1wb3J0X21vZHVsZShQQUNLQUdFX01PRFVMRSksIHNlbGYubW9kZWxfY2xhc3MpCiAgICAgICAgICAgIHNlbGYubW9kZWwgPSBtb2RlbF9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYubW9kZWxfbmFtZSkKICAgICAgICBpZiBzZWxmLnRva2VuaXplcl9jbGFzczoKICAgICAgICAgICAgdG9rZW5pemVyX29iamVjdCA9IGdldGF0dHIoCiAgICAgICAgICAgICAgICBpbXBvcnRfbW9kdWxlKFBBQ0tBR0VfTU9EVUxFKSwgc2VsZi50b2tlbml6ZXJfY2xhc3MKICAgICAgICAgICAgKQogICAgICAgICAgICBzZWxmLnRva2VuaXplciA9IHRva2VuaXplcl9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYudG9rZW5pemVyX25hbWUpCiAgICAgICAgc2VsZi5waXBlID0gcGlwZWxpbmUoCiAgICAgICAgICAgIHRhc2s9c2VsZi50YXNrLAogICAgICAgICAgICBtb2RlbD1zZWxmLm1vZGVsIG9yIHNlbGYubW9kZWxfbmFtZSwKICAgICAgICAgICAgdG9rZW5pemVyPXNlbGYudG9rZW5pemVyLAogICAgICAgICAgICBmcmFtZXdvcms9c2VsZi5mcmFtZXdvcmssCiAgICAgICAgKQoKICAgIGRlZiBwcmVkaWN0KHNlbGYsIGJvZHk6IGRpY3QpIC0+IExpc3Q6CiAgICAgICAgIiIiR2VuZXJhdGUgbW9kZWwgcHJlZGljdGlvbnMgZnJvbSBzYW1wbGUuIiIiCiAgICAgICAgaWYgc2VsZi5waXBlIGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIlBsZWFzZSB1c2UgYC5sb2FkKClgIikKICAgICAgICB0cnk6CiAgICAgICAgICAgIGlmIGlzaW5zdGFuY2UoYm9keVsiaW5wdXRzIl1bMF0sIGRpY3QpOgogICAgICAgICAgICAgICAgcmVzdWx0ID0gW3NlbGYucGlwZSgqKl9pbnB1dCkgZm9yIF9pbnB1dCBpbiBib2R5WyJpbnB1dHMiXV0KICAgICAgICAgICAgZWxzZToKICAgICAgICAgICAgICAgIHJlc3VsdCA9IHNlbGYucGlwZShib2R5WyJpbnB1dHMiXSkKICAgICAgICAgICAgIyByZXBsYWNlIGxpc3Qgb2YgbGlzdHMgb2YgZGljdHMgaW50byBhIGxpc3Qgb2YgZGljdHM6CiAgICAgICAgICAgIGlmIGFsbChpc2luc3RhbmNlKHJlcywgbGlzdCkgZm9yIHJlcyBpbiByZXN1bHQpOgogICAgICAgICAgICAgICAgbmV3X3Jlc3VsdCA9IFtyZXNbMF0gZm9yIHJlcyBpbiByZXN1bHRdCiAgICAgICAgICAgICAgICByZXN1bHQgPSBuZXdfcmVzdWx0CgogICAgICAgICAgICBub25fc2VyaWFsaXphYmxlX3R5cGVzID0gW10KICAgICAgICAgICAgZm9yIHJlcyBpbiByZXN1bHQ6CiAgICAgICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gcmVzLml0ZW1zKCk6CiAgICAgICAgICAgICAgICAgICAgaWYgdHlwZSh2YWwpIG5vdCBpbiBTRVJJQUxJWkFCTEVfVFlQRVM6CiAgICAgICAgICAgICAgICAgICAgICAgIG5vbl9zZXJpYWxpemFibGVfdHlwZXMuYXBwZW5kKHN0cih0eXBlKHZhbCkpKQogICAgICAgICAgICAgICAgICAgICAgICByZXNba2V5XSA9IHN0cih2YWwpCiAgICAgICAgICAgIGlmIG5vbl9zZXJpYWxpemFibGVfdHlwZXM6CiAgICAgICAgICAgICAgICBzZWxmLmNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgICAgICAgICAgICAgZiJOb24tc2VyaWFsaXphYmxlIHR5cGVzOiB7bm9uX3NlcmlhbGl6YWJsZV90eXBlc30gd2VyZSBjYXN0ZWQgdG8gc3RyaW5ncyIKICAgICAgICAgICAgICAgICkKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigiRmFpbGVkIHRvIHByZWRpY3QgJXMiICUgZSkKICAgICAgICByZXR1cm4gcmVzdWx0Cgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements:
+ - transformers==4.21.3
+ - tensorflow==2.9.2
description: Generic Hugging Face model server.
- default_handler: handler
+ default_handler: ''
disable_auto_mount: false
- env: []
+ clone_target_dir: ''
+ env:
+ - name: MLRUN_HTTPDB__NUCLIO__EXPLICIT_ACK
+ value: enabled
priority_class_name: ''
preemption_mode: prevent
min_replicas: 1
max_replicas: 4
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: hugging-face-serving
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /Users/yonatanshelach/yoni/projects/functions/hugging_face_serving/hugging_face_serving.py
- spec:
- runtime: python
- handler: hugging_face_serving:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKCmZyb20gYWJjIGltcG9ydCBBQkMKZnJvbSBpbXBvcnRsaWIgaW1wb3J0IGltcG9ydF9tb2R1bGUKZnJvbSB0eXBpbmcgaW1wb3J0IExpc3QKCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCBwaXBlbGluZQoKaW1wb3J0IG1scnVuLnNlcnZpbmcKClBBQ0tBR0VfTU9EVUxFID0gInRyYW5zZm9ybWVycyIKU0VSSUFMSVpBQkxFX1RZUEVTID0gW2RpY3QsIGxpc3QsIHR1cGxlLCBzdHIsIGludCwgZmxvYXRdCgoKY2xhc3MgSHVnZ2luZ0ZhY2VNb2RlbFNlcnZlcihtbHJ1bi5zZXJ2aW5nLlYyTW9kZWxTZXJ2ZXIsIEFCQyk6CiAgICAiIiIKICAgIEh1Z2dpbmcgRmFjZSBNb2RlbCBzZXJ2aW5nIGNsYXNzLCBpbmhlcml0aW5nIHRoZSBWMk1vZGVsU2VydmVyIGNsYXNzIGZvciBiZWluZyBpbml0aWFsaXplZCBhdXRvbWF0aWNhbGx5IGJ5IHRoZQogICAgbW9kZWwgc2VydmVyIGFuZCBiZSBhYmxlIHRvIHJ1biBsb2NhbGx5IGFzIHBhcnQgb2YgYSBudWNsaW8gc2VydmVybGVzcyBmdW5jdGlvbiwgb3IgYXMgcGFydCBvZiBhIHJlYWwtdGltZSBwaXBlbGluZS4KICAgICIiIgoKICAgIGRlZiBfX2luaXRfXygKICAgICAgICBzZWxmLAogICAgICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgICAgIG5hbWU6IHN0ciwKICAgICAgICB0YXNrOiBzdHIsCiAgICAgICAgbW9kZWxfcGF0aDogc3RyID0gTm9uZSwKICAgICAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG1vZGVsX2NsYXNzOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIHRva2VuaXplcl9jbGFzczogc3RyID0gTm9uZSwKICAgICAgICBmcmFtZXdvcms6IHN0ciA9IE5vbmUsCiAgICAgICAgKipjbGFzc19hcmdzLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBJbml0aWFsaXplIGEgc2VydmluZyBjbGFzcyBmb3IgYSBIdWdnaW5nIGZhY2UgbW9kZWwuCgogICAgICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgIFRoZSBtbHJ1biBjb250ZXh0IHRvIHdvcmsgd2l0aAogICAgICAgIDpwYXJhbSBuYW1lOiAgICAgICAgICAgIFRoZSBuYW1lIG9mIHRoaXMgc2VydmVyIHRvIGJlIGluaXRpYWxpemVkCiAgICAgICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgTm90IGluIHVzZS4gV2hlbiBhZGRpbmcgYSBtb2RlbCBwYXNzIGFueSBzdHJpbmcgdmFsdWUKICAgICAgICA6cGFyYW0gbW9kZWxfbmFtZTogICAgICBUaGUgbW9kZWwncyBuYW1lIGluIHRoZSBIdWdnaW5nIEZhY2UgaHViCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYG5scHRvd24vYmVydC1iYXNlLW11bHRpbGluZ3VhbC11bmNhc2VkLXNlbnRpbWVudGAKICAgICAgICA6cGFyYW0gbW9kZWxfY2xhc3M6ICAgICBUaGUgbW9kZWwncyBjbGFzcyB0eXBlIG9iamVjdCB3aGljaCBjYW4gYmUgcGFzc2VkIGFzIHRoZSBjbGFzcydzIG5hbWUgKHN0cmluZykuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTXVzdCBiZSBwcm92aWRlZCBhbmQgdG8gYmUgbWF0Y2hlZCB3aXRoIGBtb2RlbF9uYW1lYC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlLmcuLCBgQXV0b01vZGVsRm9yU2VxdWVuY2VDbGFzc2lmaWNhdGlvbmAKICAgICAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6ICBUaGUgdG9rZW5pemVyJ3MgbmFtZSBpbiB0aGUgSHVnZ2luZyBGYWNlIGh1YgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGUuZy4sIGBubHB0b3duL2JlcnQtYmFzZS1tdWx0aWxpbmd1YWwtdW5jYXNlZC1zZW50aW1lbnRgCiAgICAgICAgOnBhcmFtIHRva2VuaXplcl9jbGFzczogVGhlIG1vZGVsJ3MgY2xhc3MgdHlwZSBvYmplY3Qgd2hpY2ggY2FuIGJlIHBhc3NlZCBhcyB0aGUgY2xhc3MncyBuYW1lIChzdHJpbmcpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE11c3QgYmUgcHJvdmlkZWQgYW5kIHRvIGJlIG1hdGNoZWQgd2l0aCBgbW9kZWxfbmFtZWAuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZS5nLiwgYEF1dG9Ub2tlbml6ZXJgCiAgICAgICAgOnBhcmFtIGZyYW1ld29yazogICAgICAgVGhlIGZyYW1ld29yayB0byB1c2UsIGVpdGhlciBgInB0ImAgZm9yIFB5VG9yY2ggb3IgYCJ0ZiJgIGZvciBUZW5zb3JGbG93LiBUaGUgc3BlY2lmaWVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZnJhbWV3b3JrIG11c3QgYmUgaW5zdGFsbGVkLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIElmIG5vIGZyYW1ld29yayBpcyBzcGVjaWZpZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUgb25lIGN1cnJlbnRseSBpbnN0YWxsZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgbm8gZnJhbWV3b3JrIGlzIHNwZWNpZmllZCBhbmQgYm90aCBmcmFtZXdvcmtzIGFyZSBpbnN0YWxsZWQsIHdpbGwgZGVmYXVsdCB0byB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmcmFtZXdvcmsgb2YgdGhlIGBtb2RlbGAsIG9yIHRvIFB5VG9yY2ggaWYgbm8gbW9kZWwgaXMgcHJvdmlkZWQuCiAgICAgICAgOnBhcmFtIGNsYXNzX2FyZ3M6ICAgICAgLQogICAgICAgICIiIgogICAgICAgIHN1cGVyKEh1Z2dpbmdGYWNlTW9kZWxTZXJ2ZXIsIHNlbGYpLl9faW5pdF9fKAogICAgICAgICAgICBjb250ZXh0PWNvbnRleHQsCiAgICAgICAgICAgIG5hbWU9bmFtZSwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICAqKmNsYXNzX2FyZ3MsCiAgICAgICAgKQogICAgICAgIHNlbGYudGFzayA9IHRhc2sKICAgICAgICBzZWxmLm1vZGVsID0gTm9uZQogICAgICAgIHNlbGYudG9rZW5pemVyID0gTm9uZQogICAgICAgIHNlbGYubW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLnRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyX25hbWUKICAgICAgICBzZWxmLm1vZGVsX2NsYXNzID0gbW9kZWxfY2xhc3MKICAgICAgICBzZWxmLnRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcl9jbGFzcwogICAgICAgIHNlbGYuZnJhbWV3b3JrID0gZnJhbWV3b3JrCiAgICAgICAgc2VsZi5waXBlID0gTm9uZQoKICAgIGRlZiBsb2FkKHNlbGYpOgogICAgICAgICIiImxvYWQgYW5kIGluaXRpYWxpemUgdGhlIG1vZGVsIGFuZC9vciBvdGhlciBlbGVtZW50cyIiIgogICAgICAgIGlmIHNlbGYubW9kZWxfY2xhc3M6CiAgICAgICAgICAgIG1vZGVsX29iamVjdCA9IGdldGF0dHIoaW1wb3J0X21vZHVsZShQQUNLQUdFX01PRFVMRSksIHNlbGYubW9kZWxfY2xhc3MpCiAgICAgICAgICAgIHNlbGYubW9kZWwgPSBtb2RlbF9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYubW9kZWxfbmFtZSkKICAgICAgICBpZiBzZWxmLnRva2VuaXplcl9jbGFzczoKICAgICAgICAgICAgdG9rZW5pemVyX29iamVjdCA9IGdldGF0dHIoCiAgICAgICAgICAgICAgICBpbXBvcnRfbW9kdWxlKFBBQ0tBR0VfTU9EVUxFKSwgc2VsZi50b2tlbml6ZXJfY2xhc3MKICAgICAgICAgICAgKQogICAgICAgICAgICBzZWxmLnRva2VuaXplciA9IHRva2VuaXplcl9vYmplY3QuZnJvbV9wcmV0cmFpbmVkKHNlbGYudG9rZW5pemVyX25hbWUpCiAgICAgICAgc2VsZi5waXBlID0gcGlwZWxpbmUoCiAgICAgICAgICAgIHRhc2s9c2VsZi50YXNrLAogICAgICAgICAgICBtb2RlbD1zZWxmLm1vZGVsIG9yIHNlbGYubW9kZWxfbmFtZSwKICAgICAgICAgICAgdG9rZW5pemVyPXNlbGYudG9rZW5pemVyLAogICAgICAgICAgICBmcmFtZXdvcms9c2VsZi5mcmFtZXdvcmssCiAgICAgICAgKQoKICAgIGRlZiBwcmVkaWN0KHNlbGYsIGJvZHk6IGRpY3QpIC0+IExpc3Q6CiAgICAgICAgIiIiR2VuZXJhdGUgbW9kZWwgcHJlZGljdGlvbnMgZnJvbSBzYW1wbGUuIiIiCiAgICAgICAgaWYgc2VsZi5waXBlIGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoIlBsZWFzZSB1c2UgYC5sb2FkKClgIikKICAgICAgICB0cnk6CiAgICAgICAgICAgIGlmIGlzaW5zdGFuY2UoYm9keVsiaW5wdXRzIl1bMF0sIGRpY3QpOgogICAgICAgICAgICAgICAgcmVzdWx0ID0gW3NlbGYucGlwZSgqKl9pbnB1dCkgZm9yIF9pbnB1dCBpbiBib2R5WyJpbnB1dHMiXV0KICAgICAgICAgICAgZWxzZToKICAgICAgICAgICAgICAgIHJlc3VsdCA9IHNlbGYucGlwZShib2R5WyJpbnB1dHMiXSkKICAgICAgICAgICAgIyByZXBsYWNlIGxpc3Qgb2YgbGlzdHMgb2YgZGljdHMgaW50byBhIGxpc3Qgb2YgZGljdHM6CiAgICAgICAgICAgIGlmIGFsbChpc2luc3RhbmNlKHJlcywgbGlzdCkgZm9yIHJlcyBpbiByZXN1bHQpOgogICAgICAgICAgICAgICAgbmV3X3Jlc3VsdCA9IFtyZXNbMF0gZm9yIHJlcyBpbiByZXN1bHRdCiAgICAgICAgICAgICAgICByZXN1bHQgPSBuZXdfcmVzdWx0CgogICAgICAgICAgICBub25fc2VyaWFsaXphYmxlX3R5cGVzID0gW10KICAgICAgICAgICAgZm9yIHJlcyBpbiByZXN1bHQ6CiAgICAgICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gcmVzLml0ZW1zKCk6CiAgICAgICAgICAgICAgICAgICAgaWYgdHlwZSh2YWwpIG5vdCBpbiBTRVJJQUxJWkFCTEVfVFlQRVM6CiAgICAgICAgICAgICAgICAgICAgICAgIG5vbl9zZXJpYWxpemFibGVfdHlwZXMuYXBwZW5kKHN0cih0eXBlKHZhbCkpKQogICAgICAgICAgICAgICAgICAgICAgICByZXNba2V5XSA9IHN0cih2YWwpCiAgICAgICAgICAgIGlmIG5vbl9zZXJpYWxpemFibGVfdHlwZXM6CiAgICAgICAgICAgICAgICBzZWxmLmNvbnRleHQubG9nZ2VyLmluZm8oCiAgICAgICAgICAgICAgICAgICAgZiJOb24tc2VyaWFsaXphYmxlIHR5cGVzOiB7bm9uX3NlcmlhbGl6YWJsZV90eXBlc30gd2VyZSBjYXN0ZWQgdG8gc3RyaW5ncyIKICAgICAgICAgICAgICAgICkKICAgICAgICBleGNlcHQgRXhjZXB0aW9uIGFzIGU6CiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigiRmFpbGVkIHRvIHByZWRpY3QgJXMiICUgZSkKICAgICAgICByZXR1cm4gcmVzdWx0Cgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
source: ''
function_kind: serving_v2
+ function_handler: hugging_face_serving:handler
+ base_image_pull: false
default_class: HuggingFaceModelServer
secret_sources: []
affinity: null
diff --git a/functions/master/hugging_face_serving/latest/static/item.html b/functions/master/hugging_face_serving/latest/static/item.html
index 70d12db6..6dc1e112 100644
--- a/functions/master/hugging_face_serving/latest/static/item.html
+++ b/functions/master/hugging_face_serving/latest/static/item.html
@@ -17,6 +17,8 @@
apiVersion: v1
categories:
+- huggingface
+- genai
- model-serving
- machine-learning
description: Generic Hugging Face model server.
@@ -43,8 +45,8 @@
- transformers==4.21.3
- tensorflow==2.9.2
url: ''
-version: 1.0.0
-
+version: 1.1.0
+test_valid: false
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
huggingface_auto_trainer package
+
+
+
+
+
+
+huggingface_auto_trainer package
+
+
+huggingface_auto_trainer.huggingface_auto_trainer module
+
+
+class huggingface_auto_trainer.huggingface_auto_trainer. ConfigKeys [source]
+Bases: object
+
+
+data_collator = 'data_collator'
+
+
+
+deepspeed = 'deepspeed'
+
+
+
+lora = 'lora'
+
+
+
+model_pretrained = 'model_pretrained'
+
+
+
+quantization = 'quantization'
+
+
+
+tokenizer_pretrained = 'tokenizer_pretrained'
+
+
+
+training = 'training'
+
+
+
+
+class huggingface_auto_trainer.huggingface_auto_trainer. HFTrainerMLRunInterface [source]
+Bases: abc.ABC
, Generic
[mlrun.frameworks._common.utils.MLRunInterfaceableType
]
+This is temporary and will be built in mlrun 1.5.0
+Interface for adding MLRun features for tensorflow keras API.
+
+
+DEFAULT_CONTEXT_NAME = 'mlrun-huggingface'
+
+
+
+classmethod add_interface ( obj : transformers.Trainer , restoration : Optional [ Tuple [ Dict [ str , Any ] , Dict [ str , Any ] , List [ str ] ] ] = None ) [source]
+Enrich the object with this interface properties, methods and functions so it will have this framework MLRun’s
+features.
+
+Parameters
+
+
+
+
+
+
+classmethod mlrun_train ( ) [source]
+
+
+
+
+class huggingface_auto_trainer.huggingface_auto_trainer. MLRunCallback ( * args : Any , ** kwargs : Any ) [source]
+Bases: transformers.
+This is temporary and will be built in mlrun 1.5.0
+Callback for collecting logs during training / evaluation of the Trainer API.
+
+
+log_metric_plot ( name : str , scores : List [ float ] ) [source]
+
+
+
+log_metrics ( ) [source]
+
+
+
+on_epoch_begin ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_epoch_end ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_evaluate ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_log ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , logs : Optional [ Dict [ str , float ] ] = None , ** kwargs ) [source]
+
+
+
+on_train_begin ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , ** kwargs ) [source]
+
+
+
+on_train_end ( args : transformers.TrainingArguments , state : transformers.TrainerState , control : transformers.TrainerControl , model : Optional [ transformers.PreTrainedModel ] = None , tokenizer : Optional [ transformers.PreTrainedTokenizer ] = None , ** kwargs ) [source]
+
+
+
+
+huggingface_auto_trainer.huggingface_auto_trainer. apply_mlrun ( trainer : transformers.Trainer , model_name : Optional [ str ] = None , tag : str = '' , context : Optional [ mlrun.execution.MLClientCtx ] = None , auto_log : bool = True , labels : Optional [ Dict [ str , str ] ] = None , extra_data : Optional [ dict ] = None , ** kwargs ) [source]
+This is temporary and will be built in mlrun 1.5.0
+
+
+
+huggingface_auto_trainer.huggingface_auto_trainer. evaluate ( context , model_path , data : pandas.core.frame.DataFrame , model_name : Optional [ str ] = None , tokenizer_name : Optional [ str ] = None ) [source]
+Evaluating the model using perplexity, for more information visit:
+https://huggingface.co/docs/transformers/perplexity
+
+Parameters
+
+context – mlrun context
+model_path – path to the model directory
+data – the data to evaluate the model
+model_name – name of base model
+tokenizer_name – name of base tokenizer
+
+
+
+
+
+
+huggingface_auto_trainer.huggingface_auto_trainer. finetune_llm ( context : mlrun.execution.MLClientCtx , train_dataset : Union [ str , mlrun.datastore.base.DataItem ] , eval_dataset : Optional [ str ] = None , train_load_dataset_kwargs : dict = {} , eval_load_dataset_kwargs : dict = {} , dataset_columns_to_train : Union [ str , list ] = 'text' , model : Union [ str , List [ str ] ] = 'huggingface-model' , tokenizer : Optional [ Union [ str , List [ str ] ] ] = None , deepspeed_config : Union [ dict , bool ] = False , quantization_config : Union [ dict , bool ] = False , lora_config : Union [ dict , bool ] = False , training_config : dict = {} , model_pretrained_config : dict = {} , tokenizer_pretrained_config : dict = {} , data_collator_config : dict = {} , task : str = 'text-generation' , use_cuda : bool = True , framework : str = 'pt' , device_map : str = 'auto' , ** kwargs ) [source]
+
+Fine-tunes a Language Model (LLM) on a specific task using the provided dataset. The function takes various configuration parameters to customize the training process
+and adapt the model to specific tasks using a provided dataset.
+
+
+
+Parameters
+
+context – mlrun context in order to log trained model
+dataset_columns_to_train – which columns to pass to the model as inputs
+eval_load_dataset_kwargs – kwargs for dataset loading
+train_load_dataset_kwargs – kwargs for dataset loading
+framework – pt ot tf
+use_cuda – use gpu or not
+tokenizer_pretrained_config – config to load the pretrained tokenizer
+model_pretrained_config – config to load the pretrained model
+tokenizer – a tuple containing tokenizer name and class, or str with tokenizer name or path
+model – a tuple containing model name and class, or str with model name or path
+train_dataset – The train dataset used for fine-tuning the language model.
+eval_dataset – The eval dataset used for evaluate the language model during training.
+deepspeed_config – Configuration options for DeepSpeed (optional).
+quantization_config – Configuration options for model quantization (optional).
+lora_config – Configuration options for Low-Rank Approximation (LoRA) (optional).
+training_config – Configuration options specific to the fine-tuning training process (optional).
+data_collator_config – Configuration options for data collation during training (optional).
+task – A description of the specific task the model is being fine-tuned for.
+kwargs – Additional keyword arguments.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/src/function.yaml b/functions/master/huggingface_auto_trainer/1.1.0/src/function.yaml
new file mode 100644
index 00000000..702a8401
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/src/function.yaml
@@ -0,0 +1,327 @@
+kind: job
+metadata:
+ name: huggingface-auto-trainer
+ tag: ''
+ hash: 55c9aa4a822780f7388819ccf633dfe26b31f02e
+ project: ''
+ labels:
+ author: Zeevr
+ categories:
+ - huggingface
+ - genai
+ - machine-learning
+ - model-training
+spec:
+ command: ''
+ args: []
+ image: mlrun/mlrun
+ build:
+ functionSourceCode: aW1wb3J0IGltcG9ydGxpYgppbXBvcnQgb3MKaW1wb3J0IHNodXRpbAppbXBvcnQgdGVtcGZpbGUKaW1wb3J0IHppcGZpbGUKZnJvbSBhYmMgaW1wb3J0IEFCQwpmcm9tIHR5cGluZyBpbXBvcnQgRGljdCwgTGlzdCwgVHVwbGUsIFVuaW9uCgppbXBvcnQgbWxydW4KaW1wb3J0IG51bXB5IGFzIG5wCmltcG9ydCBwYW5kYXMgYXMgcGQKaW1wb3J0IHBlZnQKaW1wb3J0IHRvcmNoCmltcG9ydCB0cmFuc2Zvcm1lcnMKZnJvbSBkYXRhc2V0cyBpbXBvcnQgRGF0YXNldCwgbG9hZF9kYXRhc2V0CmZyb20gbWxydW4uYXJ0aWZhY3RzLm1hbmFnZXIgaW1wb3J0IEFydGlmYWN0LCBQbG90bHlBcnRpZmFjdApmcm9tIG1scnVuLmRhdGFzdG9yZSBpbXBvcnQgaXNfc3RvcmVfdXJpCmZyb20gbWxydW4uZnJhbWV3b3Jrcy5fY29tbW9uIGltcG9ydCBDb21tb25UeXBlcywgTUxSdW5JbnRlcmZhY2UKZnJvbSBtbHJ1bi51dGlscyBpbXBvcnQgbG9nZ2VyCmZyb20gcGVmdCBpbXBvcnQgKExvcmFDb25maWcsIFBlZnRNb2RlbCwgZ2V0X3BlZnRfbW9kZWwsCiAgICAgICAgICAgICAgICAgIHByZXBhcmVfbW9kZWxfZm9yX2tiaXRfdHJhaW5pbmcpCmZyb20gcGxvdGx5IGltcG9ydCBncmFwaF9vYmplY3RzIGFzIGdvCmZyb20gdHJhbnNmb3JtZXJzIGltcG9ydCAoQXV0b01vZGVsRm9yQ2F1c2FsTE0sIEF1dG9Ub2tlbml6ZXIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgQml0c0FuZEJ5dGVzQ29uZmlnLCBEYXRhQ29sbGF0b3JGb3JMYW5ndWFnZU1vZGVsaW5nLAogICAgICAgICAgICAgICAgICAgICAgICAgIFByZVRyYWluZWRNb2RlbCwgUHJlVHJhaW5lZFRva2VuaXplciwgVHJhaW5lciwKICAgICAgICAgICAgICAgICAgICAgICAgICBUcmFpbmVyQ2FsbGJhY2ssIFRyYWluZXJDb250cm9sLCBUcmFpbmVyU3RhdGUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgVHJhaW5pbmdBcmd1bWVudHMpCgpzdXBwb3J0ZWRfdGFza3MgPSBbCiAgICAicXVlc3Rpb24tYW5zd2VyaW5nIiwKICAgICJzdW1tYXJpemF0aW9uIiwKICAgICJ0YWJsZS1xdWVzdGlvbi1hbnN3ZXJpbmciLAogICAgInRleHQydGV4dC1nZW5lcmF0aW9uIiwKICAgICJ0ZXh0LWNsYXNzaWZpY2F0aW9uIiwKICAgICJzZW50aW1lbnQtYW5hbHlzaXMiLAogICAgInRleHQtZ2VuZXJhdGlvbiIsCiAgICAidG9rZW4tY2xhc3NpZmljYXRpb24iLAogICAgInRyYW5zbGF0aW9uIiwKICAgICJ0cmFuc2xhdGlvbl94eF90b195eSIsCl0KCgpjbGFzcyBDb25maWdLZXlzOgogICAgZGVlcHNwZWVkID0gImRlZXBzcGVlZCIKICAgIHF1YW50aXphdGlvbiA9ICJxdWFudGl6YXRpb24iCiAgICBsb3JhID0gImxvcmEiCiAgICB0cmFpbmluZyA9ICJ0cmFpbmluZyIKICAgIHRva2VuaXplcl9wcmV0cmFpbmVkID0gInRva2VuaXplcl9wcmV0cmFpbmVkIgogICAgbW9kZWxfcHJldHJhaW5lZCA9ICJtb2RlbF9wcmV0cmFpbmVkIgogICAgZGF0YV9jb2xsYXRvciA9ICJkYXRhX2NvbGxhdG9yIgoKCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLWZyb20gTUxSVU4tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLQpjbGFzcyBIRlRyYWluZXJNTFJ1bkludGVyZmFjZShNTFJ1bkludGVyZmFjZSwgQUJDKToKICAgICIiIgogICAgVGhpcyBpcyB0ZW1wb3JhcnkgYW5kIHdpbGwgYmUgYnVpbHQgaW4gbWxydW4gMS41LjAKICAgIEludGVyZmFjZSBmb3IgYWRkaW5nIE1MUnVuIGZlYXR1cmVzIGZvciB0ZW5zb3JmbG93IGtlcmFzIEFQSS4KICAgICIiIgoKICAgICMgTUxSdW5zIGNvbnRleHQgZGVmYXVsdCBuYW1lOgogICAgREVGQVVMVF9DT05URVhUX05BTUUgPSAibWxydW4taHVnZ2luZ2ZhY2UiCgogICAgIyBBdHRyaWJ1dGVzIHRvIHJlcGxhY2Ugc28gdGhlIE1MUnVuIGludGVyZmFjZSB3aWxsIGJlIGZ1bGx5IGVuYWJsZWQuCiAgICBfUkVQTEFDRURfTUVUSE9EUyA9IFsKICAgICAgICAidHJhaW4iLAogICAgICAgICMgImV2YWx1YXRlIgogICAgXQoKICAgIEBjbGFzc21ldGhvZAogICAgZGVmIGFkZF9pbnRlcmZhY2UoCiAgICAgICAgY2xzLAogICAgICAgIG9iajogVHJhaW5lciwKICAgICAgICByZXN0b3JhdGlvbjogQ29tbW9uVHlwZXMuTUxSdW5JbnRlcmZhY2VSZXN0b3JhdGlvblR5cGUgPSBOb25lLAogICAgKToKICAgICAgICBzdXBlcihIRlRyYWluZXJNTFJ1bkludGVyZmFjZSwgY2xzKS5hZGRfaW50ZXJmYWNlKAogICAgICAgICAgICBvYmo9b2JqLCByZXN0b3JhdGlvbj1yZXN0b3JhdGlvbgogICAgICAgICkKCiAgICBAY2xhc3NtZXRob2QKICAgIGRlZiBtbHJ1bl90cmFpbihjbHMpOgogICAgICAgIGRlZiB3cmFwcGVyKHNlbGY6IFRyYWluZXIsICphcmdzLCAqKmt3YXJncyk6CiAgICAgICAgICAgICMgUmVzdG9yZSB0aGUgZXZhbHVhdGlvbiBtZXRob2QgYXMgYHRyYWluYCB3aWxsIHVzZSBpdDoKICAgICAgICAgICAgIyBjbHMuX3Jlc3RvcmVfYXR0cmlidXRlKG9iaj1zZWxmLCBhdHRyaWJ1dGVfbmFtZT0iZXZhbHVhdGUiKQoKICAgICAgICAgICAgIyBDYWxsIHRoZSBvcmlnaW5hbCBmaXQgbWV0aG9kOgogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm9yaWdpbmFsX3RyYWluKCphcmdzLCAqKmt3YXJncykKCiAgICAgICAgICAgICMgUmVwbGFjZSB0aGUgZXZhbHVhdGlvbiBtZXRob2QgYWdhaW46CiAgICAgICAgICAgICMgY2xzLl9yZXBsYWNlX2Z1bmN0aW9uKG9iaj1zZWxmLCBmdW5jdGlvbl9uYW1lPSJldmFsdWF0ZSIpCgogICAgICAgICAgICByZXR1cm4gcmVzdWx0CgogICAgICAgIHJldHVybiB3cmFwcGVyCgoKY2xhc3MgTUxSdW5DYWxsYmFjayhUcmFpbmVyQ2FsbGJhY2spOgogICAgIiIiCiAgICBUaGlzIGlzIHRlbXBvcmFyeSBhbmQgd2lsbCBiZSBidWlsdCBpbiBtbHJ1biAxLjUuMAogICAgQ2FsbGJhY2sgZm9yIGNvbGxlY3RpbmcgbG9ncyBkdXJpbmcgdHJhaW5pbmcgLyBldmFsdWF0aW9uIG9mIHRoZSBgVHJhaW5lcmAgQVBJLgogICAgIiIiCgogICAgZGVmIF9faW5pdF9fKAogICAgICAgIHNlbGYsCiAgICAgICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHggPSBOb25lLAogICAgICAgIG1vZGVsX25hbWU6IHN0ciA9ICJtb2RlbCIsCiAgICAgICAgdGFnOiBzdHIgPSAiIiwKICAgICAgICBsYWJlbHM6IERpY3Rbc3RyLCBzdHJdID0gTm9uZSwKICAgICAgICBleHRyYV9kYXRhOiBkaWN0ID0gTm9uZSwKICAgICk6CiAgICAgICAgc3VwZXIoKS5fX2luaXRfXygpCgogICAgICAgICMgU3RvcmUgdGhlIGNvbmZpZ3VyYXRpb25zOgogICAgICAgIHNlbGYuX2NvbnRleHQgPSAoCiAgICAgICAgICAgIGNvbnRleHQKICAgICAgICAgICAgaWYgY29udGV4dCBpcyBub3QgTm9uZQogICAgICAgICAgICBlbHNlIG1scnVuLmdldF9vcl9jcmVhdGVfY3R4KCIuL21scnVuLWh1Z2dpbmdmYWNlIikKICAgICAgICApCiAgICAgICAgc2VsZi5fbW9kZWxfbmFtZSA9IG1vZGVsX25hbWUKICAgICAgICBzZWxmLl90YWcgPSB0YWcKICAgICAgICBzZWxmLl9sYWJlbHMgPSBsYWJlbHMKICAgICAgICBzZWxmLl9leHRyYV9kYXRhID0gZXh0cmFfZGF0YSBpZiBleHRyYV9kYXRhIGlzIG5vdCBOb25lIGVsc2Uge30KCiAgICAgICAgIyBTZXQgdXAgdGhlIGxvZ2dpbmcgbW9kZToKICAgICAgICBzZWxmLl9pc190cmFpbmluZyA9IEZhbHNlCiAgICAgICAgc2VsZi5fc3RlcHM6IExpc3RbTGlzdFtpbnRdXSA9IFtdCiAgICAgICAgc2VsZi5fbWV0cmljX3Njb3JlczogRGljdFtzdHIsIExpc3RbZmxvYXRdXSA9IHt9CiAgICAgICAgc2VsZi5fYXJ0aWZhY3RzOiBEaWN0W3N0ciwgQXJ0aWZhY3RdID0ge30KCiAgICBkZWYgb25fZXBvY2hfYmVnaW4oCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgICoqa3dhcmdzLAogICAgKToKICAgICAgICBpZiBub3Qgc3RhdGUuaXNfd29ybGRfcHJvY2Vzc196ZXJvOgogICAgICAgICAgICByZXR1cm4KICAgICAgICBzZWxmLl9zdGVwcy5hcHBlbmQoW10pCgogICAgZGVmIG9uX2Vwb2NoX2VuZCgKICAgICAgICBzZWxmLAogICAgICAgIGFyZ3M6IFRyYWluaW5nQXJndW1lbnRzLAogICAgICAgIHN0YXRlOiBUcmFpbmVyU3RhdGUsCiAgICAgICAgY29udHJvbDogVHJhaW5lckNvbnRyb2wsCiAgICAgICAgKiprd2FyZ3MsCiAgICApOgogICAgICAgIGlmIG5vdCBzdGF0ZS5pc193b3JsZF9wcm9jZXNzX3plcm86CiAgICAgICAgICAgIHJldHVybgogICAgICAgIHNlbGYubG9nX21ldHJpY3MoKQoKICAgIGRlZiBvbl9sb2coCiAgICAgICAgc2VsZiwKICAgICAgICBhcmdzOiBUcmFpbmluZ0FyZ3VtZW50cywKICAgICAgICBzdGF0ZTogVHJhaW5lclN0YXRlLAogICAgICAgIGNvbnRyb2w6IFRyYWluZXJDb250cm9sLAogICAgICAgIGxvZ3M6IERpY3Rbc3RyLCBmbG9hdF0gPSBOb25lLAogICAgICAgICoqa3dhcmdzLAogICAgKToKICAgICAgICBpZiBub3Qgc3RhdGUuaXNfd29ybGRfcHJvY2Vzc196ZXJvOgogICAgICAgICAgICByZXR1cm4KICAgICAgICByZWNlbnRfbG9ncyA9IHN0YXRlLmxvZ19oaXN0b3J5Wy0xXS5jb3B5KCkKCiAgICAgICAgcmVjZW50X2xvZ3MucG9wKCJlcG9jaCIpCiAgICAgICAgY3VycmVudF9zdGVwID0gaW50KHJlY2VudF9sb2dzLnBvcCgic3RlcCIpKQogICAgICAgIGlmIGN1cnJlbnRfc3RlcCBub3QgaW4gc2VsZi5fc3RlcHNbLTFdOgogICAgICAgICAgICBzZWxmLl9zdGVwc1stMV0uYXBwZW5kKGN1cnJlbnRfc3RlcCkKCiAgICAgICAgZm9yIG1ldHJpY19uYW1lLCBtZXRyaWNfc2NvcmUgaW4gcmVjZW50X2xvZ3MuaXRlbXMoKToKICAgICAgICAgICAgaWYgbWV0cmljX25hbWUuc3RhcnRzd2l0aCgidHJhaW5fIik6CiAgICAgICAgICAgICAgICBpZiBtZXRyaWNfbmFtZS5zcGxpdCgidHJhaW5fIilbMV0gbm90IGluIHNlbGYuX21ldHJpY19zY29yZXM6CiAgICAgICAgICAgICAgICAgICAgc2VsZi5fbWV0cmljX3Njb3Jlc1ttZXRyaWNfbmFtZV0gPSBbbWV0cmljX3Njb3JlXQogICAgICAgICAgICAgICAgY29udGludWUKICAgICAgICAgICAgaWYgbWV0cmljX25hbWUgbm90IGluIHNlbGYuX21ldHJpY19zY29yZXM6CiAgICAgICAgICAgICAgICBzZWxmLl9tZXRyaWNfc2NvcmVzW21ldHJpY19uYW1lXSA9IFtdCiAgICAgICAgICAgIHNlbGYuX21ldHJpY19zY29yZXNbbWV0cmljX25hbWVdLmFwcGVuZChtZXRyaWNfc2NvcmUpCgogICAgZGVmIG9uX3RyYWluX2JlZ2luKAogICAgICAgIHNlbGYsCiAgICAgICAgYXJnczogVHJhaW5pbmdBcmd1bWVudHMsCiAgICAgICAgc3RhdGU6IFRyYWluZXJTdGF0ZSwKICAgICAgICBjb250cm9sOiBUcmFpbmVyQ29udHJvbCwKICAgICAgICAqKmt3YXJncywKICAgICk6CiAgICAgICAgaWYgbm90IHN0YXRlLmlzX3dvcmxkX3Byb2Nlc3NfemVybzoKICAgICAgICAgICAgcmV0dXJuCiAgICAgICAgc2VsZi5faXNfdHJhaW5pbmcgPSBUcnVlCgogICAgZGVmIG9uX3RyYWluX2VuZCgKICAgICAgICBzZWxmLAogICAgICAgIGFyZ3M6IFRyYWluaW5nQXJndW1lbnRzLAogICAgICAgIHN0YXRlOiBUcmFpbmVyU3RhdGUsCiAgICAgICAgY29udHJvbDogVHJhaW5lckNvbnRyb2wsCiAgICAgICAgbW9kZWw6IFByZVRyYWluZWRNb2RlbCA9IE5vbmUsCiAgICAgICAgdG9rZW5pemVyOiBQcmVUcmFpbmVkVG9rZW5pemVyID0gTm9uZSwKICAgICAgICAqKmt3YXJncywKICAgICk6CiAgICAgICAgaWYgbm90IHN0YXRlLmlzX3dvcmxkX3Byb2Nlc3NfemVybzoKICAgICAgICAgICAgcmV0dXJuCiAgICAgICAgc2VsZi5sb2dfbWV0cmljcygpCgogICAgZGVmIG9uX2V2YWx1YXRlKAogICAgICAgIHNlbGYsCiAgICAgICAgYXJnczogVHJhaW5pbmdBcmd1bWVudHMsCiAgICAgICAgc3RhdGU6IFRyYWluZXJTdGF0ZSwKICAgICAgICBjb250cm9sOiBUcmFpbmVyQ29udHJvbCwKICAgICAgICAqKmt3YXJncywKICAgICk6CiAgICAgICAgaWYgbm90IHN0YXRlLmlzX3dvcmxkX3Byb2Nlc3NfemVybzoKICAgICAgICAgICAgcmV0dXJuCiAgICAgICAgc2VsZi5sb2dfbWV0cmljcygpCgogICAgICAgIGlmIHNlbGYuX2lzX3RyYWluaW5nOgogICAgICAgICAgICByZXR1cm4KCiAgICBkZWYgbG9nX21ldHJpY3Moc2VsZik6CiAgICAgICAgZm9yIG1ldHJpY19uYW1lLCBtZXRyaWNfc2NvcmVzIGluIHNlbGYuX21ldHJpY19zY29yZXMuaXRlbXMoKToKICAgICAgICAgICAgc2VsZi5fY29udGV4dC5sb2dfcmVzdWx0KGtleT1tZXRyaWNfbmFtZSwgdmFsdWU9bWV0cmljX3Njb3Jlc1stMV0pCiAgICAgICAgICAgIGlmIGxlbihtZXRyaWNfc2NvcmVzKSA+IDE6CiAgICAgICAgICAgICAgICBzZWxmLmxvZ19tZXRyaWNfcGxvdChuYW1lPW1ldHJpY19uYW1lLCBzY29yZXM9bWV0cmljX3Njb3JlcykKICAgICAgICBzZWxmLl9jb250ZXh0LmNvbW1pdChjb21wbGV0ZWQ9RmFsc2UpCgogICAgZGVmIGxvZ19tZXRyaWNfcGxvdChzZWxmLCBuYW1lOiBzdHIsIHNjb3JlczogTGlzdFtmbG9hdF0pOgogICAgICAgICMgSW5pdGlhbGl6ZSBhIHBsb3RseSBmaWd1cmU6CiAgICAgICAgbWV0cmljX2ZpZ3VyZSA9IGdvLkZpZ3VyZSgpCgogICAgICAgICMgQWRkIHRpdGxlczoKICAgICAgICBtZXRyaWNfZmlndXJlLnVwZGF0ZV9sYXlvdXQoCiAgICAgICAgICAgIHRpdGxlPW5hbWUuY2FwaXRhbGl6ZSgpLnJlcGxhY2UoIl8iLCAiICIpLAogICAgICAgICAgICB4YXhpc190aXRsZT0iU2FtcGxlcyIsCiAgICAgICAgICAgIHlheGlzX3RpdGxlPSJTY29yZXMiLAogICAgICAgICkKCiAgICAgICAgIyBEcmF3OgogICAgICAgIG1ldHJpY19maWd1cmUuYWRkX3RyYWNlKAogICAgICAgICAgICBnby5TY2F0dGVyKHg9bnAuYXJhbmdlKGxlbihzY29yZXMpKSwgeT1zY29yZXMsIG1vZGU9ImxpbmVzIikKICAgICAgICApCgogICAgICAgICMgQ3JlYXRlIHRoZSBwbG90bHkgYXJ0aWZhY3Q6CiAgICAgICAgYXJ0aWZhY3RfbmFtZSA9IGYie25hbWV9X3Bsb3QiCiAgICAgICAgYXJ0aWZhY3QgPSBQbG90bHlBcnRpZmFjdChrZXk9YXJ0aWZhY3RfbmFtZSwgZmlndXJlPW1ldHJpY19maWd1cmUpCiAgICAgICAgc2VsZi5fYXJ0aWZhY3RzW2FydGlmYWN0X25hbWVdID0gc2VsZi5fY29udGV4dC5sb2dfYXJ0aWZhY3QoYXJ0aWZhY3QpCgoKZGVmIGFwcGx5X21scnVuKAogICAgdHJhaW5lcjogdHJhbnNmb3JtZXJzLlRyYWluZXIsCiAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgdGFnOiBzdHIgPSAiIiwKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4ID0gTm9uZSwKICAgIGF1dG9fbG9nOiBib29sID0gVHJ1ZSwKICAgIGxhYmVsczogRGljdFtzdHIsIHN0cl0gPSBOb25lLAogICAgZXh0cmFfZGF0YTogZGljdCA9IE5vbmUsCiAgICAqKmt3YXJncywKKToKICAgICIiIgogICAgVGhpcyBpcyB0ZW1wb3JhcnkgYW5kIHdpbGwgYmUgYnVpbHQgaW4gbWxydW4gMS41LjAKICAgICIiIgogICAgIyBHZXQgcGFyYW1ldGVycyBkZWZhdWx0czoKICAgIGlmIGNvbnRleHQgaXMgTm9uZToKICAgICAgICBjb250ZXh0ID0gbWxydW4uZ2V0X29yX2NyZWF0ZV9jdHgoSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UuREVGQVVMVF9DT05URVhUX05BTUUpCgogICAgSEZUcmFpbmVyTUxSdW5JbnRlcmZhY2UuYWRkX2ludGVyZmFjZShvYmo9dHJhaW5lcikKCiAgICBpZiBhdXRvX2xvZzoKICAgICAgICB0cmFpbmVyLmFkZF9jYWxsYmFjaygKICAgICAgICAgICAgTUxSdW5DYWxsYmFjaygKICAgICAgICAgICAgICAgIGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgIG1vZGVsX25hbWU9bW9kZWxfbmFtZSwKICAgICAgICAgICAgICAgIHRhZz10YWcsCiAgICAgICAgICAgICAgICBsYWJlbHM9bGFiZWxzLAogICAgICAgICAgICAgICAgZXh0cmFfZGF0YT1leHRyYV9kYXRhLAogICAgICAgICAgICApCiAgICAgICAgKQoKCiMgLS0tLS0tLS0tLS0tLS0tLS0tLS0tLWVuZCBmcm9tIE1MUlVOLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KCgpkZWYgX3ByaW50X3RyYWluYWJsZV9wYXJhbWV0ZXJzKG1vZGVsKToKICAgICIiIgogICAgUHJpbnRzIHRoZSBudW1iZXIgb2YgdHJhaW5hYmxlIHBhcmFtZXRlcnMgaW4gdGhlIG1vZGVsLgogICAgIiIiCiAgICB0cmFpbmFibGVfcGFyYW1zID0gMAogICAgYWxsX3BhcmFtID0gMAogICAgZm9yIF8sIHBhcmFtIGluIG1vZGVsLm5hbWVkX3BhcmFtZXRlcnMoKToKICAgICAgICBhbGxfcGFyYW0gKz0gcGFyYW0ubnVtZWwoKQogICAgICAgIGlmIHBhcmFtLnJlcXVpcmVzX2dyYWQ6CiAgICAgICAgICAgIHRyYWluYWJsZV9wYXJhbXMgKz0gcGFyYW0ubnVtZWwoKQogICAgcHJpbnQoCiAgICAgICAgZiJ0cmFpbmFibGUgcGFyYW1zOiB7dHJhaW5hYmxlX3BhcmFtc30gfHwgYWxsIHBhcmFtczoge2FsbF9wYXJhbX0gfHwgdHJhaW5hYmxlJToiCiAgICAgICAgZiIgezEwMCAqIHRyYWluYWJsZV9wYXJhbXMgLyBhbGxfcGFyYW19IgogICAgKQoKCiMgZGVmYXVsdCBjb25maWdzCiMgd2lsbCBiZSB1c2VkIGlmIHVzZXIgcHJvdmlkZXMgIlRydWUiIHdpdGggY29uZmlnIG5hbWUgYXMgaW5wdXQKUVVBTlRJWkFUSU9OX0NPTkZJRyA9IHRyYW5zZm9ybWVycy5CaXRzQW5kQnl0ZXNDb25maWcoCiAgICBsb2FkX2luXzRiaXQ9VHJ1ZSwKICAgIGJuYl80Yml0X3VzZV9kb3VibGVfcXVhbnQ9VHJ1ZSwKICAgIGJuYl80Yml0X3F1YW50X3R5cGU9Im5mNCIsCiAgICBibmJfNGJpdF9jb21wdXRlX2R0eXBlPXRvcmNoLmJmbG9hdDE2LAopCgpMT1JBX0NPTkZJRyA9IHBlZnQuTG9yYUNvbmZpZygKICAgIHI9OCwKICAgIGxvcmFfYWxwaGE9MzIsCiAgICB0YXJnZXRfbW9kdWxlcz1bInF1ZXJ5X2tleV92YWx1ZSJdLAogICAgbG9yYV9kcm9wb3V0PTAuMDUsCiAgICBiaWFzPSJub25lIiwKICAgIHRhc2tfdHlwZT0iQ0FVU0FMX0xNIiwKKQoKREVFUFNQRUVEX0NPTkZJRyA9IHsKICAgICJ0cmFpbl9taWNyb19iYXRjaF9zaXplX3Blcl9ncHUiOiAiYXV0byIsCiAgICAiZnAxNiI6IHsiZW5hYmxlZCI6IFRydWV9LAogICAgImF1dG90dW5pbmciOiB7CiAgICAgICAgImVuYWJsZWQiOiBUcnVlLAogICAgICAgICJhcmdfbWFwcGluZ3MiOiB7CiAgICAgICAgICAgICJ0cmFpbl9taWNyb19iYXRjaF9zaXplX3Blcl9ncHUiOiAiLS1wZXJfZGV2aWNlX3RyYWluX2JhdGNoX3NpemUiLAogICAgICAgICAgICAiZ3JhZGllbnRfYWNjdW11bGF0aW9uX3N0ZXBzICI6ICItLWdyYWRpZW50X2FjY3VtdWxhdGlvbl9zdGVwcyIsCiAgICAgICAgfSwKICAgIH0sCiAgICAiemVyb19vcHRpbWl6YXRpb24iOiB7CiAgICAgICAgInN0YWdlIjogMiwKICAgIH0sCn0KCgpkZWYgX3VwZGF0ZV9jb25maWcoc3JjOiBkaWN0LCBkc3Q6IGRpY3QpOgogICAgIiIiCiAgICB1cGRhdGUgY29uZmlncyBhY2NvcmRpbmcgdG8gdXNlciwgdGhpcyB3YXkgdGhlIHVzZXIgY2FuIGFkZC9tb2RpZnkgdmFsdWVzIGluIGRlZmF1bHQgY29uZmlncyBmb3IgZS5nLgoKICAgIGdvZXMgb3ZlciBhbGwgY29uZmlncyBhbmQgY29ycmVzcG9uZGluZyBwcmVmaXhlcywgY29sbGVjdCBhbGwgdGhlIGtleXMgZnJvbSB0aGUgZ2l2ZW4gZGljdCB0aGF0IHN0YXJ0CiAgICAgd2l0aCB0aGUgcHJlZml4IGFuZCBhZGQgdGhlbSB0byBhcHByb3ByaWF0ZSBjb25maWcKCiAgICA6cGFyYW0gc3JjOiBkaWN0IG9mIGFsbCBjYW5kaWRhdGUgdmFsdWVzIHRvIHVwZGF0ZSBkaWN0LgogICAgOnBhcmFtIGRzdDogZGljdCBjb250YWluaW5nIGFsbCBjb25maWdzIHRvIHVwZGF0ZS4KICAgICIiIgoKICAgIGZvciBjb25maWdfbmFtZSwgY29uZmlnIGluIGRzdC5pdGVtcygpOgoKICAgICAgICAjIElmIGdpdmVuIFRydWUgd2UgdXNlIGRlZmF1bHQgZGljdAogICAgICAgICMgQ2FuIGFsc28gYmUgRmFsc2Ugb3IgYSBjb25maWcgZGljdCBnaXZlbiBmcm9tIHVzZXIsIHNvIHdlIGNoZWNrIHNwZWNpZmljYWxseSBmbyBUcnVlCiAgICAgICAgaWYgY29uZmlnIGlzIFRydWUgYW5kIGNvbmZpZ19uYW1lID09ICJxdWFudGl6YXRpb24iOgogICAgICAgICAgICBjb25maWcgPSBRVUFOVElaQVRJT05fQ09ORklHCgogICAgICAgIGlmIGNvbmZpZyBpcyBUcnVlIGFuZCBjb25maWdfbmFtZSA9PSAibG9yYSI6CiAgICAgICAgICAgIGNvbmZpZyA9IExPUkFfQ09ORklHCgogICAgICAgIGlmIGNvbmZpZyBpcyBUcnVlIGFuZCBjb25maWdfbmFtZSA9PSAiZGVlcHNwZWVkIjoKICAgICAgICAgICAgY29uZmlnID0gREVFUFNQRUVEX0NPTkZJRwoKICAgICAgICAjIGluIHNvbWUgY2FzZXMgd2UgY2FuIGdldCBhIGJvb2xlYW4gdmFsdWUsIGluIHRoYXQgY2FzZSBubyBuZWVkIHRvIGxvb2sgZm9yIGFyZ3MKICAgICAgICBpZiBpc2luc3RhbmNlKGNvbmZpZywgYm9vbCk6CiAgICAgICAgICAgIGNvbmZpZyA9IE5vbmUKCiAgICAgICAgZWxpZiBpc2luc3RhbmNlKGNvbmZpZywgZGljdCk6CiAgICAgICAgICAgIGZvciBrZXksIHZhbCBpbiBzcmMuaXRlbXMoKToKICAgICAgICAgICAgICAgIGlmIGtleS5zdGFydHN3aXRoKGNvbmZpZ19uYW1lKToKICAgICAgICAgICAgICAgICAgICBjb25maWdba2V5LnJlcGxhY2UoZiJ7Y29uZmlnX25hbWV9XyIsICIiKV0gPSB2YWwKCiAgICAgICAgIyB1cGRhdGUgYnkgY29uZmlnIG5hbWUKICAgICAgICBlbHNlOgogICAgICAgICAgICBmb3Iga2V5LCB2YWwgaW4gc3JjLml0ZW1zKCk6CiAgICAgICAgICAgICAgICBpZiBrZXkuc3RhcnRzd2l0aChjb25maWdfbmFtZSk6CiAgICAgICAgICAgICAgICAgICAgc2V0YXR0cihjb25maWcsIGtleS5yZXBsYWNlKGYie2NvbmZpZ19uYW1lfV8iLCAiIiksIHZhbCkKCiAgICAgICAgZHN0LnVwZGF0ZSh7Y29uZmlnX25hbWU6IGNvbmZpZ30pCgoKZGVmIF9nZXRfY2xhc3Nfb2JqZWN0KGNsYXNzX3BhdGg6IHN0cikgLT4gdHlwZToKICAgICIiIgogICAgZ2l2ZW4gYSBmdWxsIGNsYXNzIG5hbWUsIHRoaXMgZnVuY3Rpb24gcmV0dXJucyB0aGUgY29ycmVjdCBjbGFzcwoKICAgIDpwYXJhbSBjbGFzc19wYXRoOiBhIGZ1bGwgY2xhc3MgbmFtZSAoZXguICd0cmFuc2Zvcm1lcnMuQXV0b01vZGVsRm9yQ2F1c2FsTE0nKQoKICAgIDpyZXR1cm4gdGhlIHdhbnRlZCBjbGFzcyBvYmplY3QKICAgICIiIgogICAgbW9kdWxlX3BhdGgsIGNsYXNzX25hbWUgPSBjbGFzc19wYXRoLnJzcGxpdCgiLiIsIDEpCiAgICBtb2R1bGUgPSBpbXBvcnRsaWIuaW1wb3J0X21vZHVsZShtb2R1bGVfcGF0aCkKICAgIHJldHVybiBnZXRhdHRyKG1vZHVsZSwgY2xhc3NfbmFtZSkKCgpkZWYgX3NldF9tb2RlbF9hbmRfdG9rZW5pemVyKAogICAgbW9kZWw6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSwKICAgIHRva2VuaXplcjogVW5pb25bc3RyLCBMaXN0W3N0cl1dLAogICAgdGFzazogc3RyLAogICAgZnJhbWV3b3JrOiBzdHIsCiAgICBsb3JhX2NvbmZpZzogZGljdCwKICAgIHF1YW50aXphdGlvbl9jb25maWc6IGRpY3QsCiAgICB1c2VfY3VkYTogYm9vbCwKICAgIHRva2VuaXplcl9wcmV0cmFpbmVkX2NvbmZpZywKICAgIG1vZGVsX3ByZXRyYWluZWRfY29uZmlnLAogICAgZGV2aWNlX21hcDogc3RyLAopOgogICAgIiIiCiAgICBnZXQgdGhlIGNvcnJlY3QgbW9kZWwgYW5kIHRva2VuaXplciBhY2NvcmRpbmcgdG8gZ2l2ZW4gdXNlciBpbnB1dHMKCiAgICA6cGFyYW0gbW9kZWw6IGEgdHVwbGUgY29udGFpbmluZyBtb2RlbCBuYW1lIGFuZCBjbGFzcywgb3Igc3RyIHdpdGggbW9kZWwgbmFtZSBvciBwYXRoCiAgICA6cGFyYW0gdG9rZW5pemVyOiBhIHR1cGxlIGNvbnRhaW5pbmcgdG9rZW5pemVyIG5hbWUgYW5kIGNsYXNzLCBvciBzdHIgd2l0aCB0b2tlbml6ZXIgbmFtZSBvciBwYXRoCiAgICA6cGFyYW0gdGFzazogYSBzdXBwb3J0ZWQgbmxwIHRhc2ssIHVzZWQgdG8gY2hvb3NlIG1vZGVsIGlmIG5vdCBwcm92aWRlZAogICAgOnBhcmFtIGZyYW1ld29yazogcHQgb3IgdGYKICAgIDpwYXJhbSBsb3JhX2NvbmZpZzogbG9yYSBjb25maWcgb3IgTm9uZSwgdG8gbG9hZCBtb2RlbCBpbiBhcHByb3ByaWF0ZSB3YXkKICAgIDpwYXJhbSBxdWFudGl6YXRpb25fY29uZmlnOiBxdWFudGl6YXRpb24gY29uZmlnIG9yIE5vbmUsIHRvIGxvYWQgbW9kZWwgaW4gYXBwcm9wcmlhdGUgd2F5CiAgICA6cGFyYW0gdXNlX2N1ZGE6IHVzZSBncHUgb3Igbm90CiAgICA6cGFyYW0gdG9rZW5pemVyX3ByZXRyYWluZWRfY29uZmlnOiBjb25maWcgdG8gbG9hZCB0aGUgcHJldHJhaW5lZCB0b2tlbml6ZXIKICAgIDpwYXJhbSBtb2RlbF9wcmV0cmFpbmVkX2NvbmZpZzogY29uZmlnIHRvIGxvYWQgdGhlIHByZXRyYWluZWQgbW9kZWwKICAgIDpwYXJhbSBkZXZpY2VfbWFwOiBhIGRldmljZSBtYXAgZm9yIG1vZGVsIHRyYWluaW5nIGlmIHVzaW5nIG51bWJlciBvZiBncHUncwoKICAgIDpyZXR1cm5zOiBtb2RlbCBhbmQgdG9rZW5pemVyCiAgICAiIiIKICAgICMgaWYgdGFzayBpcyBub3Qgc3VwcG9ydGVkIGFuZCBubyBtb2RlbCB3YXMgZ2l2ZW4gd2UgY2FuJ3QgY2hvb3NlIG9uZQogICAgaWYgdGFzayBhbmQgdGFzayBub3QgaW4gc3VwcG9ydGVkX3Rhc2tzIGFuZCBub3QgbW9kZWw6CiAgICAgICAgbG9nZ2VyLmVycm9yKCJ1bnN1cHBvcnRlZCB0YXNrIG9wdGlvbiBjaG9zZW4iKQogICAgICAgIHJhaXNlCgogICAgIyBsb2FkIG1vZGVsIGZyb20gc3RvcmUKICAgIGlmIGlzaW5zdGFuY2UobW9kZWwsIHN0cikgYW5kIGlzX3N0b3JlX3VyaShtb2RlbCk6CiAgICAgICAgcGFzcwogICAgICAgICMgVE9ETzogbG9hZCBib3RoIG1vZGVsIGFuZCB0b2tlbml6ZXIgYW5kIHJldHVybiwgbmVlZCBndXkncyBoZWxwCgogICAgIyBpZiBpdCdzIGEgdHVwbGUgdGhlbSB3ZSBhc3N1bWUgaXQgY29udGFpbnMgb2YgYm90aCBuYW1lIGFuZCBjbGFzcwogICAgaWYgaXNpbnN0YW5jZShtb2RlbCwgbGlzdCk6CiAgICAgICAgbW9kZWxfbmFtZSwgbW9kZWxfY2xhc3MgPSBtb2RlbAogICAgICAgIG1vZGVsX2NsYXNzID0gX2dldF9jbGFzc19vYmplY3QobW9kZWxfY2xhc3MpCgogICAgIyBpbiB0aGUgY2FzZSB3ZSBkb24ndCBnZXQgdGhlIG1vZGVsIGNsYXNzIHdlIG5lZWQgdGhlIHRhc2sgaW4gb3JkZXIgdG8gY2hvb3NlIHRoZSBjb3JyZWN0IG1vZGVsCiAgICBlbHNlOgogICAgICAgIGlmIHRhc2sgaXMgTm9uZToKICAgICAgICAgICAgbG9nZ2VyLmVycm9yKCJ0YXNrIG11c3QgYmUgY2hvc2VuIGluIG9yZGVyIHRvIGRldGVybWluZSB0aGUgY29ycmVjdCBtb2RlbCIpCiAgICAgICAgICAgIHJhaXNlIEV4Y2VwdGlvbigKICAgICAgICAgICAgICAgICJ0aGlzIGZ1bmN0aW9uIHJlcXVpcmVzIGVpdGhlciBhIHN1cHBvcnRlZCB0YXNrIG9yIGEgbW9kZWwgYW5kIG1vZGVsIGNsYXNzIHRvIGJlIGNob3NlbiIKICAgICAgICAgICAgKQoKICAgICAgICBfLCBhdmFpbGFibGVfY2xhc3NlcywgdGFza19vcHRpb25zID0gdHJhbnNmb3JtZXJzLnBpcGVsaW5lcy5jaGVja190YXNrKHRhc2spCgogICAgICAgIGlmIGlzaW5zdGFuY2UobW9kZWwsIHN0cik6CiAgICAgICAgICAgIG1vZGVsX25hbWUgPSBtb2RlbAoKICAgICAgICAjIGlmIG1vZGVsIGlzIG5vdCBnaXZlbiwgd2UgdGFrZSB0aGUgZGVmYXVsdCBtb2RlbCBmb3IgdGhlIGdpdmVuIHRhc2sKICAgICAgICBlbHNlOgogICAgICAgICAgICBtb2RlbF9uYW1lLCBfID0gdHJhbnNmb3JtZXJzLnBpcGVsaW5lcy5nZXRfZGVmYXVsdF9tb2RlbF9hbmRfcmV2aXNpb24oCiAgICAgICAgICAgICAgICBhdmFpbGFibGVfY2xhc3NlcywgZnJhbWV3b3JrLCB0YXNrX29wdGlvbnMKICAgICAgICAgICAgKQogICAgICAgIGlmIG5vdCBhdmFpbGFibGVfY2xhc3Nlcy5nZXQoZnJhbWV3b3JrLCB0dXBsZSgpKToKICAgICAgICAgICAgbG9nZ2VyLmVycm9yKAogICAgICAgICAgICAgICAgImdpdmVuIHRhc2sncyBkZWZhdWx0IG1vZGVsIGlzIG5vdCBzdXBwb3J0ZWQgaW4gc3BlY2lmaWVkIGZyYW1ld29yayIKICAgICAgICAgICAgKQogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oCiAgICAgICAgICAgICAgICAidGhpcyBmdW5jdGlvbiByZXF1aXJlcyBlaXRoZXIgYSBzdXBwb3J0ZWQgdGFzayBvciBhIG1vZGVsIGFuZCBtb2RlbCBjbGFzcyB0byBiZSBjaG9zZW4iCiAgICAgICAgICAgICkKCiAgICAgICAgbW9kZWxfY2xhc3MgPSBhdmFpbGFibGVfY2xhc3Nlc1tmcmFtZXdvcmtdWzBdCgogICAgIyBsb2FkIHRoZSBwcmV0cmFpbmVkIG1vZGVsCiAgICBpZiB1c2VfY3VkYToKICAgICAgICBkZXZpY2VfbWFwID0gZGV2aWNlX21hcAogICAgZWxzZToKICAgICAgICBkZXZpY2VfbWFwID0gTm9uZQoKICAgIG1vZGVsID0gbW9kZWxfY2xhc3MuZnJvbV9wcmV0cmFpbmVkKAogICAgICAgIG1vZGVsX25hbWUsCiAgICAgICAgcXVhbnRpemF0aW9uX2NvbmZpZz1xdWFudGl6YXRpb25fY29uZmlnLAogICAgICAgIGRldmljZV9tYXA9ZGV2aWNlX21hcCwKICAgICAgICAqKm1vZGVsX3ByZXRyYWluZWRfY29uZmlnLAogICAgKQoKICAgICMgSWYgcXVhbnRpemF0aW9uIGNvbmZpZyBpcyBnaXZlbiB3ZSB3aWxsIGxvYWQgYSBxdWFudGl6ZWQgbW9kZWwsIGlmIG5vdCBhIHJlZ3VsYXIgb25lCiAgICBpZiBxdWFudGl6YXRpb25fY29uZmlnOgogICAgICAgIG1vZGVsLmdyYWRpZW50X2NoZWNrcG9pbnRpbmdfZW5hYmxlKCkKICAgICAgICBtb2RlbCA9IHBlZnQucHJlcGFyZV9tb2RlbF9mb3Jfa2JpdF90cmFpbmluZyhtb2RlbCkKCiAgICAjIElmIGxvcmEgY29uZmlnIHdhcyBnaXZlbiB3ZSB3YW50IHRvIGRvIGxvcmEgZmluZSB0dW5lLCB3ZSB1cGRhdGUgbW9kZWwgaGVyZQogICAgaWYgbG9yYV9jb25maWc6CiAgICAgICAgbW9kZWwgPSBwZWZ0LmdldF9wZWZ0X21vZGVsKG1vZGVsLCBsb3JhX2NvbmZpZykKCiAgICAjIGlmIG5vdCBzcGVjaWZpZWQgd2UgY2hvb3NlIHRoZSBkZWZhdWx0IHRva2VuaXplciB0aGF0IGNvcnJlc3BvbmRpbmcgdG8gdGhlIG1vZGVsCiAgICBpZiB0b2tlbml6ZXIgaXMgTm9uZToKICAgICAgICB0b2tlbml6ZXIgPSB0cmFuc2Zvcm1lcnMuQXV0b1Rva2VuaXplci5mcm9tX3ByZXRyYWluZWQobW9kZWxfbmFtZSkKICAgICAgICByZXR1cm4gbW9kZWxfbmFtZSwgbW9kZWwsIHRva2VuaXplcgoKICAgIGlmIGlzaW5zdGFuY2UodG9rZW5pemVyLCBzdHIpOgogICAgICAgIHRva2VuaXplcl9uYW1lID0gdG9rZW5pemVyCiAgICAgICAgdG9rZW5pemVyX2NsYXNzID0gdHJhbnNmb3JtZXJzLkF1dG9Ub2tlbml6ZXIKCiAgICAjIGlmIGl0J3Mgbm90IGEgc3RyIHRoZW4gaXQncyBhIHR1cGxlIG9mIGJvdGggbmFtZSBhbmQgY2xhc3MKICAgIGVsc2U6CiAgICAgICAgdG9rZW5pemVyX25hbWUsIHRva2VuaXplcl9jbGFzcyA9IHRva2VuaXplcgogICAgICAgIHRva2VuaXplcl9jbGFzcyA9IF9nZXRfY2xhc3Nfb2JqZWN0KHRva2VuaXplcl9jbGFzcykKCiAgICB0b2tlbml6ZXIgPSB0b2tlbml6ZXJfY2xhc3MuZnJvbV9wcmV0cmFpbmVkKAogICAgICAgIHRva2VuaXplcl9uYW1lLCAqKnRva2VuaXplcl9wcmV0cmFpbmVkX2NvbmZpZwogICAgKQoKICAgIHRva2VuaXplci5wYWRfdG9rZW4gPSB0b2tlbml6ZXIuZW9zX3Rva2VuCgogICAgcmV0dXJuIG1vZGVsX25hbWUsIG1vZGVsLCB0b2tlbml6ZXIKCgpkZWYgX2RhdGFzZXRfbG9hZGVyKGRhdGFzZXQ6IHN0ciwgaXNfdHJhaW46IGJvb2wgPSBUcnVlLCAqKmt3YXJncykgLT4gRGF0YXNldDoKICAgICIiIgogICAgbG9hZHMgdGhlIHNwZWNpZmljIGRhdGFzZXQgcHJvdmlkZWQgYnkgdGhlIHVzZXIKCiAgICA6cGFyYW0gZGF0YXNldDogbmFtZSBvciBwYXRoIG9mIGRhdGFzZXQgdG8gbG9hZAogICAgOnBhcmFtIGlzX3RyYWluOiBib29sIHRoYXQgaW5kaWNhdGVzIHRoZSBwdXJwb3NlIG9mIHRoZSBkYXRhc2V0CiAgICA6cGFyYW0ga3dhcmdzOiBvdGhlciBrd2FyZ3MgZm9yIGxvYWRpbmcgdGhlIGRhdGFzZXQKCiAgICA6cmV0dXJuczogbG9hZGVkIGRhdGFzZXQKICAgICIiIgogICAgIyBpZiBzcGxpdCBpbiBrd2FyZ3MgdGhlbiB0aGUgdXNlciBkZWNpZGVzIGhvdyB0byBzcGxpdCB0aGUgZGF0YXNldAogICAgaWYgInNwbGl0IiBpbiBrd2FyZ3M6CiAgICAgICAgcmV0dXJuIGxvYWRfZGF0YXNldChkYXRhc2V0LCAqKmt3YXJncykKCiAgICAjIGlmIGl0J3MgYSBkYXRhc2V0IGZvciB0cmFpbiB3ZSBzcGxpdCB3aXRoIHRyYWluCiAgICBpZiBpc190cmFpbjoKICAgICAgICByZXR1cm4gbG9hZF9kYXRhc2V0KGRhdGFzZXQsIHNwbGl0PSJ0cmFpbiIsICoqa3dhcmdzKQoKICAgICMgaWYgaXQncyBldmFsIGRhdGFzZXQsIHRoZW4gYSBsb3Qgb2YgbmFtZXMgYXJlIGFjY2VwdGFibGUgZm9yIHRoZSBzZXQgYW5kIHdlIGNoZWNrIGFsbCBvZiB0aGVtCiAgICBkYXRhc2V0ID0gbG9hZF9kYXRhc2V0KGRhdGFzZXQsICoqa3dhcmdzKQogICAgaWYgInRlc3QiIGluIGRhdGFzZXQ6CiAgICAgICAgcmV0dXJuIGRhdGFzZXQuZ2V0KCJ0ZXN0IikKICAgIGVsaWYgImV2YWwiIGluIGRhdGFzZXQ6CiAgICAgICAgcmV0dXJuIGRhdGFzZXQuZ2V0KCJldmFsIikKICAgIGVsaWYgInZhbGlkYXRpb24iIGluIGRhdGFzZXQ6CiAgICAgICAgcmV0dXJuIGRhdGFzZXQuZ2V0KCJ2YWxpZGF0aW9uIikKCgpkZWYgX3ByZXBhcmVfZGF0YXNldCgKICAgIHRyYWluX2RhdGFzZXQ6IHN0ciwKICAgIGV2YWxfZGF0YXNldDogc3RyLAogICAgdHJhaW5fbG9hZF9kYXRhc2V0X2t3YXJncywKICAgIGV2YWxfbG9hZF9kYXRhc2V0X2t3YXJncywKICAgIHRva2VuaXplciwKICAgIGRhdGFzZXRfY29sdW1uc190b190cmFpbjogVW5pb25bc3RyLCBsaXN0XSwKKSAtPiAoRGF0YXNldCwgVW5pb25bRGF0YXNldCwgTm9uZV0pOgogICAgIiIiCiAgICBMb2FkcyB0aGUgdHJhaW4gYW5kIGV2YWwgZGF0YXNldHMgKGlmIHByb3ZpZGVkKSBwYXNzZXMgdGhlbSB0aHJvdWdoIHRoZSB0b2tlbml6ZXIgYW5kCiAgICByZXR1cm5zIHRoZW0gcmVhZHkgdG8gdXNlIGluIHRyYWluaW5nCgogICAgOnBhcmFtIHRyYWluX2RhdGFzZXQ6IHRoZSBuYW1lIG9yIHBhdGggdG8gdGhlIHRyYWluIGRhdGFzZXQKICAgIDpwYXJhbSBldmFsX2RhdGFzZXQ6IHRoZSBuYW1lIG9yIHBhdGggdG8gdGhlIGV2YWwgZGF0YXNldAogICAgOnBhcmFtIGRhdGFzZXRfY29sdW1uc190b190cmFpbjogd2hpY2ggY29sdW1ucyB0byBwYXNzIHRvIHRoZSBtb2RlbCBhcyBpbnB1dHMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIChuZWVkIHRvIHBhc3MgdGhyb3VnaCB0aGUgdG9rZW5pemVyIGZpcnN0KQogICAgOnBhcmFtIHRyYWluX2xvYWRfZGF0YXNldF9rd2FyZ3M6IGt3YXJncyBmb3IgZGF0YXNldCBsb2FkaW5nCiAgICA6cGFyYW0gZXZhbF9sb2FkX2RhdGFzZXRfa3dhcmdzOiBrd2FyZ3MgZm9yIGRhdGFzZXQgbG9hZGluZwogICAgOnBhcmFtIHRva2VuaXplcjogdGhlIHRva2VuaXplciB0byBwYXNzIHRoZSBkYXRhIHRocm91Z2gKCiAgICA6cmV0dXJuczogdG9rZW5pemVkIGRhdGFzZXRzCiAgICAiIiIKICAgIGlmIG5vdCB0b2tlbml6ZXIucGFkX3Rva2VuOgogICAgICAgIHRva2VuaXplci5wYWRfdG9rZW4gPSB0b2tlbml6ZXIuZW9zX3Rva2VuCgogICAgIyB3ZSB0YWtlIGNvbCBuYW1lL3MgaW4gYSBsaXN0IGZvciBlYXN5IGdlbmVyYWxpemF0aW9uCiAgICBpZiBpc2luc3RhbmNlKGRhdGFzZXRfY29sdW1uc190b190cmFpbiwgc3RyKToKICAgICAgICBkYXRhc2V0X2NvbHVtbnNfdG9fdHJhaW4gPSBbZGF0YXNldF9jb2x1bW5zX3RvX3RyYWluXQoKICAgIGlmIGlzaW5zdGFuY2UodHJhaW5fZGF0YXNldCwgbWxydW4uZGF0YXN0b3JlLkRhdGFJdGVtKToKICAgICAgICB0cmFpbl9kYXRhc2V0ID0gRGF0YXNldC5mcm9tX3BhbmRhcyh0cmFpbl9kYXRhc2V0LmFzX2RmKCkpCiAgICAgICAgcmV0dXJuICgKICAgICAgICAgICAgdHJhaW5fZGF0YXNldC5tYXAoCiAgICAgICAgICAgICAgICBsYW1iZGEgZXhhbXBsZXM6IHRva2VuaXplcigKICAgICAgICAgICAgICAgICAgICAqW2V4YW1wbGVzW2NvbF0gZm9yIGNvbCBpbiBkYXRhc2V0X2NvbHVtbnNfdG9fdHJhaW5dLAogICAgICAgICAgICAgICAgICAgIHRydW5jYXRpb249VHJ1ZSwKICAgICAgICAgICAgICAgICAgICBwYWRkaW5nPVRydWUsCiAgICAgICAgICAgICAgICApLAogICAgICAgICAgICAgICAgYmF0Y2hlZD1UcnVlLAogICAgICAgICAgICApLAogICAgICAgICAgICBOb25lLAogICAgICAgICkKCiAgICAjIExvYWQgZGF0YXNldHMKICAgICMgaWYgcHJvdmlkZWQgdHdvIHBhdGhzL25hbWVzIHdlIGxvYWQgZWFjaCBzZXBhcmF0ZWx5IHVzaW5nIGRlc2lnbmF0ZWQgZnVuYwogICAgaWYgZXZhbF9kYXRhc2V0OgogICAgICAgIHRyYWluX2RhdGFzZXQgPSBfZGF0YXNldF9sb2FkZXIoCiAgICAgICAgICAgIGRhdGFzZXQ9dHJhaW5fZGF0YXNldCwgaXNfdHJhaW49VHJ1ZSwgKip0cmFpbl9sb2FkX2RhdGFzZXRfa3dhcmdzCiAgICAgICAgKQogICAgICAgIGV2YWxfZGF0YXNldCA9IF9kYXRhc2V0X2xvYWRlcigKICAgICAgICAgICAgZGF0YXNldD1ldmFsX2RhdGFzZXQsIGlzX3RyYWluPUZhbHNlLCAqKmV2YWxfbG9hZF9kYXRhc2V0X2t3YXJncwogICAgICAgICkKCiAgICAjIGlmIG9ubHkgb24gcGF0aCBpcyBnaXZlbiB0aGVuIHdlIG11c3QgY2hlY2sgaWYgaXQgY29udGFpbnMgYm90aCBkYXRhc2V0IG9yIGlmIG9ubHkgb25lIHNob3VsZCBiZSB1c2VkCiAgICBlbHNlOgogICAgICAgIGRhdGFzZXQgPSBsb2FkX2RhdGFzZXQodHJhaW5fZGF0YXNldCwgKip0cmFpbl9sb2FkX2RhdGFzZXRfa3dhcmdzKQogICAgICAgIGlmICJ0cmFpbiIgaW4gZGF0YXNldDoKICAgICAgICAgICAgdHJhaW5fZGF0YXNldCA9IGRhdGFzZXQuZ2V0KCJ0cmFpbiIpCiAgICAgICAgICAgIGlmICJ0ZXN0IiBpbiBkYXRhc2V0OgogICAgICAgICAgICAgICAgZXZhbF9kYXRhc2V0ID0gZGF0YXNldC5nZXQoInRlc3QiKQogICAgICAgICAgICBlbGlmICJldmFsIiBpbiBkYXRhc2V0OgogICAgICAgICAgICAgICAgZXZhbF9kYXRhc2V0ID0gZGF0YXNldC5nZXQoImV2YWwiKQogICAgICAgICAgICBlbGlmICJ2YWxpZGF0aW9uIiBpbiBkYXRhc2V0OgogICAgICAgICAgICAgICAgZXZhbF9kYXRhc2V0ID0gZGF0YXNldC5nZXQoInZhbGlkYXRpb24iKQogICAgICAgICAgICBlbHNlOgogICAgICAgICAgICAgICAgIyBvbmx5IHRyYWluIGRhdGFzZXQgZ2l2ZW4sIHRva2VuaXplIGFuZCByZXR1cm4gaXQKICAgICAgICAgICAgICAgIHJldHVybiAoCiAgICAgICAgICAgICAgICAgICAgdHJhaW5fZGF0YXNldC5tYXAoCiAgICAgICAgICAgICAgICAgICAgICAgIGxhbWJkYSBleGFtcGxlczogdG9rZW5pemVyKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgKltleGFtcGxlc1tjb2xdIGZvciBjb2wgaW4gZGF0YXNldF9jb2x1bW5zX3RvX3RyYWluXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRydW5jYXRpb249VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhZGRpbmc9VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2hlZD1UcnVlLAogICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgTm9uZSwKICAgICAgICAgICAgICAgICkKICAgICAgICBlbHNlOgogICAgICAgICAgICBsb2dnZXIuZXJyb3IoInRyYWluIGRhdGFzZXQgaXMgbWFuZGF0b3J5IikKICAgICAgICAgICAgcmFpc2UgS2V5RXJyb3IoIm5vIHRyYWluIGRhdGFzZXQgZm91bmQgaW4gZ2l2ZW4gZGF0YXNldCIpCgogICAgIyBUb2tlbml6ZSB0aGUgZGF0YSBzbyB0aGUgbW9kZWwgY2FuIHVuZGVyc3RhbmQgaXQKICAgIHRva2VuaXplZF90cmFpbl9kYXRhc2V0ID0gdHJhaW5fZGF0YXNldC5tYXAoCiAgICAgICAgbGFtYmRhIGV4YW1wbGVzOiB0b2tlbml6ZXIoCiAgICAgICAgICAgICpbZXhhbXBsZXNbY29sXSBmb3IgY29sIGluIGRhdGFzZXRfY29sdW1uc190b190cmFpbl0sCiAgICAgICAgICAgIHRydW5jYXRpb249VHJ1ZSwKICAgICAgICAgICAgcGFkZGluZz1UcnVlLAogICAgICAgICksCiAgICAgICAgYmF0Y2hlZD1UcnVlLAogICAgKQoKICAgIHRva2VuaXplZF9ldmFsX2RhdGFzZXQgPSBldmFsX2RhdGFzZXQubWFwKAogICAgICAgIGxhbWJkYSBleGFtcGxlczogdG9rZW5pemVyKAogICAgICAgICAgICAqW2V4YW1wbGVzW2NvbF0gZm9yIGNvbCBpbiBkYXRhc2V0X2NvbHVtbnNfdG9fdHJhaW5dLAogICAgICAgICAgICB0cnVuY2F0aW9uPVRydWUsCiAgICAgICAgICAgIHBhZGRpbmc9VHJ1ZSwKICAgICAgICApLAogICAgICAgIGJhdGNoZWQ9VHJ1ZSwKICAgICkKCiAgICByZXR1cm4gdG9rZW5pemVkX3RyYWluX2RhdGFzZXQsIHRva2VuaXplZF9ldmFsX2RhdGFzZXQKCgpkZWYgZmluZXR1bmVfbGxtKAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICB0cmFpbl9kYXRhc2V0OiBVbmlvbltzdHIsIG1scnVuLmRhdGFzdG9yZS5EYXRhSXRlbV0sCiAgICBldmFsX2RhdGFzZXQ6IHN0ciA9IE5vbmUsCiAgICB0cmFpbl9sb2FkX2RhdGFzZXRfa3dhcmdzOiBkaWN0ID0ge30sCiAgICBldmFsX2xvYWRfZGF0YXNldF9rd2FyZ3M6IGRpY3QgPSB7fSwKICAgIGRhdGFzZXRfY29sdW1uc190b190cmFpbjogVW5pb25bc3RyLCBsaXN0XSA9ICJ0ZXh0IiwKICAgIG1vZGVsOiBVbmlvbltzdHIsIExpc3Rbc3RyXV0gPSAiaHVnZ2luZ2ZhY2UtbW9kZWwiLAogICAgdG9rZW5pemVyOiBVbmlvbltzdHIsIExpc3Rbc3RyXV0gPSBOb25lLAogICAgZGVlcHNwZWVkX2NvbmZpZzogVW5pb25bZGljdCwgYm9vbF0gPSBGYWxzZSwKICAgIHF1YW50aXphdGlvbl9jb25maWc6IFVuaW9uW2RpY3QsIGJvb2xdID0gRmFsc2UsCiAgICBsb3JhX2NvbmZpZzogVW5pb25bZGljdCwgYm9vbF0gPSBGYWxzZSwKICAgIHRyYWluaW5nX2NvbmZpZzogZGljdCA9IHt9LAogICAgbW9kZWxfcHJldHJhaW5lZF9jb25maWc6IGRpY3QgPSB7fSwKICAgIHRva2VuaXplcl9wcmV0cmFpbmVkX2NvbmZpZzogZGljdCA9IHt9LAogICAgZGF0YV9jb2xsYXRvcl9jb25maWc6IGRpY3QgPSB7fSwKICAgIHRhc2s6IHN0ciA9ICJ0ZXh0LWdlbmVyYXRpb24iLAogICAgdXNlX2N1ZGE6IGJvb2wgPSBUcnVlLAogICAgZnJhbWV3b3JrOiBzdHIgPSAicHQiLAogICAgZGV2aWNlX21hcDogc3RyID0gImF1dG8iLAogICAgKiprd2FyZ3MsCik6CiAgICAiIiIKICAgIEZpbmUtdHVuZXMgYSBMYW5ndWFnZSBNb2RlbCAoTExNKSBvbiBhIHNwZWNpZmljIHRhc2sgdXNpbmcgdGhlIHByb3ZpZGVkIGRhdGFzZXQuCiAgICAgVGhlIGZ1bmN0aW9uIHRha2VzIHZhcmlvdXMgY29uZmlndXJhdGlvbiBwYXJhbWV0ZXJzIHRvIGN1c3RvbWl6ZSB0aGUgdHJhaW5pbmcgcHJvY2VzcwogICAgIGFuZCBhZGFwdCB0aGUgbW9kZWwgdG8gc3BlY2lmaWMgdGFza3MgdXNpbmcgYSBwcm92aWRlZCBkYXRhc2V0LgoKICAgIDpwYXJhbSBjb250ZXh0OiBtbHJ1biBjb250ZXh0IGluIG9yZGVyIHRvIGxvZyB0cmFpbmVkIG1vZGVsCiAgICA6cGFyYW0gZGF0YXNldF9jb2x1bW5zX3RvX3RyYWluOiB3aGljaCBjb2x1bW5zIHRvIHBhc3MgdG8gdGhlIG1vZGVsIGFzIGlucHV0cwogICAgOnBhcmFtIGV2YWxfbG9hZF9kYXRhc2V0X2t3YXJnczoga3dhcmdzIGZvciBkYXRhc2V0IGxvYWRpbmcKICAgIDpwYXJhbSB0cmFpbl9sb2FkX2RhdGFzZXRfa3dhcmdzOiBrd2FyZ3MgZm9yIGRhdGFzZXQgbG9hZGluZwogICAgOnBhcmFtIGZyYW1ld29yazogcHQgb3QgdGYKICAgIDpwYXJhbSB1c2VfY3VkYTogdXNlIGdwdSBvciBub3QKICAgIDpwYXJhbSB0b2tlbml6ZXJfcHJldHJhaW5lZF9jb25maWc6IGNvbmZpZyB0byBsb2FkIHRoZSBwcmV0cmFpbmVkIHRva2VuaXplcgogICAgOnBhcmFtIG1vZGVsX3ByZXRyYWluZWRfY29uZmlnOiBjb25maWcgdG8gbG9hZCB0aGUgcHJldHJhaW5lZCBtb2RlbAogICAgOnBhcmFtIHRva2VuaXplcjogYSB0dXBsZSBjb250YWluaW5nIHRva2VuaXplciBuYW1lIGFuZCBjbGFzcywgb3Igc3RyIHdpdGggdG9rZW5pemVyIG5hbWUgb3IgcGF0aAogICAgOnBhcmFtIG1vZGVsOiBhIHR1cGxlIGNvbnRhaW5pbmcgbW9kZWwgbmFtZSBhbmQgY2xhc3MsIG9yIHN0ciB3aXRoIG1vZGVsIG5hbWUgb3IgcGF0aAogICAgOnBhcmFtIHRyYWluX2RhdGFzZXQ6IFRoZSB0cmFpbiBkYXRhc2V0IHVzZWQgZm9yIGZpbmUtdHVuaW5nIHRoZSBsYW5ndWFnZSBtb2RlbC4KICAgIDpwYXJhbSBldmFsX2RhdGFzZXQ6IFRoZSBldmFsIGRhdGFzZXQgdXNlZCBmb3IgZXZhbHVhdGUgdGhlIGxhbmd1YWdlIG1vZGVsIGR1cmluZyB0cmFpbmluZy4KICAgIDpwYXJhbSBkZWVwc3BlZWRfY29uZmlnOiBDb25maWd1cmF0aW9uIG9wdGlvbnMgZm9yIERlZXBTcGVlZCAob3B0aW9uYWwpLgogICAgOnBhcmFtIHF1YW50aXphdGlvbl9jb25maWc6IENvbmZpZ3VyYXRpb24gb3B0aW9ucyBmb3IgbW9kZWwgcXVhbnRpemF0aW9uIChvcHRpb25hbCkuCiAgICA6cGFyYW0gbG9yYV9jb25maWc6IENvbmZpZ3VyYXRpb24gb3B0aW9ucyBmb3IgTG93LVJhbmsgQXBwcm94aW1hdGlvbiAoTG9SQSkgKG9wdGlvbmFsKS4KICAgIDpwYXJhbSB0cmFpbmluZ19jb25maWc6IENvbmZpZ3VyYXRpb24gb3B0aW9ucyBzcGVjaWZpYyB0byB0aGUgZmluZS10dW5pbmcgdHJhaW5pbmcgcHJvY2VzcyAob3B0aW9uYWwpLgogICAgOnBhcmFtIGRhdGFfY29sbGF0b3JfY29uZmlnOiBDb25maWd1cmF0aW9uIG9wdGlvbnMgZm9yIGRhdGEgY29sbGF0aW9uIGR1cmluZyB0cmFpbmluZyAob3B0aW9uYWwpLgogICAgOnBhcmFtIHRhc2s6IEEgZGVzY3JpcHRpb24gb2YgdGhlIHNwZWNpZmljIHRhc2sgdGhlIG1vZGVsIGlzIGJlaW5nIGZpbmUtdHVuZWQgZm9yLgogICAgOnBhcmFtIGt3YXJnczogQWRkaXRpb25hbCBrZXl3b3JkIGFyZ3VtZW50cy4KICAgICIiIgoKICAgICMgVE9ETzogbWF0Y2ggZm9yd2FyZC5rZXl3b3JkIHRvIGRhdGFzZXQua2V5d29yZCAtIGNoZWNrIGlmIHJlbGV2YW50IGluIG5ldyBkZXNpZ24KICAgICMgVE9ETzogYWRkIHdhcm5pbmcgZm9yIGxhYmVsLCBhbmQgYWRkIG9wdGlvbiB0byBtb2RpZnkgZGF0YXNldCBjb2wgbmFtZXMgLSBjaGVjayBpZiByZWxldmFudCBpbiBuZXcgZGVzaWduCgogICAgIyBMb29rIGZvciB1cGRhdGVzIHRvIGNvbmZpZ3MgZ2l2ZW4gaW4ga3dhcmdzCiAgICBjb25maWdzID0gewogICAgICAgIENvbmZpZ0tleXMuZGVlcHNwZWVkOiBkZWVwc3BlZWRfY29uZmlnLAogICAgICAgIENvbmZpZ0tleXMucXVhbnRpemF0aW9uOiBxdWFudGl6YXRpb25fY29uZmlnLAogICAgICAgIENvbmZpZ0tleXMubG9yYTogbG9yYV9jb25maWcsCiAgICAgICAgQ29uZmlnS2V5cy50cmFpbmluZzogdHJhaW5pbmdfY29uZmlnLAogICAgICAgIENvbmZpZ0tleXMubW9kZWxfcHJldHJhaW5lZDogbW9kZWxfcHJldHJhaW5lZF9jb25maWcsCiAgICAgICAgQ29uZmlnS2V5cy50b2tlbml6ZXJfcHJldHJhaW5lZDogdG9rZW5pemVyX3ByZXRyYWluZWRfY29uZmlnLAogICAgICAgIENvbmZpZ0tleXMuZGF0YV9jb2xsYXRvcjogZGF0YV9jb2xsYXRvcl9jb25maWcsCiAgICB9CiAgICBfdXBkYXRlX2NvbmZpZyhkc3Q9Y29uZmlncywgc3JjPWt3YXJncykKCiAgICAjIGNoZWNrIGdwdSBwZXJtaXNzaW9uIGFuZCBhdmFpbGFiaWxpdHkKICAgIGlmIHVzZV9jdWRhOgogICAgICAgIGlmIHRvcmNoLmN1ZGEuaXNfYXZhaWxhYmxlKCk6CiAgICAgICAgICAgICMgQ2xlYW4gZ3B1IGNhY2hlCiAgICAgICAgICAgIHRvcmNoLmN1ZGEuZW1wdHlfY2FjaGUoKQogICAgICAgIGVsc2U6CiAgICAgICAgICAgIGxvZ2dlci53YXJuaW5nKCIndXNlX2N1ZGEnIGlzIHNldCB0byBUcnVlLCBidXQgbm8gY3VkYSBkZXZpY2UgaXMgYXZhaWxhYmxlIikKCiAgICAjIGdldCBtb2RlbCBhbmQgdG9rZW5pemVyCiAgICBtb2RlbF9uYW1lLCBtb2RlbCwgdG9rZW5pemVyID0gX3NldF9tb2RlbF9hbmRfdG9rZW5pemVyKAogICAgICAgIG1vZGVsPW1vZGVsLAogICAgICAgIHRva2VuaXplcj10b2tlbml6ZXIsCiAgICAgICAgdGFzaz10YXNrLAogICAgICAgIGZyYW1ld29yaz1mcmFtZXdvcmssCiAgICAgICAgbG9yYV9jb25maWc9Y29uZmlnc1tDb25maWdLZXlzLmxvcmFdLAogICAgICAgIHF1YW50aXphdGlvbl9jb25maWc9Y29uZmlnc1tDb25maWdLZXlzLnF1YW50aXphdGlvbl0sCiAgICAgICAgdXNlX2N1ZGE9dXNlX2N1ZGEsCiAgICAgICAgdG9rZW5pemVyX3ByZXRyYWluZWRfY29uZmlnPXRva2VuaXplcl9wcmV0cmFpbmVkX2NvbmZpZywKICAgICAgICBtb2RlbF9wcmV0cmFpbmVkX2NvbmZpZz1jb25maWdzW0NvbmZpZ0tleXMubW9kZWxfcHJldHJhaW5lZF0sCiAgICAgICAgZGV2aWNlX21hcD1kZXZpY2VfbWFwLAogICAgKQoKICAgICMgTG9hZCBkYXRhc2V0cwogICAgdG9rZW5pemVkX3RyYWluLCB0b2tlbml6ZWRfZXZhbCA9IF9wcmVwYXJlX2RhdGFzZXQoCiAgICAgICAgdHJhaW5fZGF0YXNldD10cmFpbl9kYXRhc2V0LAogICAgICAgIGV2YWxfZGF0YXNldD1ldmFsX2RhdGFzZXQsCiAgICAgICAgdHJhaW5fbG9hZF9kYXRhc2V0X2t3YXJncz10cmFpbl9sb2FkX2RhdGFzZXRfa3dhcmdzLAogICAgICAgIGV2YWxfbG9hZF9kYXRhc2V0X2t3YXJncz1ldmFsX2xvYWRfZGF0YXNldF9rd2FyZ3MsCiAgICAgICAgdG9rZW5pemVyPXRva2VuaXplciwKICAgICAgICBkYXRhc2V0X2NvbHVtbnNfdG9fdHJhaW49ZGF0YXNldF9jb2x1bW5zX3RvX3RyYWluLAogICAgKQoKICAgICMgSW5pdGlhbGl6ZSB0aGUgZGF0YSBjb2xsYXRvciBmb3IgdGhlIHRyYWluZXIgdG8gdXNlIGluIG9yZGVyIHRvIGNyZWF0ZSBiYXRjaGVzIG9mIGRhdGEKICAgIGRhdGFfY29sbGF0b3IgPSB0cmFuc2Zvcm1lcnMuRGF0YUNvbGxhdG9yRm9yTGFuZ3VhZ2VNb2RlbGluZygKICAgICAgICB0b2tlbml6ZXI9dG9rZW5pemVyLCBtbG09RmFsc2UsICoqZGF0YV9jb2xsYXRvcl9jb25maWcKICAgICkKCiAgICAjIEluaXRpYWxpemUgdHJhaW5pbmcga3dhcmdzIGZyb20gdXNlciBrd2FyZ3M6CiAgICB0cmFpbl9rd2FyZ3MgPSBjb25maWdzW0NvbmZpZ0tleXMudHJhaW5pbmddCgogICAgIyBJZiBkZWVwc3BlZWQgY29uZmlnIGdpdmVuIHdlIGFkZCBpdCB0byB0cmFpbmluZyBrd2FyZ3MKICAgIGlmIGNvbmZpZ3NbQ29uZmlnS2V5cy5kZWVwc3BlZWRdOgogICAgICAgIHRyYWluX2t3YXJnc1siZGVlcHNwZWVkIl0gPSBjb25maWdzW0NvbmZpZ0tleXMuZGVlcHNwZWVkXQoKICAgICMgVGFrZSBhIGxvb2sgYXQgdGhlIHRyYWluYWJsZSBwYXJhbWV0ZXJzIGluIHRoZSBtb2RlbAogICAgX3ByaW50X3RyYWluYWJsZV9wYXJhbWV0ZXJzKG1vZGVsKQoKICAgICMgUHJlcGFyaW5nIHRyYWluaW5nIGFyZ3VtZW50czoKICAgIHRyYWluaW5nX2FyZ3MgPSB0cmFuc2Zvcm1lcnMuVHJhaW5pbmdBcmd1bWVudHMoCiAgICAgICAgb3V0cHV0X2Rpcj10ZW1wZmlsZS5ta2R0ZW1wKCksCiAgICAgICAgKip0cmFpbl9rd2FyZ3MsCiAgICApCgogICAgdHJhaW5lciA9IHRyYW5zZm9ybWVycy5UcmFpbmVyKAogICAgICAgIG1vZGVsPW1vZGVsLAogICAgICAgIHRyYWluX2RhdGFzZXQ9dG9rZW5pemVkX3RyYWluLAogICAgICAgIGV2YWxfZGF0YXNldD10b2tlbml6ZWRfZXZhbCwKICAgICAgICB0b2tlbml6ZXI9dG9rZW5pemVyLAogICAgICAgIGRhdGFfY29sbGF0b3I9ZGF0YV9jb2xsYXRvciwKICAgICAgICBhcmdzPXRyYWluaW5nX2FyZ3MsCiAgICApCgogICAgYXBwbHlfbWxydW4odHJhaW5lciwgbW9kZWxfbmFtZT1tb2RlbF9uYW1lLnNwbGl0KCIvIilbLTFdKQogICAgbW9kZWwuY29uZmlnLnVzZV9jYWNoZSA9ICgKICAgICAgICBGYWxzZSAgIyBzaWxlbmNlIHRoZSB3YXJuaW5ncy4gUGxlYXNlIHJlLWVuYWJsZSBmb3IgaW5mZXJlbmNlIQogICAgKQoKICAgICMgQXBwbHkgdHJhaW5pbmcgd2l0aCBldmFsdWF0aW9uOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmInRyYWluaW5nICd7bW9kZWxfbmFtZX0nIikKICAgIHRyYWluZXIudHJhaW4oKQoKICAgIHRlbXBfZGlyZWN0b3J5ID0gdGVtcGZpbGUuVGVtcG9yYXJ5RGlyZWN0b3J5KCkubmFtZQogICAgdHJhaW5lci5zYXZlX21vZGVsKHRlbXBfZGlyZWN0b3J5KQoKICAgICMgWmlwIHRoZSBtb2RlbCBkaXJlY3Rvcnk6CiAgICBzaHV0aWwubWFrZV9hcmNoaXZlKAogICAgICAgIGJhc2VfbmFtZT0ibW9kZWwiLAogICAgICAgIGZvcm1hdD0iemlwIiwKICAgICAgICByb290X2Rpcj10ZW1wX2RpcmVjdG9yeSwKICAgICkKCiAgICAjIExvZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ19tb2RlbCgKICAgICAgICBrZXk9Im1vZGVsIiwKICAgICAgICBkYl9rZXk9bW9kZWxfbmFtZS5zcGxpdCgiLyIpWy0xXSwKICAgICAgICBtb2RlbF9maWxlPSJtb2RlbC56aXAiLAogICAgICAgIHRhZz0iIiwKICAgICAgICBmcmFtZXdvcms9Ikh1Z2dpbmcgRmFjZSIsCiAgICApCgoKZGVmIGV2YWx1YXRlKAogICAgY29udGV4dCwKICAgIG1vZGVsX3BhdGgsCiAgICBkYXRhOiBwZC5EYXRhRnJhbWUsCiAgICBtb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgdG9rZW5pemVyX25hbWU6IHN0ciA9IE5vbmUsCik6CiAgICAiIiIKICAgIEV2YWx1YXRpbmcgdGhlIG1vZGVsIHVzaW5nIHBlcnBsZXhpdHksIGZvciBtb3JlIGluZm9ybWF0aW9uIHZpc2l0OgogICAgaHR0cHM6Ly9odWdnaW5nZmFjZS5jby9kb2NzL3RyYW5zZm9ybWVycy9wZXJwbGV4aXR5CgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICBtbHJ1biBjb250ZXh0CiAgICA6cGFyYW0gbW9kZWxfcGF0aDogIHBhdGggdG8gdGhlIG1vZGVsIGRpcmVjdG9yeQogICAgOnBhcmFtIGRhdGE6ICAgICAgICB0aGUgZGF0YSB0byBldmFsdWF0ZSB0aGUgbW9kZWwKICAgIDpwYXJhbSBtb2RlbF9uYW1lOiAgbmFtZSBvZiBiYXNlIG1vZGVsCiAgICA6cGFyYW0gdG9rZW5pemVyX25hbWU6IG5hbWUgb2YgYmFzZSB0b2tlbml6ZXIKICAgICIiIgogICAgIyBHZXQgdGhlIG1vZGVsIGFydGlmYWN0IGFuZCBmaWxlOgogICAgKAogICAgICAgIG1vZGVsX2ZpbGUsCiAgICAgICAgbW9kZWxfYXJ0aWZhY3QsCiAgICAgICAgZXh0cmFfZGF0YSwKICAgICkgPSBtbHJ1bi5hcnRpZmFjdHMuZ2V0X21vZGVsKG1vZGVsX3BhdGgpCgogICAgIyBSZWFkIHRoZSBuYW1lOgogICAgX21vZGVsX25hbWUgPSBtb2RlbF9hcnRpZmFjdC5zcGVjLmRiX2tleQoKICAgICMgRXh0cmFjdCBsb2dnZWQgbW9kZWwgZmlsZXM6CiAgICBtb2RlbF9kaXJlY3RvcnkgPSBvcy5wYXRoLmpvaW4ob3MucGF0aC5kaXJuYW1lKG1vZGVsX2ZpbGUpLCBfbW9kZWxfbmFtZSkKICAgIHdpdGggemlwZmlsZS5aaXBGaWxlKG1vZGVsX2ZpbGUsICJyIikgYXMgemlwX2ZpbGU6CiAgICAgICAgemlwX2ZpbGUuZXh0cmFjdGFsbChtb2RlbF9kaXJlY3RvcnkpCgogICAgIyBMb2FkaW5nIHRoZSBzYXZlZCBwcmV0cmFpbmVkIHRva2VuaXplciBhbmQgbW9kZWw6CiAgICBkYXRhc2V0ID0gRGF0YXNldC5mcm9tX3BhbmRhcyhkYXRhKQogICAgdG9rZW5pemVyID0gQXV0b1Rva2VuaXplci5mcm9tX3ByZXRyYWluZWQodG9rZW5pemVyX25hbWUpCiAgICBwYWRfdG9rZW5faWQgPSB0b2tlbml6ZXIuZW9zX3Rva2VuX2lkCiAgICBtb2RlbCA9IEF1dG9Nb2RlbEZvckNhdXNhbExNLmZyb21fcHJldHJhaW5lZCgKICAgICAgICBtb2RlbF9uYW1lLCBkZXZpY2VfbWFwPSJjdWRhOjAiLCB0cnVzdF9yZW1vdGVfY29kZT1UcnVlLCBsb2FkX2luXzhiaXQ9VHJ1ZQogICAgKQogICAgbW9kZWwgPSBQZWZ0TW9kZWwuZnJvbV9wcmV0cmFpbmVkKG1vZGVsLCBtb2RlbF9kaXJlY3RvcnkpCiAgICBtb2RlbC5ldmFsKCkKICAgIGVuY29kaW5ncyA9IHRva2VuaXplcigiXG5cbiIuam9pbihkYXRhc2V0WyJ0ZXh0Il1bOjVdKSwgcmV0dXJuX3RlbnNvcnM9InB0IikKCiAgICBtYXhfbGVuZ3RoID0gMTAyNAogICAgc3RyaWRlID0gNTEyCiAgICBzZXFfbGVuID0gZW5jb2RpbmdzLmlucHV0X2lkcy5zaXplKDEpCgogICAgbmxscyA9IFtdCiAgICBwcmV2X2VuZF9sb2MgPSAwCiAgICBmb3IgYmVnaW5fbG9jIGluIHJhbmdlKDAsIHNlcV9sZW4sIHN0cmlkZSk6CiAgICAgICAgZW5kX2xvYyA9IG1pbihiZWdpbl9sb2MgKyBtYXhfbGVuZ3RoLCBzZXFfbGVuKQogICAgICAgIHRyZ19sZW4gPSBlbmRfbG9jIC0gcHJldl9lbmRfbG9jICAjIG1heSBiZSBkaWZmZXJlbnQgZnJvbSBzdHJpZGUgb24gbGFzdCBsb29wCiAgICAgICAgaW5wdXRfaWRzID0gZW5jb2RpbmdzLmlucHV0X2lkc1s6LCBiZWdpbl9sb2M6ZW5kX2xvY10KICAgICAgICB0YXJnZXRfaWRzID0gaW5wdXRfaWRzLmNsb25lKCkKICAgICAgICB0YXJnZXRfaWRzWzosIDotdHJnX2xlbl0gPSAtMTAwCgogICAgICAgIHdpdGggdG9yY2gubm9fZ3JhZCgpOgogICAgICAgICAgICBvdXRwdXRzID0gbW9kZWwoaW5wdXRfaWRzLmN1ZGEoKSwgbGFiZWxzPXRhcmdldF9pZHMpCgogICAgICAgICAgICAjIGxvc3MgaXMgY2FsY3VsYXRlZCB1c2luZyBDcm9zc0VudHJvcHlMb3NzIHdoaWNoIGF2ZXJhZ2VzIG92ZXIgdmFsaWQgbGFiZWxzCiAgICAgICAgICAgICMgTi5CLiB0aGUgbW9kZWwgb25seSBjYWxjdWxhdGVzIGxvc3Mgb3ZlciB0cmdfbGVuIC0gMSBsYWJlbHMsIGJlY2F1c2UgaXQgaW50ZXJuYWxseSBzaGlmdHMgdGhlIGxhYmVscwogICAgICAgICAgICAjIHRvIHRoZSBsZWZ0IGJ5IDEuCiAgICAgICAgICAgIG5lZ19sb2dfbGlrZWxpaG9vZCA9IG91dHB1dHMubG9zcwoKICAgICAgICBubGxzLmFwcGVuZChuZWdfbG9nX2xpa2VsaWhvb2QpCgogICAgICAgIHByZXZfZW5kX2xvYyA9IGVuZF9sb2MKICAgICAgICBpZiBlbmRfbG9jID09IHNlcV9sZW46CiAgICAgICAgICAgIGJyZWFrCgogICAgcHBsID0gdG9yY2guZXhwKHRvcmNoLnN0YWNrKG5sbHMpLm1lYW4oKSkuaXRlbSgpCiAgICBjb250ZXh0LmxvZ19yZXN1bHQoInBlcnBsZXhpdHkiLCBwcGwpCg==
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ requirements: []
+ entry_points:
+ add_interface:
+ name: add_interface
+ doc: ''
+ parameters:
+ - name: cls
+ - name: obj
+ type: Trainer
+ - name: restoration
+ type: MLRunInterfaceRestorationType
+ default: null
+ outputs: []
+ lineno: 70
+ has_varargs: false
+ has_kwargs: false
+ mlrun_train:
+ name: mlrun_train
+ doc: ''
+ parameters:
+ - name: cls
+ outputs: []
+ lineno: 80
+ has_varargs: false
+ has_kwargs: false
+ wrapper:
+ name: wrapper
+ doc: ''
+ parameters:
+ - name: self
+ type: Trainer
+ outputs: []
+ lineno: 81
+ has_varargs: true
+ has_kwargs: true
+ on_epoch_begin:
+ name: on_epoch_begin
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 129
+ has_varargs: false
+ has_kwargs: true
+ on_epoch_end:
+ name: on_epoch_end
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 140
+ has_varargs: false
+ has_kwargs: true
+ on_log:
+ name: on_log
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ - name: logs
+ type: Dict[str, float]
+ default: null
+ outputs: []
+ lineno: 151
+ has_varargs: false
+ has_kwargs: true
+ on_train_begin:
+ name: on_train_begin
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 177
+ has_varargs: false
+ has_kwargs: true
+ on_train_end:
+ name: on_train_end
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ - name: model
+ type: PreTrainedModel
+ default: null
+ - name: tokenizer
+ type: PreTrainedTokenizer
+ default: null
+ outputs: []
+ lineno: 188
+ has_varargs: false
+ has_kwargs: true
+ on_evaluate:
+ name: on_evaluate
+ doc: ''
+ parameters:
+ - name: self
+ - name: args
+ type: TrainingArguments
+ - name: state
+ type: TrainerState
+ - name: control
+ type: TrainerControl
+ outputs: []
+ lineno: 201
+ has_varargs: false
+ has_kwargs: true
+ log_metrics:
+ name: log_metrics
+ doc: ''
+ parameters:
+ - name: self
+ outputs: []
+ lineno: 215
+ has_varargs: false
+ has_kwargs: false
+ log_metric_plot:
+ name: log_metric_plot
+ doc: ''
+ parameters:
+ - name: self
+ - name: name
+ type: str
+ - name: scores
+ type: List[float]
+ outputs: []
+ lineno: 222
+ has_varargs: false
+ has_kwargs: false
+ apply_mlrun:
+ name: apply_mlrun
+ doc: This is temporary and will be built in mlrun 1.5.0
+ parameters:
+ - name: trainer
+ type: Trainer
+ - name: model_name
+ type: str
+ default: null
+ - name: tag
+ type: str
+ default: ''
+ - name: context
+ type: MLClientCtx
+ default: null
+ - name: auto_log
+ type: bool
+ default: true
+ - name: labels
+ type: Dict[str, str]
+ default: null
+ - name: extra_data
+ type: dict
+ default: null
+ outputs: []
+ lineno: 244
+ has_varargs: false
+ has_kwargs: true
+ finetune_llm:
+ name: finetune_llm
+ doc: "Fine-tunes a Language Model (LLM) on a specific task using the provided\
+ \ dataset.\n The function takes various configuration parameters to customize\
+ \ the training process\n and adapt the model to specific tasks using a provided\
+ \ dataset."
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: mlrun context in order to log trained model
+ - name: train_dataset
+ type: Union[str, mlrun.datastore.DataItem]
+ doc: The train dataset used for fine-tuning the language model.
+ - name: eval_dataset
+ type: str
+ doc: The eval dataset used for evaluate the language model during training.
+ default: null
+ - name: train_load_dataset_kwargs
+ type: dict
+ doc: kwargs for dataset loading
+ default: {}
+ - name: eval_load_dataset_kwargs
+ type: dict
+ doc: kwargs for dataset loading
+ default: {}
+ - name: dataset_columns_to_train
+ type: Union[str, list]
+ doc: which columns to pass to the model as inputs
+ default: text
+ - name: model
+ type: Union[str, List[str]]
+ doc: a tuple containing model name and class, or str with model name or path
+ default: huggingface-model
+ - name: tokenizer
+ type: Union[str, List[str]]
+ doc: a tuple containing tokenizer name and class, or str with tokenizer name
+ or path
+ default: null
+ - name: deepspeed_config
+ type: Union[dict, bool]
+ doc: Configuration options for DeepSpeed (optional).
+ default: false
+ - name: quantization_config
+ type: Union[dict, bool]
+ doc: Configuration options for model quantization (optional).
+ default: false
+ - name: lora_config
+ type: Union[dict, bool]
+ doc: Configuration options for Low-Rank Approximation (LoRA) (optional).
+ default: false
+ - name: training_config
+ type: dict
+ doc: Configuration options specific to the fine-tuning training process (optional).
+ default: {}
+ - name: model_pretrained_config
+ type: dict
+ doc: config to load the pretrained model
+ default: {}
+ - name: tokenizer_pretrained_config
+ type: dict
+ doc: config to load the pretrained tokenizer
+ default: {}
+ - name: data_collator_config
+ type: dict
+ doc: Configuration options for data collation during training (optional).
+ default: {}
+ - name: task
+ type: str
+ doc: A description of the specific task the model is being fine-tuned for.
+ default: text-generation
+ - name: use_cuda
+ type: bool
+ doc: use gpu or not
+ default: true
+ - name: framework
+ type: str
+ doc: pt ot tf
+ default: pt
+ - name: device_map
+ type: str
+ default: auto
+ outputs: []
+ lineno: 630
+ has_varargs: false
+ has_kwargs: true
+ evaluate:
+ name: evaluate
+ doc: 'Evaluating the model using perplexity, for more information visit:
+
+ https://huggingface.co/docs/transformers/perplexity'
+ parameters:
+ - name: context
+ doc: mlrun context
+ - name: model_path
+ doc: path to the model directory
+ - name: data
+ type: DataFrame
+ doc: the data to evaluate the model
+ - name: model_name
+ type: str
+ doc: name of base model
+ default: null
+ - name: tokenizer_name
+ type: str
+ doc: name of base tokenizer
+ default: null
+ outputs: []
+ lineno: 784
+ has_varargs: false
+ has_kwargs: false
+ description: fine-tune llm model with ease
+ default_handler: finetune_llm
+ disable_auto_mount: false
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/src/huggingface_auto_trainer.ipynb b/functions/master/huggingface_auto_trainer/1.1.0/src/huggingface_auto_trainer.ipynb
new file mode 100644
index 00000000..847fa98d
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/src/huggingface_auto_trainer.ipynb
@@ -0,0 +1,195 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a2c5dc6d-33d0-4e74-a875-6eab556e3b2d",
+ "metadata": {},
+ "source": [
+ "# Llm auto trainer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cc7aa261-17b2-4362-bf6a-34af79b0230b",
+ "metadata": {},
+ "source": [
+ "## Notebook Introduction: Fine-Tuning a Large Language Model with Ease\n",
+ "\n",
+ "Welcome to this example notebook that demonstrates a simplified yet powerful approach to fine-tuning a Large Language Model (LLM) effortlessly. Fine-tuning is a crucial technique that allows you to adapt pre-trained language models to specific tasks, making them more contextually relevant and useful.\n",
+ "\n",
+ "In this notebook, we will walk you through a step-by-step process of fine-tuning a state-of-the-art language model using a user-friendly and efficient method. You don't need to be an expert in machine learning or natural language processing to follow along – our approach focuses on simplicity and effectiveness."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "425249e9-f43f-45e6-aa25-9f53099049cd",
+ "metadata": {},
+ "source": [
+ "### First, we will select the model we wish to fine-tune and take the matching tokenizer and appropriate config"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3410e9c2-0557-4961-995e-0ef0cc07bf82",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig\n",
+ "from transformers import logging\n",
+ "\n",
+ "logging.set_verbosity(\"CRITICAL\")\n",
+ "\n",
+ "model_name = \"tiiuae/falcon-7b\"\n",
+ "tokenizer = model_name\n",
+ "generation_config = GenerationConfig.from_pretrained(model_name)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f33f3c35-cf61-4b0f-8da9-1c30d3b53230",
+ "metadata": {},
+ "source": [
+ "### Then, in order to use with mlrun, we will create an mlrun project and create an mlrun function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a8ee7c35-adf7-4ed8-9e7e-e659b9461cd5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import mlrun\n",
+ "\n",
+ "project = mlrun.get_or_create_project(\n",
+ " name=\"auto-trainer-test\",\n",
+ " context=\"./\",\n",
+ " user_project=True,\n",
+ " parameters={\n",
+ " \"default_image\": \"yonishelach/mlrun-llm\",\n",
+ " },\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d56b834f-adf6-4736-8de7-3348e050f561",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "project.set_function(\n",
+ " \"auto-trainer.py\",\n",
+ " name=\"auto-trainer\",\n",
+ " kind=\"job\",\n",
+ " image=\"yonishelach/mlrun-llm\",\n",
+ " handler=\"finetune_llm\",\n",
+ ")\n",
+ "project.save()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f42315db-6ddd-4dc1-89f3-c732f92d0d47",
+ "metadata": {},
+ "source": [
+ "### we can set the every config or parameter we want, including training arguments, hyper parameters and more, and pass to the function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8e62e577-15fb-477d-9c56-fa9fb4c2669b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import transformers\n",
+ "\n",
+ "training_arguments = {\n",
+ " \"per_device_train_batch_size\": 4,\n",
+ " \"gradient_accumulation_steps\": 1,\n",
+ " \"warmup_steps\": 2,\n",
+ " \"max_steps\": 10,\n",
+ " \"learning_rate\": 2e-4,\n",
+ " \"fp16\": True,\n",
+ " \"logging_steps\": 1,\n",
+ " \"optim\": \"paged_adamw_8bit\",\n",
+ "}"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "284a5772-f88d-46c9-87bc-fc14e434c1b4",
+ "metadata": {},
+ "source": [
+ "### Now we simply run the function"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "11ab5888-5870-4bf8-9657-db930adecd77",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "training_run = mlrun.run_function(\n",
+ " function=\"auto-trainer\",\n",
+ " name=\"auto-trainer\",\n",
+ " local=True,\n",
+ " params={\n",
+ " \"model\": (model_name, \"transformers.AutoModelForCausalLM\"),\n",
+ " \"tokenizer\": tokenizer,\n",
+ " \"train_dataset\": \"Abirate/english_quotes\",\n",
+ " \"training_config\": training_arguments,\n",
+ " \"quantization_config\": True,\n",
+ " \"lora_config\": True,\n",
+ " \"dataset_columns_to_train\": \"quote\",\n",
+ " \"lora_target_modules\": [\"query_key_value\"],\n",
+ " \"model_pretrained_config\": {\"trust_remote_code\": True, \"use_cache\": False},\n",
+ " },\n",
+ " handler=\"finetune_llm\",\n",
+ " outputs=[\"model\"],\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0e674d25-5f1f-4ea8-af02-7d22c2fb6760",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7a4dfe9b-407a-43c0-9c5e-56de106477ac",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlrun-base",
+ "language": "python",
+ "name": "conda-env-mlrun-base-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/src/huggingface_auto_trainer.py b/functions/master/huggingface_auto_trainer/1.1.0/src/huggingface_auto_trainer.py
new file mode 100644
index 00000000..d1166318
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/src/huggingface_auto_trainer.py
@@ -0,0 +1,855 @@
+import importlib
+import os
+import shutil
+import tempfile
+import zipfile
+from abc import ABC
+from typing import Dict, List, Tuple, Union
+
+import mlrun
+import numpy as np
+import pandas as pd
+import peft
+import torch
+import transformers
+from datasets import Dataset, load_dataset
+from mlrun.artifacts.manager import Artifact, PlotlyArtifact
+from mlrun.datastore import is_store_uri
+from mlrun.frameworks._common import CommonTypes, MLRunInterface
+from mlrun.utils import logger
+from peft import (LoraConfig, PeftModel, get_peft_model,
+ prepare_model_for_kbit_training)
+from plotly import graph_objects as go
+from transformers import (AutoModelForCausalLM, AutoTokenizer,
+ BitsAndBytesConfig, DataCollatorForLanguageModeling,
+ PreTrainedModel, PreTrainedTokenizer, Trainer,
+ TrainerCallback, TrainerControl, TrainerState,
+ TrainingArguments)
+
+supported_tasks = [
+ "question-answering",
+ "summarization",
+ "table-question-answering",
+ "text2text-generation",
+ "text-classification",
+ "sentiment-analysis",
+ "text-generation",
+ "token-classification",
+ "translation",
+ "translation_xx_to_yy",
+]
+
+
+class ConfigKeys:
+ deepspeed = "deepspeed"
+ quantization = "quantization"
+ lora = "lora"
+ training = "training"
+ tokenizer_pretrained = "tokenizer_pretrained"
+ model_pretrained = "model_pretrained"
+ data_collator = "data_collator"
+
+
+# ----------------------from MLRUN--------------------------------
+class HFTrainerMLRunInterface(MLRunInterface, ABC):
+ """
+ This is temporary and will be built in mlrun 1.5.0
+ Interface for adding MLRun features for tensorflow keras API.
+ """
+
+ # MLRuns context default name:
+ DEFAULT_CONTEXT_NAME = "mlrun-huggingface"
+
+ # Attributes to replace so the MLRun interface will be fully enabled.
+ _REPLACED_METHODS = [
+ "train",
+ # "evaluate"
+ ]
+
+ @classmethod
+ def add_interface(
+ cls,
+ obj: Trainer,
+ restoration: CommonTypes.MLRunInterfaceRestorationType = None,
+ ):
+ super(HFTrainerMLRunInterface, cls).add_interface(
+ obj=obj, restoration=restoration
+ )
+
+ @classmethod
+ def mlrun_train(cls):
+ def wrapper(self: Trainer, *args, **kwargs):
+ # Restore the evaluation method as `train` will use it:
+ # cls._restore_attribute(obj=self, attribute_name="evaluate")
+
+ # Call the original fit method:
+ result = self.original_train(*args, **kwargs)
+
+ # Replace the evaluation method again:
+ # cls._replace_function(obj=self, function_name="evaluate")
+
+ return result
+
+ return wrapper
+
+
+class MLRunCallback(TrainerCallback):
+ """
+ This is temporary and will be built in mlrun 1.5.0
+ Callback for collecting logs during training / evaluation of the `Trainer` API.
+ """
+
+ def __init__(
+ self,
+ context: mlrun.MLClientCtx = None,
+ model_name: str = "model",
+ tag: str = "",
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ ):
+ super().__init__()
+
+ # Store the configurations:
+ self._context = (
+ context
+ if context is not None
+ else mlrun.get_or_create_ctx("./mlrun-huggingface")
+ )
+ self._model_name = model_name
+ self._tag = tag
+ self._labels = labels
+ self._extra_data = extra_data if extra_data is not None else {}
+
+ # Set up the logging mode:
+ self._is_training = False
+ self._steps: List[List[int]] = []
+ self._metric_scores: Dict[str, List[float]] = {}
+ self._artifacts: Dict[str, Artifact] = {}
+
+ def on_epoch_begin(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ if not state.is_world_process_zero:
+ return
+ self._steps.append([])
+
+ def on_epoch_end(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ if not state.is_world_process_zero:
+ return
+ self.log_metrics()
+
+ def on_log(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ logs: Dict[str, float] = None,
+ **kwargs,
+ ):
+ if not state.is_world_process_zero:
+ return
+ recent_logs = state.log_history[-1].copy()
+
+ recent_logs.pop("epoch")
+ current_step = int(recent_logs.pop("step"))
+ if current_step not in self._steps[-1]:
+ self._steps[-1].append(current_step)
+
+ for metric_name, metric_score in recent_logs.items():
+ if metric_name.startswith("train_"):
+ if metric_name.split("train_")[1] not in self._metric_scores:
+ self._metric_scores[metric_name] = [metric_score]
+ continue
+ if metric_name not in self._metric_scores:
+ self._metric_scores[metric_name] = []
+ self._metric_scores[metric_name].append(metric_score)
+
+ def on_train_begin(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ if not state.is_world_process_zero:
+ return
+ self._is_training = True
+
+ def on_train_end(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ model: PreTrainedModel = None,
+ tokenizer: PreTrainedTokenizer = None,
+ **kwargs,
+ ):
+ if not state.is_world_process_zero:
+ return
+ self.log_metrics()
+
+ def on_evaluate(
+ self,
+ args: TrainingArguments,
+ state: TrainerState,
+ control: TrainerControl,
+ **kwargs,
+ ):
+ if not state.is_world_process_zero:
+ return
+ self.log_metrics()
+
+ if self._is_training:
+ return
+
+ def log_metrics(self):
+ for metric_name, metric_scores in self._metric_scores.items():
+ self._context.log_result(key=metric_name, value=metric_scores[-1])
+ if len(metric_scores) > 1:
+ self.log_metric_plot(name=metric_name, scores=metric_scores)
+ self._context.commit(completed=False)
+
+ def log_metric_plot(self, name: str, scores: List[float]):
+ # Initialize a plotly figure:
+ metric_figure = go.Figure()
+
+ # Add titles:
+ metric_figure.update_layout(
+ title=name.capitalize().replace("_", " "),
+ xaxis_title="Samples",
+ yaxis_title="Scores",
+ )
+
+ # Draw:
+ metric_figure.add_trace(
+ go.Scatter(x=np.arange(len(scores)), y=scores, mode="lines")
+ )
+
+ # Create the plotly artifact:
+ artifact_name = f"{name}_plot"
+ artifact = PlotlyArtifact(key=artifact_name, figure=metric_figure)
+ self._artifacts[artifact_name] = self._context.log_artifact(artifact)
+
+
+def apply_mlrun(
+ trainer: transformers.Trainer,
+ model_name: str = None,
+ tag: str = "",
+ context: mlrun.MLClientCtx = None,
+ auto_log: bool = True,
+ labels: Dict[str, str] = None,
+ extra_data: dict = None,
+ **kwargs,
+):
+ """
+ This is temporary and will be built in mlrun 1.5.0
+ """
+ # Get parameters defaults:
+ if context is None:
+ context = mlrun.get_or_create_ctx(HFTrainerMLRunInterface.DEFAULT_CONTEXT_NAME)
+
+ HFTrainerMLRunInterface.add_interface(obj=trainer)
+
+ if auto_log:
+ trainer.add_callback(
+ MLRunCallback(
+ context=context,
+ model_name=model_name,
+ tag=tag,
+ labels=labels,
+ extra_data=extra_data,
+ )
+ )
+
+
+# ----------------------end from MLRUN--------------------------------
+
+
+def _print_trainable_parameters(model):
+ """
+ Prints the number of trainable parameters in the model.
+ """
+ trainable_params = 0
+ all_param = 0
+ for _, param in model.named_parameters():
+ all_param += param.numel()
+ if param.requires_grad:
+ trainable_params += param.numel()
+ print(
+ f"trainable params: {trainable_params} || all params: {all_param} || trainable%:"
+ f" {100 * trainable_params / all_param}"
+ )
+
+
+# default configs
+# will be used if user provides "True" with config name as input
+QUANTIZATION_CONFIG = transformers.BitsAndBytesConfig(
+ load_in_4bit=True,
+ bnb_4bit_use_double_quant=True,
+ bnb_4bit_quant_type="nf4",
+ bnb_4bit_compute_dtype=torch.bfloat16,
+)
+
+LORA_CONFIG = peft.LoraConfig(
+ r=8,
+ lora_alpha=32,
+ target_modules=["query_key_value"],
+ lora_dropout=0.05,
+ bias="none",
+ task_type="CAUSAL_LM",
+)
+
+DEEPSPEED_CONFIG = {
+ "train_micro_batch_size_per_gpu": "auto",
+ "fp16": {"enabled": True},
+ "autotuning": {
+ "enabled": True,
+ "arg_mappings": {
+ "train_micro_batch_size_per_gpu": "--per_device_train_batch_size",
+ "gradient_accumulation_steps ": "--gradient_accumulation_steps",
+ },
+ },
+ "zero_optimization": {
+ "stage": 2,
+ },
+}
+
+
+def _update_config(src: dict, dst: dict):
+ """
+ update configs according to user, this way the user can add/modify values in default configs for e.g.
+
+ goes over all configs and corresponding prefixes, collect all the keys from the given dict that start
+ with the prefix and add them to appropriate config
+
+ :param src: dict of all candidate values to update dict.
+ :param dst: dict containing all configs to update.
+ """
+
+ for config_name, config in dst.items():
+
+ # If given True we use default dict
+ # Can also be False or a config dict given from user, so we check specifically fo True
+ if config is True and config_name == "quantization":
+ config = QUANTIZATION_CONFIG
+
+ if config is True and config_name == "lora":
+ config = LORA_CONFIG
+
+ if config is True and config_name == "deepspeed":
+ config = DEEPSPEED_CONFIG
+
+ # in some cases we can get a boolean value, in that case no need to look for args
+ if isinstance(config, bool):
+ config = None
+
+ elif isinstance(config, dict):
+ for key, val in src.items():
+ if key.startswith(config_name):
+ config[key.replace(f"{config_name}_", "")] = val
+
+ # update by config name
+ else:
+ for key, val in src.items():
+ if key.startswith(config_name):
+ setattr(config, key.replace(f"{config_name}_", ""), val)
+
+ dst.update({config_name: config})
+
+
+def _get_class_object(class_path: str) -> type:
+ """
+ given a full class name, this function returns the correct class
+
+ :param class_path: a full class name (ex. 'transformers.AutoModelForCausalLM')
+
+ :return the wanted class object
+ """
+ module_path, class_name = class_path.rsplit(".", 1)
+ module = importlib.import_module(module_path)
+ return getattr(module, class_name)
+
+
+def _set_model_and_tokenizer(
+ model: Union[str, List[str]],
+ tokenizer: Union[str, List[str]],
+ task: str,
+ framework: str,
+ lora_config: dict,
+ quantization_config: dict,
+ use_cuda: bool,
+ tokenizer_pretrained_config,
+ model_pretrained_config,
+ device_map: str,
+):
+ """
+ get the correct model and tokenizer according to given user inputs
+
+ :param model: a tuple containing model name and class, or str with model name or path
+ :param tokenizer: a tuple containing tokenizer name and class, or str with tokenizer name or path
+ :param task: a supported nlp task, used to choose model if not provided
+ :param framework: pt or tf
+ :param lora_config: lora config or None, to load model in appropriate way
+ :param quantization_config: quantization config or None, to load model in appropriate way
+ :param use_cuda: use gpu or not
+ :param tokenizer_pretrained_config: config to load the pretrained tokenizer
+ :param model_pretrained_config: config to load the pretrained model
+ :param device_map: a device map for model training if using number of gpu's
+
+ :returns: model and tokenizer
+ """
+ # if task is not supported and no model was given we can't choose one
+ if task and task not in supported_tasks and not model:
+ logger.error("unsupported task option chosen")
+ raise
+
+ # load model from store
+ if isinstance(model, str) and is_store_uri(model):
+ pass
+ # TODO: load both model and tokenizer and return, need guy's help
+
+ # if it's a tuple them we assume it contains of both name and class
+ if isinstance(model, list):
+ model_name, model_class = model
+ model_class = _get_class_object(model_class)
+
+ # in the case we don't get the model class we need the task in order to choose the correct model
+ else:
+ if task is None:
+ logger.error("task must be chosen in order to determine the correct model")
+ raise Exception(
+ "this function requires either a supported task or a model and model class to be chosen"
+ )
+
+ _, available_classes, task_options = transformers.pipelines.check_task(task)
+
+ if isinstance(model, str):
+ model_name = model
+
+ # if model is not given, we take the default model for the given task
+ else:
+ model_name, _ = transformers.pipelines.get_default_model_and_revision(
+ available_classes, framework, task_options
+ )
+ if not available_classes.get(framework, tuple()):
+ logger.error(
+ "given task's default model is not supported in specified framework"
+ )
+ raise Exception(
+ "this function requires either a supported task or a model and model class to be chosen"
+ )
+
+ model_class = available_classes[framework][0]
+
+ # load the pretrained model
+ if use_cuda:
+ device_map = device_map
+ else:
+ device_map = None
+
+ model = model_class.from_pretrained(
+ model_name,
+ quantization_config=quantization_config,
+ device_map=device_map,
+ **model_pretrained_config,
+ )
+
+ # If quantization config is given we will load a quantized model, if not a regular one
+ if quantization_config:
+ model.gradient_checkpointing_enable()
+ model = peft.prepare_model_for_kbit_training(model)
+
+ # If lora config was given we want to do lora fine tune, we update model here
+ if lora_config:
+ model = peft.get_peft_model(model, lora_config)
+
+ # if not specified we choose the default tokenizer that corresponding to the model
+ if tokenizer is None:
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
+ return model_name, model, tokenizer
+
+ if isinstance(tokenizer, str):
+ tokenizer_name = tokenizer
+ tokenizer_class = transformers.AutoTokenizer
+
+ # if it's not a str then it's a tuple of both name and class
+ else:
+ tokenizer_name, tokenizer_class = tokenizer
+ tokenizer_class = _get_class_object(tokenizer_class)
+
+ tokenizer = tokenizer_class.from_pretrained(
+ tokenizer_name, **tokenizer_pretrained_config
+ )
+
+ tokenizer.pad_token = tokenizer.eos_token
+
+ return model_name, model, tokenizer
+
+
+def _dataset_loader(dataset: str, is_train: bool = True, **kwargs) -> Dataset:
+ """
+ loads the specific dataset provided by the user
+
+ :param dataset: name or path of dataset to load
+ :param is_train: bool that indicates the purpose of the dataset
+ :param kwargs: other kwargs for loading the dataset
+
+ :returns: loaded dataset
+ """
+ # if split in kwargs then the user decides how to split the dataset
+ if "split" in kwargs:
+ return load_dataset(dataset, **kwargs)
+
+ # if it's a dataset for train we split with train
+ if is_train:
+ return load_dataset(dataset, split="train", **kwargs)
+
+ # if it's eval dataset, then a lot of names are acceptable for the set and we check all of them
+ dataset = load_dataset(dataset, **kwargs)
+ if "test" in dataset:
+ return dataset.get("test")
+ elif "eval" in dataset:
+ return dataset.get("eval")
+ elif "validation" in dataset:
+ return dataset.get("validation")
+
+
+def _prepare_dataset(
+ train_dataset: str,
+ eval_dataset: str,
+ train_load_dataset_kwargs,
+ eval_load_dataset_kwargs,
+ tokenizer,
+ dataset_columns_to_train: Union[str, list],
+) -> (Dataset, Union[Dataset, None]):
+ """
+ Loads the train and eval datasets (if provided) passes them through the tokenizer and
+ returns them ready to use in training
+
+ :param train_dataset: the name or path to the train dataset
+ :param eval_dataset: the name or path to the eval dataset
+ :param dataset_columns_to_train: which columns to pass to the model as inputs
+ (need to pass through the tokenizer first)
+ :param train_load_dataset_kwargs: kwargs for dataset loading
+ :param eval_load_dataset_kwargs: kwargs for dataset loading
+ :param tokenizer: the tokenizer to pass the data through
+
+ :returns: tokenized datasets
+ """
+ if not tokenizer.pad_token:
+ tokenizer.pad_token = tokenizer.eos_token
+
+ # we take col name/s in a list for easy generalization
+ if isinstance(dataset_columns_to_train, str):
+ dataset_columns_to_train = [dataset_columns_to_train]
+
+ if isinstance(train_dataset, mlrun.datastore.DataItem):
+ train_dataset = Dataset.from_pandas(train_dataset.as_df())
+ return (
+ train_dataset.map(
+ lambda examples: tokenizer(
+ *[examples[col] for col in dataset_columns_to_train],
+ truncation=True,
+ padding=True,
+ ),
+ batched=True,
+ ),
+ None,
+ )
+
+ # Load datasets
+ # if provided two paths/names we load each separately using designated func
+ if eval_dataset:
+ train_dataset = _dataset_loader(
+ dataset=train_dataset, is_train=True, **train_load_dataset_kwargs
+ )
+ eval_dataset = _dataset_loader(
+ dataset=eval_dataset, is_train=False, **eval_load_dataset_kwargs
+ )
+
+ # if only on path is given then we must check if it contains both dataset or if only one should be used
+ else:
+ dataset = load_dataset(train_dataset, **train_load_dataset_kwargs)
+ if "train" in dataset:
+ train_dataset = dataset.get("train")
+ if "test" in dataset:
+ eval_dataset = dataset.get("test")
+ elif "eval" in dataset:
+ eval_dataset = dataset.get("eval")
+ elif "validation" in dataset:
+ eval_dataset = dataset.get("validation")
+ else:
+ # only train dataset given, tokenize and return it
+ return (
+ train_dataset.map(
+ lambda examples: tokenizer(
+ *[examples[col] for col in dataset_columns_to_train],
+ truncation=True,
+ padding=True,
+ ),
+ batched=True,
+ ),
+ None,
+ )
+ else:
+ logger.error("train dataset is mandatory")
+ raise KeyError("no train dataset found in given dataset")
+
+ # Tokenize the data so the model can understand it
+ tokenized_train_dataset = train_dataset.map(
+ lambda examples: tokenizer(
+ *[examples[col] for col in dataset_columns_to_train],
+ truncation=True,
+ padding=True,
+ ),
+ batched=True,
+ )
+
+ tokenized_eval_dataset = eval_dataset.map(
+ lambda examples: tokenizer(
+ *[examples[col] for col in dataset_columns_to_train],
+ truncation=True,
+ padding=True,
+ ),
+ batched=True,
+ )
+
+ return tokenized_train_dataset, tokenized_eval_dataset
+
+
+def finetune_llm(
+ context: mlrun.MLClientCtx,
+ train_dataset: Union[str, mlrun.datastore.DataItem],
+ eval_dataset: str = None,
+ train_load_dataset_kwargs: dict = {},
+ eval_load_dataset_kwargs: dict = {},
+ dataset_columns_to_train: Union[str, list] = "text",
+ model: Union[str, List[str]] = "huggingface-model",
+ tokenizer: Union[str, List[str]] = None,
+ deepspeed_config: Union[dict, bool] = False,
+ quantization_config: Union[dict, bool] = False,
+ lora_config: Union[dict, bool] = False,
+ training_config: dict = {},
+ model_pretrained_config: dict = {},
+ tokenizer_pretrained_config: dict = {},
+ data_collator_config: dict = {},
+ task: str = "text-generation",
+ use_cuda: bool = True,
+ framework: str = "pt",
+ device_map: str = "auto",
+ **kwargs,
+):
+ """
+ Fine-tunes a Language Model (LLM) on a specific task using the provided dataset.
+ The function takes various configuration parameters to customize the training process
+ and adapt the model to specific tasks using a provided dataset.
+
+ :param context: mlrun context in order to log trained model
+ :param dataset_columns_to_train: which columns to pass to the model as inputs
+ :param eval_load_dataset_kwargs: kwargs for dataset loading
+ :param train_load_dataset_kwargs: kwargs for dataset loading
+ :param framework: pt ot tf
+ :param use_cuda: use gpu or not
+ :param tokenizer_pretrained_config: config to load the pretrained tokenizer
+ :param model_pretrained_config: config to load the pretrained model
+ :param tokenizer: a tuple containing tokenizer name and class, or str with tokenizer name or path
+ :param model: a tuple containing model name and class, or str with model name or path
+ :param train_dataset: The train dataset used for fine-tuning the language model.
+ :param eval_dataset: The eval dataset used for evaluate the language model during training.
+ :param deepspeed_config: Configuration options for DeepSpeed (optional).
+ :param quantization_config: Configuration options for model quantization (optional).
+ :param lora_config: Configuration options for Low-Rank Approximation (LoRA) (optional).
+ :param training_config: Configuration options specific to the fine-tuning training process (optional).
+ :param data_collator_config: Configuration options for data collation during training (optional).
+ :param task: A description of the specific task the model is being fine-tuned for.
+ :param kwargs: Additional keyword arguments.
+ """
+
+ # TODO: match forward.keyword to dataset.keyword - check if relevant in new design
+ # TODO: add warning for label, and add option to modify dataset col names - check if relevant in new design
+
+ # Look for updates to configs given in kwargs
+ configs = {
+ ConfigKeys.deepspeed: deepspeed_config,
+ ConfigKeys.quantization: quantization_config,
+ ConfigKeys.lora: lora_config,
+ ConfigKeys.training: training_config,
+ ConfigKeys.model_pretrained: model_pretrained_config,
+ ConfigKeys.tokenizer_pretrained: tokenizer_pretrained_config,
+ ConfigKeys.data_collator: data_collator_config,
+ }
+ _update_config(dst=configs, src=kwargs)
+
+ # check gpu permission and availability
+ if use_cuda:
+ if torch.cuda.is_available():
+ # Clean gpu cache
+ torch.cuda.empty_cache()
+ else:
+ logger.warning("'use_cuda' is set to True, but no cuda device is available")
+
+ # get model and tokenizer
+ model_name, model, tokenizer = _set_model_and_tokenizer(
+ model=model,
+ tokenizer=tokenizer,
+ task=task,
+ framework=framework,
+ lora_config=configs[ConfigKeys.lora],
+ quantization_config=configs[ConfigKeys.quantization],
+ use_cuda=use_cuda,
+ tokenizer_pretrained_config=tokenizer_pretrained_config,
+ model_pretrained_config=configs[ConfigKeys.model_pretrained],
+ device_map=device_map,
+ )
+
+ # Load datasets
+ tokenized_train, tokenized_eval = _prepare_dataset(
+ train_dataset=train_dataset,
+ eval_dataset=eval_dataset,
+ train_load_dataset_kwargs=train_load_dataset_kwargs,
+ eval_load_dataset_kwargs=eval_load_dataset_kwargs,
+ tokenizer=tokenizer,
+ dataset_columns_to_train=dataset_columns_to_train,
+ )
+
+ # Initialize the data collator for the trainer to use in order to create batches of data
+ data_collator = transformers.DataCollatorForLanguageModeling(
+ tokenizer=tokenizer, mlm=False, **data_collator_config
+ )
+
+ # Initialize training kwargs from user kwargs:
+ train_kwargs = configs[ConfigKeys.training]
+
+ # If deepspeed config given we add it to training kwargs
+ if configs[ConfigKeys.deepspeed]:
+ train_kwargs["deepspeed"] = configs[ConfigKeys.deepspeed]
+
+ # Take a look at the trainable parameters in the model
+ _print_trainable_parameters(model)
+
+ # Preparing training arguments:
+ training_args = transformers.TrainingArguments(
+ output_dir=tempfile.mkdtemp(),
+ **train_kwargs,
+ )
+
+ trainer = transformers.Trainer(
+ model=model,
+ train_dataset=tokenized_train,
+ eval_dataset=tokenized_eval,
+ tokenizer=tokenizer,
+ data_collator=data_collator,
+ args=training_args,
+ )
+
+ apply_mlrun(trainer, model_name=model_name.split("/")[-1])
+ model.config.use_cache = (
+ False # silence the warnings. Please re-enable for inference!
+ )
+
+ # Apply training with evaluation:
+ context.logger.info(f"training '{model_name}'")
+ trainer.train()
+
+ temp_directory = tempfile.TemporaryDirectory().name
+ trainer.save_model(temp_directory)
+
+ # Zip the model directory:
+ shutil.make_archive(
+ base_name="model",
+ format="zip",
+ root_dir=temp_directory,
+ )
+
+ # Log the model:
+ context.log_model(
+ key="model",
+ db_key=model_name.split("/")[-1],
+ model_file="model.zip",
+ tag="",
+ framework="Hugging Face",
+ )
+
+
+def evaluate(
+ context,
+ model_path,
+ data: pd.DataFrame,
+ model_name: str = None,
+ tokenizer_name: str = None,
+):
+ """
+ Evaluating the model using perplexity, for more information visit:
+ https://huggingface.co/docs/transformers/perplexity
+
+ :param context: mlrun context
+ :param model_path: path to the model directory
+ :param data: the data to evaluate the model
+ :param model_name: name of base model
+ :param tokenizer_name: name of base tokenizer
+ """
+ # Get the model artifact and file:
+ (
+ model_file,
+ model_artifact,
+ extra_data,
+ ) = mlrun.artifacts.get_model(model_path)
+
+ # Read the name:
+ _model_name = model_artifact.spec.db_key
+
+ # Extract logged model files:
+ model_directory = os.path.join(os.path.dirname(model_file), _model_name)
+ with zipfile.ZipFile(model_file, "r") as zip_file:
+ zip_file.extractall(model_directory)
+
+ # Loading the saved pretrained tokenizer and model:
+ dataset = Dataset.from_pandas(data)
+ tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
+ pad_token_id = tokenizer.eos_token_id
+ model = AutoModelForCausalLM.from_pretrained(
+ model_name, device_map="cuda:0", trust_remote_code=True, load_in_8bit=True
+ )
+ model = PeftModel.from_pretrained(model, model_directory)
+ model.eval()
+ encodings = tokenizer("\n\n".join(dataset["text"][:5]), return_tensors="pt")
+
+ max_length = 1024
+ stride = 512
+ seq_len = encodings.input_ids.size(1)
+
+ nlls = []
+ prev_end_loc = 0
+ for begin_loc in range(0, seq_len, stride):
+ end_loc = min(begin_loc + max_length, seq_len)
+ trg_len = end_loc - prev_end_loc # may be different from stride on last loop
+ input_ids = encodings.input_ids[:, begin_loc:end_loc]
+ target_ids = input_ids.clone()
+ target_ids[:, :-trg_len] = -100
+
+ with torch.no_grad():
+ outputs = model(input_ids.cuda(), labels=target_ids)
+
+ # loss is calculated using CrossEntropyLoss which averages over valid labels
+ # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
+ # to the left by 1.
+ neg_log_likelihood = outputs.loss
+
+ nlls.append(neg_log_likelihood)
+
+ prev_end_loc = end_loc
+ if end_loc == seq_len:
+ break
+
+ ppl = torch.exp(torch.stack(nlls).mean()).item()
+ context.log_result("perplexity", ppl)
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/src/item.yaml b/functions/master/huggingface_auto_trainer/1.1.0/src/item.yaml
new file mode 100644
index 00000000..b7c9bbcc
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/src/item.yaml
@@ -0,0 +1,27 @@
+apiVersion: v1
+categories:
+- huggingface
+- genai
+- machine-learning
+- model-training
+description: fine-tune llm model with ease
+doc: ''
+example: huggingface_auto_trainer.ipynb
+generationDate: 2023-08-21:17-25
+hidden: false
+icon: ''
+labels:
+ author: Zeevr
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.4.0
+name: huggingface-auto-trainer
+platformVersion: 3.5.0
+spec:
+ filename: huggingface_auto_trainer.py
+ handler: finetune_llm
+ image: mlrun/mlrun
+ kind: job
+ requirements: []
+url: ''
+version: 1.1.0
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/src/requirements.txt b/functions/master/huggingface_auto_trainer/1.1.0/src/requirements.txt
new file mode 100644
index 00000000..1376b1d0
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/src/requirements.txt
@@ -0,0 +1,5 @@
+peft
+transformers
+torch
+datasets
+plotly
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/src/test_huggingface_auto_trainer.py b/functions/master/huggingface_auto_trainer/1.1.0/src/test_huggingface_auto_trainer.py
new file mode 100644
index 00000000..53576e4e
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/src/test_huggingface_auto_trainer.py
@@ -0,0 +1,42 @@
+import tempfile
+
+import mlrun
+
+
+def test_train():
+
+ model_name = "distilgpt2"
+ tokenizer = model_name
+ auto_trainer = mlrun.import_function("function.yaml")
+
+ training_arguments = {
+ "per_device_train_batch_size": 4,
+ "gradient_accumulation_steps": 1,
+ "warmup_steps": 2,
+ "max_steps": 10,
+ "learning_rate": 2e-4,
+ "logging_steps": 1,
+ }
+
+ params = {
+ "model": (model_name, "transformers.AutoModelForCausalLM"),
+ "tokenizer": tokenizer,
+ "train_dataset": "Abirate/english_quotes",
+ "training_config": training_arguments,
+ "dataset_columns_to_train": "quote",
+ "model_pretrained_config": {"use_cache": False},
+ "use_cuda": False,
+ }
+
+ try:
+ with tempfile.TemporaryDirectory() as test_directory:
+ auto_trainer.run(
+ local=True,
+ params=params,
+ handler="finetune_llm",
+ returns=["model"],
+ workdir=test_directory,
+ )
+
+ except Exception as exception:
+ print(f"- The training failed - raised the following error:\n- {exception}")
diff --git a/functions/master/huggingface_auto_trainer/1.1.0/static/documentation.html b/functions/master/huggingface_auto_trainer/1.1.0/static/documentation.html
new file mode 100644
index 00000000..be893164
--- /dev/null
+++ b/functions/master/huggingface_auto_trainer/1.1.0/static/documentation.html
@@ -0,0 +1,380 @@
+
+
+
+
+