diff --git a/README.md b/README.md
index 84614b86..5f85487f 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,63 @@
+### Change log [2023-10-02 10:10:55]
+1. Item Updated: `feature_selection` (from version: `1.3.0` to `1.3.0`)
+2. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`)
+3. Item Updated: `open_archive` (from version: `1.1.0` to `1.1.0`)
+4. Item Updated: `slack_notify` (from version: `1.1.0` to `1.1.0`)
+5. Item Updated: `hugging_face_classifier_trainer` (from version: `0.1.0` to `0.1.0`)
+6. Item Updated: `v2_model_tester` (from version: `1.1.0` to `1.1.0`)
+7. Item Updated: `model_server` (from version: `1.1.0` to `1.1.0`)
+8. Item Updated: `get_offline_features` (from version: `1.2.0` to `1.2.0`)
+9. Item Updated: `test_classifier` (from version: `1.1.0` to `1.1.0`)
+10. Item Updated: `sentiment_analysis_serving` (from version: `1.1.0` to `1.1.0`)
+11. Item Updated: `sklearn_classifier` (from version: `1.1.1` to `1.1.1`)
+12. Item Updated: `ingest` (from version: `1.1.0` to `1.1.0`)
+13. Item Updated: `tf2_serving_v2` (from version: `1.1.0` to `1.1.0`)
+14. Item Updated: `snowflake_dask` (from version: `1.1.0` to `1.1.0`)
+15. Item Updated: `github_utils` (from version: `1.1.0` to `1.1.0`)
+16. Item Updated: `auto_trainer` (from version: `1.3.0` to `1.3.0`)
+17. Item Updated: `pandas_profiling_report` (from version: `1.1.0` to `1.1.0`)
+18. Item Updated: `hugging_face_serving` (from version: `1.0.0` to `1.0.0`)
+19. Item Updated: `xgb_trainer` (from version: `1.1.1` to `1.1.1`)
+20. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`)
+21. Item Updated: `huggingface_auto_trainer` (from version: `1.0.0` to `1.0.0`)
+22. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`)
+23. Item Updated: `model_monitoring_stream` (from version: `1.1.0` to `1.1.0`)
+24. Item Updated: `transcribe` (from version: `0.0.1` to `0.0.1`)
+25. Item Updated: `model_monitoring_batch` (from version: `1.1.0` to `1.1.0`)
+26. Item Updated: `rnn_serving` (from version: `1.1.0` to `1.1.0`)
+27. Item Updated: `bert_embeddings` (from version: `1.2.0` to `1.2.0`)
+28. Item Updated: `xgb_test` (from version: `1.1.1` to `1.1.1`)
+29. Item Updated: `sql_to_file` (from version: `1.1.0` to `1.1.0`)
+30. Item Updated: `describe_spark` (from version: `1.1.0` to `1.1.0`)
+31. Item Updated: `feature_perms` (from version: `1.1.0` to `1.1.0`)
+32. Item Updated: `batch_inference_v2` (from version: `1.8.0` to `1.8.0`)
+33. Item Updated: `tf1_serving` (from version: `1.1.0` to `1.1.0`)
+34. Item Updated: `validate_great_expectations` (from version: `1.1.0` to `1.1.0`)
+35. Item Updated: `coxph_trainer` (from version: `1.1.0` to `1.1.0`)
+36. Item Updated: `xgb_serving` (from version: `1.1.2` to `1.1.2`)
+37. Item Updated: `concept_drift` (from version: `1.1.0` to `1.1.0`)
+38. Item Updated: `question_answering` (from version: `0.2.0` to `0.2.0`)
+39. Item Updated: `load_dataset` (from version: `1.1.0` to `1.1.0`)
+40. Item Updated: `concept_drift_streaming` (from version: `1.1.0` to `1.1.0`)
+41. Item Updated: `virtual_drift` (from version: `1.1.0` to `1.1.0`)
+42. Item Updated: `batch_inference` (from version: `1.6.0` to `1.6.0`)
+43. Item Updated: `coxph_test` (from version: `1.1.0` to `1.1.0`)
+44. Item Updated: `sklearn_classifier_dask` (from version: `1.1.1` to `1.1.1`)
+45. Item Updated: `churn_server` (from version: `1.1.0` to `1.1.0`)
+46. Item Updated: `stream_to_parquet` (from version: `1.1.0` to `1.1.0`)
+47. Item Updated: `pii_recognizer` (from version: `0.1.0` to `0.1.0`)
+48. Item Updated: `load_dask` (from version: `1.1.0` to `1.1.0`)
+49. Item Updated: `onnx_utils` (from version: `1.2.0` to `1.2.0`)
+50. Item Updated: `xgb_custom` (from version: `1.1.0` to `1.1.0`)
+51. Item Updated: `arc_to_parquet` (from version: `1.4.1` to `1.4.1`)
+52. Item Updated: `gen_class_data` (from version: `1.2.0` to `1.2.0`)
+53. Item Updated: `describe` (from version: `1.2.0` to `1.2.0`)
+54. Item Updated: `azureml_serving` (from version: `1.1.0` to `1.1.0`)
+55. Item Updated: `send_email` (from version: `1.2.0` to `1.2.0`)
+56. Item Updated: `describe_dask` (from version: `1.1.0` to `1.1.0`)
+57. Item Updated: `v2_model_server` (from version: `1.1.0` to `1.1.0`)
+58. Item Updated: `azureml_utils` (from version: `1.2.0` to `1.2.0`)
+
### Change log [2023-10-02 09:13:07]
1. Item Updated: `feature_selection` (from version: `1.3.0` to `1.3.0`)
2. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`)
diff --git a/catalog.json b/catalog.json
index ac44a175..3e08019f 100644
--- a/catalog.json
+++ b/catalog.json
@@ -1 +1 @@
-{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}}, "sentiment_analysis_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.3", "name": "sentiment-analysis-serving", "platformVersion": "3.0.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "sentiment-analysis-serving", "platformVersion": "3.4.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.0.0"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}}, "sentiment_analysis_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "sentiment-analysis-serving", "platformVersion": "3.4.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.3", "name": "sentiment-analysis-serving", "platformVersion": "3.0.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.8.0"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}}}}
\ No newline at end of file
+{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}}, "sentiment_analysis_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.3", "name": "sentiment-analysis-serving", "platformVersion": "3.0.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "sentiment-analysis-serving", "platformVersion": "3.4.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.0.0"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}}, "sentiment_analysis_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.3", "name": "sentiment-analysis-serving", "platformVersion": "3.0.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "sentiment-analysis-serving", "platformVersion": "3.4.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.0.0"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}}}}}
\ No newline at end of file
diff --git a/functions/master/azureml_utils/1.2.0/src/item.yaml b/functions/master/azureml_utils/1.2.0/src/item.yaml
index f70a2acf..a2c8675e 100644
--- a/functions/master/azureml_utils/1.2.0/src/item.yaml
+++ b/functions/master/azureml_utils/1.2.0/src/item.yaml
@@ -35,3 +35,4 @@ spec:
- plotly~=5.4
url: ''
version: 1.2.0
+test_valid: False
diff --git a/functions/master/azureml_utils/1.2.0/static/item.html b/functions/master/azureml_utils/1.2.0/static/item.html
index 66dacd21..208a8179 100644
--- a/functions/master/azureml_utils/1.2.0/static/item.html
+++ b/functions/master/azureml_utils/1.2.0/static/item.html
@@ -52,6 +52,7 @@
- plotly~=5.4
url: ''
version: 1.2.0
+test_valid: False
diff --git a/functions/master/azureml_utils/latest/src/item.yaml b/functions/master/azureml_utils/latest/src/item.yaml
index f70a2acf..a2c8675e 100644
--- a/functions/master/azureml_utils/latest/src/item.yaml
+++ b/functions/master/azureml_utils/latest/src/item.yaml
@@ -35,3 +35,4 @@ spec:
- plotly~=5.4
url: ''
version: 1.2.0
+test_valid: False
diff --git a/functions/master/azureml_utils/latest/static/item.html b/functions/master/azureml_utils/latest/static/item.html
index 66dacd21..208a8179 100644
--- a/functions/master/azureml_utils/latest/static/item.html
+++ b/functions/master/azureml_utils/latest/static/item.html
@@ -52,6 +52,7 @@
- plotly~=5.4
url: ''
version: 1.2.0
+test_valid: False
diff --git a/functions/master/catalog.json b/functions/master/catalog.json
index 851fb77a..30fd94cc 100644
--- a/functions/master/catalog.json
+++ b/functions/master/catalog.json
@@ -1 +1 @@
-{"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sentiment_analysis_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "sentiment-analysis-serving", "platformVersion": "3.4.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.3", "name": "sentiment-analysis-serving", "platformVersion": "3.0.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
+{"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sentiment_analysis_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.3", "name": "sentiment-analysis-serving", "platformVersion": "3.0.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sentiment-analysis-serving", "platformVersion": "3.2.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sentiment-analysis-serving", "platformVersion": "3.5.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "BERT based sentiment classification model", "doc": "", "example": "sentiment_analysis_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia", "framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "sentiment-analysis-serving", "platformVersion": "3.4.0", "spec": {"filename": "sentiment_analysis_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==3.0.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/sentiment_analysis_serving.ipynb", "source": "src/sentiment_analysis_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
diff --git a/functions/master/feature_perms/1.1.0/src/item.yaml b/functions/master/feature_perms/1.1.0/src/item.yaml
index 1f568168..bd909d3e 100644
--- a/functions/master/feature_perms/1.1.0/src/item.yaml
+++ b/functions/master/feature_perms/1.1.0/src/item.yaml
@@ -22,3 +22,4 @@ spec:
requirements: []
url: ''
version: 1.1.0
+test_valid : False
diff --git a/functions/master/feature_perms/1.1.0/static/item.html b/functions/master/feature_perms/1.1.0/static/item.html
index fb43ca1e..2cdb2735 100644
--- a/functions/master/feature_perms/1.1.0/static/item.html
+++ b/functions/master/feature_perms/1.1.0/static/item.html
@@ -39,6 +39,7 @@
requirements: []
url: ''
version: 1.1.0
+test_valid : False
diff --git a/functions/master/feature_perms/latest/src/item.yaml b/functions/master/feature_perms/latest/src/item.yaml
index 1f568168..bd909d3e 100644
--- a/functions/master/feature_perms/latest/src/item.yaml
+++ b/functions/master/feature_perms/latest/src/item.yaml
@@ -22,3 +22,4 @@ spec:
requirements: []
url: ''
version: 1.1.0
+test_valid : False
diff --git a/functions/master/feature_perms/latest/static/item.html b/functions/master/feature_perms/latest/static/item.html
index fb43ca1e..2cdb2735 100644
--- a/functions/master/feature_perms/latest/static/item.html
+++ b/functions/master/feature_perms/latest/static/item.html
@@ -39,6 +39,7 @@
requirements: []
url: ''
version: 1.1.0
+test_valid : False
diff --git a/functions/master/onnx_utils/1.2.0/src/function.yaml b/functions/master/onnx_utils/1.2.0/src/function.yaml
new file mode 100644
index 00000000..7a0054c4
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/src/function.yaml
@@ -0,0 +1,194 @@
+kind: job
+metadata:
+ name: onnx-utils
+ tag: ''
+ hash: 0c4a6491b976d5220d3ebfb83a3905dd47e86be2
+ project: ''
+ labels:
+ author: guyl
+ categories:
+ - utils
+spec:
+ command: ''
+ args: []
+ image: ''
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKZnJvbSB0eXBpbmcgaW1wb3J0IEFueSwgQ2FsbGFibGUsIERpY3QsIExpc3QsIFR1cGxlCgppbXBvcnQgbWxydW4KCgpjbGFzcyBfVG9PTk5YQ29udmVyc2lvbnM6CiAgICAiIiIKICAgIEFuIE9OTlggY29udmVyc2lvbiBmdW5jdGlvbnMgbGlicmFyeSBjbGFzcy4KICAgICIiIgoKICAgIEBzdGF0aWNtZXRob2QKICAgIGRlZiB0Zl9rZXJhc190b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50XSwgc3RyXV0gPSBOb25lLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBDb252ZXJ0IGEgVEYuS2VyYXMgbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICBBbiBpbml0aWFsaXplZCBURktlcmFzTW9kZWxIYW5kbGVyIHdpdGggYSBsb2FkZWQgbW9kZWwgdG8gY29udmVydCB0byBPTk5YLgogICAgICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6IFRoZSBuYW1lIHRvIHVzZSB0byBsb2cgdGhlIGNvbnZlcnRlZCBPTk5YIG1vZGVsLiBJZiBub3QgZ2l2ZW4sIHRoZSBnaXZlbiBgbW9kZWxfbmFtZWAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICBXaGV0aGVyIG9yIG5vdCB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRGVmYXVsdGVkIHRvIFRydWUuCiAgICAgICAgOnBhcmFtIGlucHV0X3NpZ25hdHVyZTogQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEgbGlzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdoZXJlIGVhY2ggZWxlbWVudCBpcyBhbiBpbnB1dCBsYXllciB0dXBsZS4gQW4gaW5wdXQgbGF5ZXIgdHVwbGUgaXMgYSB0dXBsZSBvZjoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBbMF0gPSBMYXllcidzIHNoYXBlLCBhIHR1cGxlIG9mIGludGVnZXJzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiBOb25lLCB0aGUgaW5wdXQgc2lnbmF0dXJlIHdpbGwgYmUgdHJpZWQgdG8gYmUgcmVhZCBmcm9tIHRoZSBtb2RlbCBhcnRpZmFjdC4gRGVmYXVsdGVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG8gTm9uZS4KICAgICAgICAiIiIKICAgICAgICAjIEltcG9ydCB0aGUgZnJhbWV3b3JrIGFuZCBoYW5kbGVyOgogICAgICAgIGltcG9ydCB0ZW5zb3JmbG93IGFzIHRmCiAgICAgICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLnRmX2tlcmFzIGltcG9ydCBURktlcmFzVXRpbHMKCiAgICAgICAgIyBDaGVjayB0aGUgZ2l2ZW4gJ2lucHV0X3NpZ25hdHVyZScgcGFyYW1ldGVyOgogICAgICAgIGlmIGlucHV0X3NpZ25hdHVyZSBpcyBOb25lOgogICAgICAgICAgICAjIFJlYWQgdGhlIGlucHV0cyBmcm9tIHRoZSBtb2RlbDoKICAgICAgICAgICAgdHJ5OgogICAgICAgICAgICAgICAgbW9kZWxfaGFuZGxlci5yZWFkX2lucHV0c19mcm9tX21vZGVsKCkKICAgICAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlcnJvcjoKICAgICAgICAgICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1blJ1bnRpbWVFcnJvcigKICAgICAgICAgICAgICAgICAgICBmIlBsZWFzZSBwcm92aWRlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXIuIFRoZSBmdW5jdGlvbiB0cmllZCByZWFkaW5nIHRoZSBpbnB1dCBsYXllcnMgIgogICAgICAgICAgICAgICAgICAgIGYiaW5mb3JtYXRpb24gYXV0b21hdGljYWxseSBidXQgZmFpbGVkIHdpdGggdGhlIGZvbGxvd2luZyBlcnJvcjoge2Vycm9yfSIKICAgICAgICAgICAgICAgICkKICAgICAgICBlbHNlOgogICAgICAgICAgICAjIFBhcnNlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXI6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IFsKICAgICAgICAgICAgICAgIHRmLlRlbnNvclNwZWMoCiAgICAgICAgICAgICAgICAgICAgc2hhcGU9c2hhcGUsCiAgICAgICAgICAgICAgICAgICAgZHR5cGU9VEZLZXJhc1V0aWxzLmNvbnZlcnRfdmFsdWVfdHlwZV90b190Zl9kdHlwZSgKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICBdCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICkKCiAgICBAc3RhdGljbWV0aG9kCiAgICBkZWYgcHl0b3JjaF90b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50LCAuLi5dLCBzdHJdXSA9IE5vbmUsCiAgICAgICAgaW5wdXRfbGF5ZXJzX25hbWVzOiBMaXN0W3N0cl0gPSBOb25lLAogICAgICAgIG91dHB1dF9sYXllcnNfbmFtZXM6IExpc3Rbc3RyXSA9IE5vbmUsCiAgICAgICAgZHluYW1pY19heGVzOiBEaWN0W3N0ciwgRGljdFtpbnQsIHN0cl1dID0gTm9uZSwKICAgICAgICBpc19iYXRjaGVkOiBib29sID0gVHJ1ZSwKICAgICk6CiAgICAgICAgIiIiCiAgICAgICAgQ29udmVydCBhIFB5VG9yY2ggbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICAgICAgQW4gaW5pdGlhbGl6ZWQgUHlUb3JjaE1vZGVsSGFuZGxlciB3aXRoIGEgbG9hZGVkIG1vZGVsIHRvIGNvbnZlcnQgdG8gT05OWC4KICAgICAgICA6cGFyYW0gb25ueF9tb2RlbF9uYW1lOiAgICAgVGhlIG5hbWUgdG8gdXNlIHRvIGxvZyB0aGUgY29udmVydGVkIE9OTlggbW9kZWwuIElmIG5vdCBnaXZlbiwgdGhlIGdpdmVuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGBtb2RlbF9uYW1lYCB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgICAgV2hldGhlciBvciBub3QgdG8gb3B0aW1pemUgdGhlIE9OTlggbW9kZWwgdXNpbmcgJ29ubnhvcHRpbWl6ZXInIGJlZm9yZSBzYXZpbmcgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsLiBEZWZhdWx0ZWQgdG8gVHJ1ZS4KICAgICAgICA6cGFyYW0gaW5wdXRfc2lnbmF0dXJlOiAgICAgQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdCB3aGVyZSBlYWNoIGVsZW1lbnQgaXMgYW4gaW5wdXQgbGF5ZXIgdHVwbGUuIEFuIGlucHV0IGxheWVyIHR1cGxlIGlzIGEgdHVwbGUgb2Y6CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFswXSA9IExheWVyJ3Mgc2hhcGUsIGEgdHVwbGUgb2YgaW50ZWdlcnMuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgdGhlIGlucHV0IHNpZ25hdHVyZSB3aWxsIGJlIHRyaWVkIHRvIGJlIHJlYWQgZnJvbSB0aGUgbW9kZWwgYXJ0aWZhY3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpbnB1dF9sYXllcnNfbmFtZXM6ICBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgaW5wdXQgbm9kZXMgb2YgdGhlIGdyYXBoIGluIG9yZGVyLiBBbGwgb2YgdGhlIG90aGVyCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFtZXRlcnMgKGlubmVyIGxheWVycykgY2FuIGJlIHNldCBhcyB3ZWxsIGJ5IHBhc3NpbmcgYWRkaXRpb25hbCBuYW1lcyBpbiB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdC4gVGhlIG9yZGVyIGlzIGJ5IHRoZSBvcmRlciBvZiB0aGUgcGFyYW1ldGVycyBpbiB0aGUgbW9kZWwuIElmIE5vbmUsIHRoZSBpbnB1dHMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBpbnB1dHMuIElmIGl0cyBhbHNvIE5vbmUsIGl0IGlzIGRlZmF1bHRlZCB0bzoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImlucHV0XzAiLCAiaW5wdXRfMSIsIC4uLgogICAgICAgIDpwYXJhbSBvdXRwdXRfbGF5ZXJzX25hbWVzOiBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgb3V0cHV0IG5vZGVzIG9mIHRoZSBncmFwaCBpbiBvcmRlci4gSWYgTm9uZSwgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG91dHB1dHMgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBvdXRwdXRzLiBJZiBpdHMgYWxzbyBOb25lLCBpdCBpcyBkZWZhdWx0ZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG86ICJvdXRwdXRfMCIgKGZvciBtdWx0aXBsZSBvdXRwdXRzLCB0aGlzIHBhcmFtZXRlciBtdXN0IGJlIHByb3ZpZGVkKS4KICAgICAgICA6cGFyYW0gZHluYW1pY19heGVzOiAgICAgICAgSWYgcGFydCBvZiB0aGUgaW5wdXQgLyBvdXRwdXQgc2hhcGUgaXMgZHluYW1pYywgbGlrZSAoYmF0Y2hfc2l6ZSwgMywgMzIsIDMyKSB5b3UgY2FuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwZWNpZnkgaXQgYnkgZ2l2aW5nIGEgZHluYW1pYyBheGlzIHRvIHRoZSBpbnB1dCAvIG91dHB1dCBsYXllciBieSBpdHMgbmFtZSBhcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmb2xsb3dzOiB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiaW5wdXQgbGF5ZXIgbmFtZSI6IHswOiAiYmF0Y2hfc2l6ZSJ9LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIm91dHB1dCBsYXllciBuYW1lIjogezA6ICJiYXRjaF9zaXplIn0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgcHJvdmlkZWQsIHRoZSAnaXNfYmF0Y2hlZCcgZmxhZyB3aWxsIGJlIGlnbm9yZWQuIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpc19iYXRjaGVkOiAgICAgICAgICBXaGV0aGVyIHRvIGluY2x1ZGUgYSBiYXRjaCBzaXplIGFzIHRoZSBmaXJzdCBheGlzIGluIGV2ZXJ5IGlucHV0IGFuZCBvdXRwdXQgbGF5ZXIuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBUcnVlLiBXaWxsIGJlIGlnbm9yZWQgaWYgJ2R5bmFtaWNfYXhlcycgaXMgcHJvdmlkZWQuCiAgICAgICAgIiIiCiAgICAgICAgIyBJbXBvcnQgdGhlIGZyYW1ld29yayBhbmQgaGFuZGxlcjoKICAgICAgICBpbXBvcnQgdG9yY2gKICAgICAgICBmcm9tIG1scnVuLmZyYW1ld29ya3MucHl0b3JjaCBpbXBvcnQgUHlUb3JjaFV0aWxzCgogICAgICAgICMgUGFyc2UgdGhlICdpbnB1dF9zaWduYXR1cmUnIHBhcmFtZXRlcjoKICAgICAgICBpZiBpbnB1dF9zaWduYXR1cmUgaXMgbm90IE5vbmU6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IHR1cGxlKAogICAgICAgICAgICAgICAgWwogICAgICAgICAgICAgICAgICAgIHRvcmNoLnplcm9zKAogICAgICAgICAgICAgICAgICAgICAgICBzaXplPXNoYXBlLAogICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1QeVRvcmNoVXRpbHMuY29udmVydF92YWx1ZV90eXBlX3RvX3RvcmNoX2R0eXBlKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICAgICAgXQogICAgICAgICAgICApCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NhbXBsZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICAgICBpbnB1dF9sYXllcnNfbmFtZXM9aW5wdXRfbGF5ZXJzX25hbWVzLAogICAgICAgICAgICBvdXRwdXRfbGF5ZXJzX25hbWVzPW91dHB1dF9sYXllcnNfbmFtZXMsCiAgICAgICAgICAgIGR5bmFtaWNfYXhlcz1keW5hbWljX2F4ZXMsCiAgICAgICAgICAgIGlzX2JhdGNoZWQ9aXNfYmF0Y2hlZAogICAgICAgICkKCgojIE1hcCBmb3IgZ2V0dGluZyB0aGUgY29udmVyc2lvbiBmdW5jdGlvbiBhY2NvcmRpbmcgdG8gdGhlIHByb3ZpZGVkIGZyYW1ld29yazoKX0NPTlZFUlNJT05fTUFQID0gewogICAgInRlbnNvcmZsb3cua2VyYXMiOiBfVG9PTk5YQ29udmVyc2lvbnMudGZfa2VyYXNfdG9fb25ueCwKICAgICJ0b3JjaCI6IF9Ub09OTlhDb252ZXJzaW9ucy5weXRvcmNoX3RvX29ubngsCn0gICMgdHlwZTogRGljdFtzdHIsIENhbGxhYmxlXQoKCmRlZiB0b19vbm54KAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvbm54X21vZGVsX25hbWU6IHN0ciA9IE5vbmUsCiAgICBvcHRpbWl6ZV9tb2RlbDogYm9vbCA9IFRydWUsCiAgICBmcmFtZXdvcmtfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSA9IE5vbmUsCik6CiAgICAiIiIKICAgIENvbnZlcnQgdGhlIGdpdmVuIG1vZGVsIHRvIGFuIE9OTlggbW9kZWwuCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dAogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgIFRoZSBtb2RlbCBwYXRoIHN0b3JlIG9iamVjdC4KICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6ICBUaGUgbmFtZSB0byB1c2UgdG8gbG9nIHRoZSBjb252ZXJ0ZWQgT05OWCBtb2RlbC4gSWYgbm90IGdpdmVuLCB0aGUgZ2l2ZW4gYG1vZGVsX25hbWVgIHdpbGwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiZSB1c2VkIHdpdGggYW4gYWRkaXRpb25hbCBzdWZmaXggYF9vbm54YC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgV2hldGhlciB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuIERlZmF1bHRlZAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvIFRydWUuCiAgICA6cGFyYW0gZnJhbWV3b3JrX2t3YXJnczogQWRkaXRpb25hbCBhcmd1bWVudHMgZWFjaCBmcmFtZXdvcmsgbWF5IHJlcXVpcmUgaW4gb3JkZXIgdG8gY29udmVydCB0byBPTk5YLiBUbyBnZXQgdGhlIGRvYwogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0cmluZyBvZiB0aGUgZGVzaXJlZCBmcmFtZXdvcmsgb25ueCBjb252ZXJzaW9uIGZ1bmN0aW9uLCBwYXNzICJoZWxwIi4KICAgICIiIgogICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLmF1dG9fbWxydW4uYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgogICAgIyBHZXQgYSBtb2RlbCBoYW5kbGVyIG9mIHRoZSByZXF1aXJlZCBmcmFtZXdvcms6CiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgIyBHZXQgdGhlIG1vZGVsJ3MgZnJhbWV3b3JrOgogICAgZnJhbWV3b3JrID0gbW9kZWxfaGFuZGxlci5GUkFNRVdPUktfTkFNRQoKICAgICMgVXNlIHRoZSBjb252ZXJzaW9uIG1hcCB0byBnZXQgdGhlIHNwZWNpZmljIGZyYW1ld29yayB0byBvbm54IGNvbnZlcnNpb246CiAgICBpZiBmcmFtZXdvcmsgbm90IGluIF9DT05WRVJTSU9OX01BUDoKICAgICAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5JbnZhbGlkQXJndW1lbnRFcnJvcigKICAgICAgICAgICAgZiJUaGUgZm9sbG93aW5nIGZyYW1ld29yazogJ3tmcmFtZXdvcmt9JywgaGFzIG5vIE9OTlggY29udmVyc2lvbi4iCiAgICAgICAgKQogICAgY29udmVyc2lvbl9mdW5jdGlvbiA9IF9DT05WRVJTSU9OX01BUFtmcmFtZXdvcmtdCgogICAgIyBDaGVjayBpZiBuZWVkZWQgdG8gcHJpbnQgdGhlIGZ1bmN0aW9uJ3MgZG9jIHN0cmluZyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzID09ICJoZWxwIjoKICAgICAgICBwcmludChjb252ZXJzaW9uX2Z1bmN0aW9uLl9fZG9jX18pCiAgICAgICAgcmV0dXJuCgogICAgIyBTZXQgdGhlIGRlZmF1bHQgZW1wdHkgZnJhbWV3b3JrIGt3YXJncyBpZiBuZWVkZWQ6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzIGlzIE5vbmU6CiAgICAgICAgZnJhbWV3b3JrX2t3YXJncyA9IHt9CgogICAgIyBSdW4gdGhlIGNvbnZlcnNpb246CiAgICB0cnk6CiAgICAgICAgY29udmVyc2lvbl9mdW5jdGlvbigKICAgICAgICAgICAgbW9kZWxfaGFuZGxlcj1tb2RlbF9oYW5kbGVyLAogICAgICAgICAgICBvbm54X21vZGVsX25hbWU9b25ueF9tb2RlbF9uYW1lLAogICAgICAgICAgICBvcHRpbWl6ZV9tb2RlbD1vcHRpbWl6ZV9tb2RlbCwKICAgICAgICAgICAgKipmcmFtZXdvcmtfa3dhcmdzLAogICAgICAgICkKICAgIGV4Y2VwdCBUeXBlRXJyb3IgYXMgZXhjZXB0aW9uOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIkVSUk9SOiBBIFR5cGVFcnJvciBleGNlcHRpb24gd2FzIHJhaXNlZCBkdXJpbmcgdGhlIGNvbnZlcnNpb246XG57ZXhjZXB0aW9ufS4gIgogICAgICAgICAgICBmIlBsZWFzZSByZWFkIHRoZSB7ZnJhbWV3b3JrfSBmcmFtZXdvcmsgY29udmVyc2lvbiBmdW5jdGlvbiBkb2Mgc3RyaW5nIGJ5IHBhc3NpbmcgJ2hlbHAnIGluIHRoZSAiCiAgICAgICAgICAgIGYiJ2ZyYW1ld29ya19rd2FyZ3MnIGRpY3Rpb25hcnkgcGFyYW1ldGVyLiIKICAgICAgICApCgoKZGVmIG9wdGltaXplKAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvcHRpbWl6YXRpb25zOiBMaXN0W3N0cl0gPSBOb25lLAogICAgZml4ZWRfcG9pbnQ6IGJvb2wgPSBGYWxzZSwKICAgIG9wdGltaXplZF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAopOgogICAgIiIiCiAgICBPcHRpbWl6ZSB0aGUgZ2l2ZW4gT05OWCBtb2RlbC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dC4KICAgIDpwYXJhbSBtb2RlbF9wYXRoOiAgICAgICAgICAgUGF0aCB0byB0aGUgT05OWCBtb2RlbCBvYmplY3QuCiAgICA6cGFyYW0gb3B0aW1pemF0aW9uczogICAgICAgIExpc3Qgb2YgcG9zc2libGUgb3B0aW1pemF0aW9ucy4gVG8gc2VlIHdoYXQgb3B0aW1pemF0aW9ucyBhcmUgYXZhaWxhYmxlLCBwYXNzICJoZWxwIi4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgYWxsIG9mIHRoZSBvcHRpbWl6YXRpb25zIHdpbGwgYmUgdXNlZC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gZml4ZWRfcG9pbnQ6ICAgICAgICAgIE9wdGltaXplIHRoZSB3ZWlnaHRzIHVzaW5nIGZpeGVkIHBvaW50LiBEZWZhdWx0ZWQgdG8gRmFsc2UuCiAgICA6cGFyYW0gb3B0aW1pemVkX21vZGVsX25hbWU6IFRoZSBuYW1lIG9mIHRoZSBvcHRpbWl6ZWQgbW9kZWwuIElmIE5vbmUsIHRoZSBvcmlnaW5hbCBtb2RlbCB3aWxsIGJlIG92ZXJyaWRkZW4uCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgIiIiCiAgICAjIEltcG9ydCB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIGltcG9ydCBvbm54b3B0aW1pemVyCiAgICBmcm9tIG1scnVuLmZyYW1ld29ya3Mub25ueCBpbXBvcnQgT05OWE1vZGVsSGFuZGxlcgoKICAgICMgQ2hlY2sgaWYgbmVlZGVkIHRvIHByaW50IHRoZSBhdmFpbGFibGUgb3B0aW1pemF0aW9ucyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBvcHRpbWl6YXRpb25zID09ICJoZWxwIjoKICAgICAgICBhdmFpbGFibGVfcGFzc2VzID0gIlxuKiAiLmpvaW4ob25ueG9wdGltaXplci5nZXRfYXZhaWxhYmxlX3Bhc3NlcygpKQogICAgICAgIHByaW50KGYiVGhlIGF2YWlsYWJsZSBvcHRpbWl6YXRpb25zIGFyZTpcbioge2F2YWlsYWJsZV9wYXNzZXN9IikKICAgICAgICByZXR1cm4KCiAgICAjIENyZWF0ZSB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIG1vZGVsX2hhbmRsZXIgPSBPTk5YTW9kZWxIYW5kbGVyKAogICAgICAgIG1vZGVsX3BhdGg9bW9kZWxfcGF0aCwgY29udGV4dD1jb250ZXh0CiAgICApCgogICAgIyBMb2FkIHRoZSBPTk5YIG1vZGVsOgogICAgbW9kZWxfaGFuZGxlci5sb2FkKCkKCiAgICAjIE9wdGltaXplIHRoZSBtb2RlbCB1c2luZyB0aGUgZ2l2ZW4gY29uZmlndXJhdGlvbnM6CiAgICBtb2RlbF9oYW5kbGVyLm9wdGltaXplKG9wdGltaXphdGlvbnM9b3B0aW1pemF0aW9ucywgZml4ZWRfcG9pbnQ9Zml4ZWRfcG9pbnQpCgogICAgIyBSZW5hbWUgaWYgbmVlZGVkOgogICAgaWYgb3B0aW1pemVkX21vZGVsX25hbWUgaXMgbm90IE5vbmU6CiAgICAgICAgbW9kZWxfaGFuZGxlci5zZXRfbW9kZWxfbmFtZShtb2RlbF9uYW1lPW9wdGltaXplZF9tb2RlbF9uYW1lKQoKICAgICMgTG9nIHRoZSBvcHRpbWl6ZWQgbW9kZWw6CiAgICBtb2RlbF9oYW5kbGVyLmxvZygpCg==
+ base_image: mlrun/mlrun
+ commands: []
+ code_origin: https://github.com/yonishelach/functions.git#f84b9565a33d8159315992ebba5838d41f6cc112:/Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
+ origin_filename: /Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
+ with_mlrun: false
+ auto_build: true
+ requirements:
+ - onnx~=1.13.0
+ - onnxruntime~=1.14.0
+ - onnxoptimizer~=0.3.0
+ - onnxmltools~=1.11.0
+ - tf2onnx~=1.13.0
+ entry_points:
+ tf_keras_to_onnx:
+ name: tf_keras_to_onnx
+ doc: Convert a TF.Keras model to an ONNX model and log it back to MLRun as a
+ new model object.
+ parameters:
+ - name: model_handler
+ doc: An initialized TFKerasModelHandler with a loaded model to convert to
+ ONNX.
+ default: ''
+ - name: onnx_model_name
+ type: str
+ doc: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to
+ None.
+ default: null
+ - name: optimize_model
+ type: bool
+ doc: Whether or not to optimize the ONNX model using 'onnxoptimizer' before
+ saving the model. Defaulted to True.
+ default: true
+ - name: input_signature
+ type: List[Tuple[Tuple[int], str]]
+ doc: 'A list of the input layers shape and data type properties. Expected
+ to receive a list where each element is an input layer tuple. An input layer
+ tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
+ data type, a mlrun.data_types.ValueType string. If None, the input signature
+ will be tried to be read from the model artifact. Defaulted to None.'
+ default: null
+ outputs:
+ - default: ''
+ lineno: 26
+ pytorch_to_onnx:
+ name: pytorch_to_onnx
+ doc: Convert a PyTorch model to an ONNX model and log it back to MLRun as a
+ new model object.
+ parameters:
+ - name: model_handler
+ doc: An initialized PyTorchModelHandler with a loaded model to convert to
+ ONNX.
+ default: ''
+ - name: onnx_model_name
+ type: str
+ doc: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to
+ None.
+ default: null
+ - name: optimize_model
+ type: bool
+ doc: Whether or not to optimize the ONNX model using 'onnxoptimizer' before
+ saving the model. Defaulted to True.
+ default: true
+ - name: input_signature
+ type: List[Tuple[Tuple[int, ], str]]
+ doc: 'A list of the input layers shape and data type properties. Expected
+ to receive a list where each element is an input layer tuple. An input layer
+ tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
+ data type, a mlrun.data_types.ValueType string. If None, the input signature
+ will be tried to be read from the model artifact. Defaulted to None.'
+ default: null
+ - name: input_layers_names
+ type: List[str]
+ doc: 'List of names to assign to the input nodes of the graph in order. All
+ of the other parameters (inner layers) can be set as well by passing additional
+ names in the list. The order is by the order of the parameters in the model.
+ If None, the inputs will be read from the handler''s inputs. If its also
+ None, it is defaulted to: "input_0", "input_1", ...'
+ default: null
+ - name: output_layers_names
+ type: List[str]
+ doc: 'List of names to assign to the output nodes of the graph in order. If
+ None, the outputs will be read from the handler''s outputs. If its also
+ None, it is defaulted to: "output_0" (for multiple outputs, this parameter
+ must be provided).'
+ default: null
+ - name: dynamic_axes
+ type: Dict[str, Dict[int, str]]
+ doc: 'If part of the input / output shape is dynamic, like (batch_size, 3,
+ 32, 32) you can specify it by giving a dynamic axis to the input / output
+ layer by its name as follows: { "input layer name": {0: "batch_size"}, "output
+ layer name": {0: "batch_size"}, } If provided, the ''is_batched'' flag will
+ be ignored. Defaulted to None.'
+ default: null
+ - name: is_batched
+ type: bool
+ doc: Whether to include a batch size as the first axis in every input and
+ output layer. Defaulted to True. Will be ignored if 'dynamic_axes' is provided.
+ default: true
+ outputs:
+ - default: ''
+ lineno: 81
+ to_onnx:
+ name: to_onnx
+ doc: Convert the given model to an ONNX model.
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: The MLRun function execution context
+ default: ''
+ - name: model_path
+ type: str
+ doc: The model path store object.
+ default: ''
+ - name: onnx_model_name
+ type: str
+ doc: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to
+ None.
+ default: null
+ - name: optimize_model
+ type: bool
+ doc: Whether to optimize the ONNX model using 'onnxoptimizer' before saving
+ the model. Defaulted to True.
+ default: true
+ - name: framework_kwargs
+ type: Dict[str, Any]
+ doc: Additional arguments each framework may require in order to convert to
+ ONNX. To get the doc string of the desired framework onnx conversion function,
+ pass "help".
+ default: null
+ outputs:
+ - default: ''
+ lineno: 160
+ optimize:
+ name: optimize
+ doc: Optimize the given ONNX model.
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: The MLRun function execution context.
+ default: ''
+ - name: model_path
+ type: str
+ doc: Path to the ONNX model object.
+ default: ''
+ - name: optimizations
+ type: List[str]
+ doc: List of possible optimizations. To see what optimizations are available,
+ pass "help". If None, all of the optimizations will be used. Defaulted to
+ None.
+ default: null
+ - name: fixed_point
+ type: bool
+ doc: Optimize the weights using fixed point. Defaulted to False.
+ default: false
+ - name: optimized_model_name
+ type: str
+ doc: The name of the optimized model. If None, the original model will be
+ overridden. Defaulted to None.
+ default: null
+ outputs:
+ - default: ''
+ lineno: 219
+ description: ONNX intigration in MLRun, some utils functions for the ONNX framework,
+ optimizing and converting models from different framework to ONNX using MLRun.
+ default_handler: to_onnx
+ disable_auto_mount: false
+ allow_empty_resources: true
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
diff --git a/functions/master/onnx_utils/1.2.0/src/item.yaml b/functions/master/onnx_utils/1.2.0/src/item.yaml
new file mode 100644
index 00000000..36335837
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/src/item.yaml
@@ -0,0 +1,35 @@
+apiVersion: v1
+categories:
+- utils
+description: ONNX intigration in MLRun, some utils functions for the ONNX framework,
+ optimizing and converting models from different framework to ONNX using MLRun.
+doc: ''
+example: onnx_utils.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ author: guyl
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.1.0
+name: onnx_utils
+platformVersion: 3.5.0
+spec:
+ extra_spec:
+ allow_empty_resources: true
+ build:
+ auto_build: true
+ with_mlrun: false
+ filename: onnx_utils.py
+ handler: to_onnx
+ image: mlrun/mlrun
+ kind: job
+ requirements:
+ - onnx~=1.13.0
+ - onnxruntime~=1.14.0
+ - onnxoptimizer~=0.3.0
+ - onnxmltools~=1.11.0
+ - tf2onnx~=1.13.0
+url: ''
+version: 1.2.0
diff --git a/functions/master/onnx_utils/1.2.0/src/onnx_utils.ipynb b/functions/master/onnx_utils/1.2.0/src/onnx_utils.ipynb
new file mode 100644
index 00000000..e44f1524
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/src/onnx_utils.ipynb
@@ -0,0 +1,396 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# ONNX Utils\n",
+ "\n",
+ "A collection of ONNX utils in one MLRun function. The function includes the following handlers:\n",
+ "\n",
+ "1. [to_onnx](#handler1) - Convert your model into `onnx` format.\n",
+ "2. [optimize](#handler2) - Perform ONNX optimizations using `onnxmodeloptimizer` on a given ONNX model."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " \n",
+ "\n",
+ "## 1. to_onnx\n",
+ "\n",
+ "### 1.1. Docs\n",
+ "Convert the given model to an ONNX model.\n",
+ "\n",
+ "#### Parameters:\n",
+ "* **`context`**: `mlrun.MLClientCtx` - The MLRun function execution context\n",
+ "* **`model_path`**: `str` - The model path store object.\n",
+ "* **`onnx_model_name`**: `str = None` - The name to use to log the converted ONNX model. If not given, the given `model_name` will be used with an additional suffix `_onnx`. Defaulted to None.\n",
+ "* **`optimize_model`**: `bool = True` - Whether to optimize the ONNX model using 'onnxoptimizer' before saving the model. Defaulted to True.\n",
+ "* **`framework`**: `str = None` - The model's framework. If None, it will be read from the 'framework' label of the model artifact provided. Defaulted to None.\n",
+ "* **`framework_kwargs`**: `Dict[str, Any] = None` - Additional arguments each framework may require in order to convert to ONNX. *To get the doc string of the desired framework onnx conversion function, **pass \"help\"**.*"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### Supported keyword arguments (`framework_kwargs`) per framework:\n",
+ "`tensorflow.keras`:\n",
+ "* **`input_signature`**: `List[Tuple[Tuple[int], str]] = None` - A list of the input layers shape and data type properties. Expected to receive a list where each element is an input layer tuple. An input layer tuple is a tuple of:\n",
+ " * [0] = Layer's shape, a tuple of integers.\n",
+ " * [1] = Layer's data type, a mlrun.data_types.ValueType string.\n",
+ "\n",
+ " If None, the input signature will be tried to be read automatically before converting to ONNX or from the model artifact if available. Defaulted to None.\n",
+ "\n",
+ "`torch`:\n",
+ "* **`input_signature`**: `List[Tuple[Tuple[int], str]] = None` - A list of the input layers shape and data type properties. Expected to receive a list where each element is an input layer tuple. An input layer tuple is a tuple of:\n",
+ " * [0] = Layer's shape, a tuple of integers.\n",
+ " * [1] = Layer's data type, a mlrun.data_types.ValueType string.\n",
+ "\n",
+ " If None, the input signature will be read from the model artifact if available. Defaulted to None.\n",
+ "* **`input_layers_names`**: `List[str] = None` - List of names to assign to the input nodes of the graph in order. All of the other parameters (inner layers) can be set as well by passing additional names in the list. The order is by the order of the parameters in the model. If None, the inputs will be read from the handler's inputs. If its also None, it is defaulted to: \"input_0\", \"input_1\", ...\n",
+ "* **`output_layers_names`**: `List[str] = None` - List of names to assign to the output nodes of the graph in order. If None, the outputs will be read from the handler's outputs. If its also None, it is defaulted to: \"output_0\" (for multiple outputs, this parameter must be provided).\n",
+ "* **`param dynamic_axes`**: `Dict[str, Dict[int, str]] = None` - If part of the input / output shape is dynamic, like (batch_size, 3, 32, 32) you can specify it by giving a dynamic axis to the input / output layer by its name as follows:\n",
+ "```python\n",
+ "{\n",
+ " \"input layer name\": {0: \"batch_size\"},\n",
+ " \"output layer name\": {0: \"batch_size\"},\n",
+ "}\n",
+ "```\n",
+ "If provided, the 'is_batched' flag will be ignored. Defaulted to None.\n",
+ "* **`is_batched`**: `bool = True` - Whether to include a batch size as the first axis in every input and output layer. Defaulted to True. Will be ignored if 'dynamic_axes' is provided."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### 1.2. Demo\n",
+ "\n",
+ "We will use the `TF.Keras` framework, a `MobileNetV2` as our model and we will convert it to ONNX using the `to_onnx` handler.\n",
+ "\n",
+ "1.2.1. First we will set a temporary artifact path for our model to be saved in and choose the models names:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "from tempfile import TemporaryDirectory\n",
+ "\n",
+ "# Create a temporary directory for the model artifact:\n",
+ "ARTIFACT_PATH = TemporaryDirectory().name\n",
+ "os.makedirs(ARTIFACT_PATH)\n",
+ "\n",
+ "# Choose our model's name:\n",
+ "MODEL_NAME = \"mobilenetv2\"\n",
+ "\n",
+ "# Choose our ONNX version model's name:\n",
+ "ONNX_MODEL_NAME = \"onnx_mobilenetv2\"\n",
+ "\n",
+ "# Choose our optimized ONNX version model's name:\n",
+ "OPTIMIZED_ONNX_MODEL_NAME = \"optimized_onnx_mobilenetv2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "1.2.2. Download the model from `keras.applications` and log it with MLRun's `TFKerasModelHandler`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# mlrun: start-code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from tensorflow import keras\n",
+ "\n",
+ "import mlrun\n",
+ "import mlrun.frameworks.tf_keras as mlrun_tf_keras\n",
+ "\n",
+ "\n",
+ "def get_model(context: mlrun.MLClientCtx, model_name: str):\n",
+ " # Download the MobileNetV2 model:\n",
+ " model = keras.applications.mobilenet_v2.MobileNetV2()\n",
+ "\n",
+ " # Initialize a model handler for logging the model:\n",
+ " model_handler = mlrun_tf_keras.TFKerasModelHandler(\n",
+ " model_name=model_name,\n",
+ " model=model,\n",
+ " context=context\n",
+ " )\n",
+ "\n",
+ " # Log the model:\n",
+ " model_handler.log()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# mlrun: end-code"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "1.2.3. Create the function using MLRun's `code_to_function` and run it:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import mlrun\n",
+ "\n",
+ "\n",
+ "# Create the function parsing this notebook's code using 'code_to_function':\n",
+ "get_model_function = mlrun.code_to_function(\n",
+ " name=\"get_mobilenetv2\",\n",
+ " kind=\"job\",\n",
+ " image=\"mlrun/ml-models\"\n",
+ ")\n",
+ "\n",
+ "# Run the function to log the model:\n",
+ "get_model_run = get_model_function.run(\n",
+ " handler=\"get_model\",\n",
+ " artifact_path=ARTIFACT_PATH,\n",
+ " params={\n",
+ " \"model_name\": MODEL_NAME\n",
+ " },\n",
+ " local=True\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "1.2.4. Import the `onnx_utils` MLRun function and run it:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# Import the ONNX function from the marketplace:\n",
+ "onnx_utils_function = mlrun.import_function(\"hub://onnx_utils\")\n",
+ "\n",
+ "# Run the function to convert our model to ONNX:\n",
+ "to_onnx_run = onnx_utils_function.run(\n",
+ " handler=\"to_onnx\",\n",
+ " artifact_path=ARTIFACT_PATH,\n",
+ " params={\n",
+ " \"model_name\": MODEL_NAME,\n",
+ " \"model_path\": get_model_run.outputs[MODEL_NAME], # <- Take the logged model from the previous function.\n",
+ " \"onnx_model_name\": ONNX_MODEL_NAME,\n",
+ " \"optimize_model\": False # <- For optimizing it later in the demo, we mark the flag as False\n",
+ " },\n",
+ " local=True\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "1.2.5. Now, listing the artifact directory we will see both our `tf.keras` model and the `onnx` model:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import os\n",
+ "\n",
+ "\n",
+ "print(os.listdir(ARTIFACT_PATH))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ " \n",
+ "\n",
+ "## 2. optimize\n",
+ "\n",
+ "### 2.1. Docs\n",
+ "Optimize the given ONNX model.\n",
+ "\n",
+ "#### Parameters:\n",
+ "* **`context`**: `mlrun.MLClientCtx` - The MLRun function execution context\n",
+ "* **`model_path`**: `str` - The model path store object.\n",
+ "* **`optimizations`**: `List[str] = None` - List of possible optimizations. *To see what optimizations are available, **pass \"help\"**.* If None, all of the optimizations will be used. Defaulted to None.\n",
+ "* **`fixed_point`**: `bool = False` - Optimize the weights using fixed point. Defaulted to False.\n",
+ "* **`optimized_model_name`**: `str = None` - The name of the optimized model. If None, the original model will be overridden. Defaulted to None."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 2.2. Demo\n",
+ "\n",
+ "We will use our converted model from the last example and optimize it.\n",
+ "\n",
+ "2.2.1. We will call now the `optimize` handler:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "onnx_utils_function.run(\n",
+ " handler=\"optimize\",\n",
+ " artifact_path=ARTIFACT_PATH,\n",
+ " params={\n",
+ " \"model_name\": ONNX_MODEL_NAME,\n",
+ " \"model_path\": to_onnx_run.output(ONNX_MODEL_NAME), # <- Take the logged model from the previous function.\n",
+ " \"optimized_model_name\": OPTIMIZED_ONNX_MODEL_NAME,\n",
+ " },\n",
+ " local=True\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "2.2.2. And now our model was optimized and can be seen under the `ARTIFACT_PATH`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "print(os.listdir(ARTIFACT_PATH))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Lastly, run this code to clean up the models:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import shutil\n",
+ "\n",
+ "\n",
+ "shutil.rmtree(ARTIFACT_PATH)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.10"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/src/onnx_utils.py b/functions/master/onnx_utils/1.2.0/src/onnx_utils.py
new file mode 100644
index 00000000..2a7c1f5b
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/src/onnx_utils.py
@@ -0,0 +1,263 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from typing import Any, Callable, Dict, List, Tuple
+
+import mlrun
+
+
+class _ToONNXConversions:
+ """
+ An ONNX conversion functions library class.
+ """
+
+ @staticmethod
+ def tf_keras_to_onnx(
+ model_handler,
+ onnx_model_name: str = None,
+ optimize_model: bool = True,
+ input_signature: List[Tuple[Tuple[int], str]] = None,
+ ):
+ """
+ Convert a TF.Keras model to an ONNX model and log it back to MLRun as a new model object.
+
+ :param model_handler: An initialized TFKerasModelHandler with a loaded model to convert to ONNX.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given `model_name`
+ will be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether or not to optimize the ONNX model using 'onnxoptimizer' before saving the model.
+ Defaulted to True.
+ :param input_signature: A list of the input layers shape and data type properties. Expected to receive a list
+ where each element is an input layer tuple. An input layer tuple is a tuple of:
+ [0] = Layer's shape, a tuple of integers.
+ [1] = Layer's data type, a mlrun.data_types.ValueType string.
+ If None, the input signature will be tried to be read from the model artifact. Defaulted
+ to None.
+ """
+ # Import the framework and handler:
+ import tensorflow as tf
+ from mlrun.frameworks.tf_keras import TFKerasUtils
+
+ # Check the given 'input_signature' parameter:
+ if input_signature is None:
+ # Read the inputs from the model:
+ try:
+ model_handler.read_inputs_from_model()
+ except Exception as error:
+ raise mlrun.errors.MLRunRuntimeError(
+ f"Please provide the 'input_signature' parameter. The function tried reading the input layers "
+ f"information automatically but failed with the following error: {error}"
+ )
+ else:
+ # Parse the 'input_signature' parameter:
+ input_signature = [
+ tf.TensorSpec(
+ shape=shape,
+ dtype=TFKerasUtils.convert_value_type_to_tf_dtype(
+ value_type=value_type
+ ),
+ )
+ for (shape, value_type) in input_signature
+ ]
+
+ # Convert to ONNX:
+ model_handler.to_onnx(
+ model_name=onnx_model_name,
+ input_signature=input_signature,
+ optimize=optimize_model,
+ )
+
+ @staticmethod
+ def pytorch_to_onnx(
+ model_handler,
+ onnx_model_name: str = None,
+ optimize_model: bool = True,
+ input_signature: List[Tuple[Tuple[int, ...], str]] = None,
+ input_layers_names: List[str] = None,
+ output_layers_names: List[str] = None,
+ dynamic_axes: Dict[str, Dict[int, str]] = None,
+ is_batched: bool = True,
+ ):
+ """
+ Convert a PyTorch model to an ONNX model and log it back to MLRun as a new model object.
+
+ :param model_handler: An initialized PyTorchModelHandler with a loaded model to convert to ONNX.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether or not to optimize the ONNX model using 'onnxoptimizer' before saving the
+ model. Defaulted to True.
+ :param input_signature: A list of the input layers shape and data type properties. Expected to receive a
+ list where each element is an input layer tuple. An input layer tuple is a tuple of:
+ [0] = Layer's shape, a tuple of integers.
+ [1] = Layer's data type, a mlrun.data_types.ValueType string.
+ If None, the input signature will be tried to be read from the model artifact.
+ Defaulted to None.
+ :param input_layers_names: List of names to assign to the input nodes of the graph in order. All of the other
+ parameters (inner layers) can be set as well by passing additional names in the
+ list. The order is by the order of the parameters in the model. If None, the inputs
+ will be read from the handler's inputs. If its also None, it is defaulted to:
+ "input_0", "input_1", ...
+ :param output_layers_names: List of names to assign to the output nodes of the graph in order. If None, the
+ outputs will be read from the handler's outputs. If its also None, it is defaulted
+ to: "output_0" (for multiple outputs, this parameter must be provided).
+ :param dynamic_axes: If part of the input / output shape is dynamic, like (batch_size, 3, 32, 32) you can
+ specify it by giving a dynamic axis to the input / output layer by its name as
+ follows: {
+ "input layer name": {0: "batch_size"},
+ "output layer name": {0: "batch_size"},
+ }
+ If provided, the 'is_batched' flag will be ignored. Defaulted to None.
+ :param is_batched: Whether to include a batch size as the first axis in every input and output layer.
+ Defaulted to True. Will be ignored if 'dynamic_axes' is provided.
+ """
+ # Import the framework and handler:
+ import torch
+ from mlrun.frameworks.pytorch import PyTorchUtils
+
+ # Parse the 'input_signature' parameter:
+ if input_signature is not None:
+ input_signature = tuple(
+ [
+ torch.zeros(
+ size=shape,
+ dtype=PyTorchUtils.convert_value_type_to_torch_dtype(
+ value_type=value_type
+ ),
+ )
+ for (shape, value_type) in input_signature
+ ]
+ )
+
+ # Convert to ONNX:
+ model_handler.to_onnx(
+ model_name=onnx_model_name,
+ input_sample=input_signature,
+ optimize=optimize_model,
+ input_layers_names=input_layers_names,
+ output_layers_names=output_layers_names,
+ dynamic_axes=dynamic_axes,
+ is_batched=is_batched
+ )
+
+
+# Map for getting the conversion function according to the provided framework:
+_CONVERSION_MAP = {
+ "tensorflow.keras": _ToONNXConversions.tf_keras_to_onnx,
+ "torch": _ToONNXConversions.pytorch_to_onnx,
+} # type: Dict[str, Callable]
+
+
+def to_onnx(
+ context: mlrun.MLClientCtx,
+ model_path: str,
+ onnx_model_name: str = None,
+ optimize_model: bool = True,
+ framework_kwargs: Dict[str, Any] = None,
+):
+ """
+ Convert the given model to an ONNX model.
+
+ :param context: The MLRun function execution context
+ :param model_path: The model path store object.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given `model_name` will
+ be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether to optimize the ONNX model using 'onnxoptimizer' before saving the model. Defaulted
+ to True.
+ :param framework_kwargs: Additional arguments each framework may require in order to convert to ONNX. To get the doc
+ string of the desired framework onnx conversion function, pass "help".
+ """
+ from mlrun.frameworks.auto_mlrun.auto_mlrun import AutoMLRun
+
+ # Get a model handler of the required framework:
+ model_handler = AutoMLRun.load_model(model_path=model_path, context=context)
+
+ # Get the model's framework:
+ framework = model_handler.FRAMEWORK_NAME
+
+ # Use the conversion map to get the specific framework to onnx conversion:
+ if framework not in _CONVERSION_MAP:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The following framework: '{framework}', has no ONNX conversion."
+ )
+ conversion_function = _CONVERSION_MAP[framework]
+
+ # Check if needed to print the function's doc string ("help" is passed):
+ if framework_kwargs == "help":
+ print(conversion_function.__doc__)
+ return
+
+ # Set the default empty framework kwargs if needed:
+ if framework_kwargs is None:
+ framework_kwargs = {}
+
+ # Run the conversion:
+ try:
+ conversion_function(
+ model_handler=model_handler,
+ onnx_model_name=onnx_model_name,
+ optimize_model=optimize_model,
+ **framework_kwargs,
+ )
+ except TypeError as exception:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"ERROR: A TypeError exception was raised during the conversion:\n{exception}. "
+ f"Please read the {framework} framework conversion function doc string by passing 'help' in the "
+ f"'framework_kwargs' dictionary parameter."
+ )
+
+
+def optimize(
+ context: mlrun.MLClientCtx,
+ model_path: str,
+ optimizations: List[str] = None,
+ fixed_point: bool = False,
+ optimized_model_name: str = None,
+):
+ """
+ Optimize the given ONNX model.
+
+ :param context: The MLRun function execution context.
+ :param model_path: Path to the ONNX model object.
+ :param optimizations: List of possible optimizations. To see what optimizations are available, pass "help".
+ If None, all of the optimizations will be used. Defaulted to None.
+ :param fixed_point: Optimize the weights using fixed point. Defaulted to False.
+ :param optimized_model_name: The name of the optimized model. If None, the original model will be overridden.
+ Defaulted to None.
+ """
+ # Import the model handler:
+ import onnxoptimizer
+ from mlrun.frameworks.onnx import ONNXModelHandler
+
+ # Check if needed to print the available optimizations ("help" is passed):
+ if optimizations == "help":
+ available_passes = "\n* ".join(onnxoptimizer.get_available_passes())
+ print(f"The available optimizations are:\n* {available_passes}")
+ return
+
+ # Create the model handler:
+ model_handler = ONNXModelHandler(
+ model_path=model_path, context=context
+ )
+
+ # Load the ONNX model:
+ model_handler.load()
+
+ # Optimize the model using the given configurations:
+ model_handler.optimize(optimizations=optimizations, fixed_point=fixed_point)
+
+ # Rename if needed:
+ if optimized_model_name is not None:
+ model_handler.set_model_name(model_name=optimized_model_name)
+
+ # Log the optimized model:
+ model_handler.log()
diff --git a/functions/master/onnx_utils/1.2.0/src/requirements.txt b/functions/master/onnx_utils/1.2.0/src/requirements.txt
new file mode 100644
index 00000000..dcc80321
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/src/requirements.txt
@@ -0,0 +1,12 @@
+tqdm~=4.62.3
+tensorflow~=2.7.0
+torch~=1.10.0
+torchvision~=0.11.1
+onnx~=1.10.1
+onnxruntime~=1.8.1
+onnxoptimizer~=0.2.0
+onnxmltools~=1.9.0
+tf2onnx~=1.9.0
+mlrun
+plotly~=5.4.0
+wrapt<1.15.0 # wrapt==1.15.0 fails tensorflow 2.7 Todo: please remove when updating tensorflow
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/src/test_onnx_utils.py b/functions/master/onnx_utils/1.2.0/src/test_onnx_utils.py
new file mode 100644
index 00000000..35b224c4
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/src/test_onnx_utils.py
@@ -0,0 +1,378 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import os
+import shutil
+import tempfile
+
+import mlrun
+
+# Choose our model's name:
+MODEL_NAME = "model"
+
+# Choose our ONNX version model's name:
+ONNX_MODEL_NAME = f"onnx_{MODEL_NAME}"
+
+# Choose our optimized ONNX version model's name:
+OPTIMIZED_ONNX_MODEL_NAME = f"optimized_{ONNX_MODEL_NAME}"
+
+
+def _setup_environment() -> str:
+ """
+ Setup the test environment, creating the artifacts path of the test.
+
+ :returns: The temporary directory created for the test artifacts path.
+ """
+ artifact_path = tempfile.TemporaryDirectory().name
+ os.makedirs(artifact_path)
+ return artifact_path
+
+
+def _cleanup_environment(artifact_path: str):
+ """
+ Cleanup the test environment, deleting files and artifacts created during the test.
+
+ :param artifact_path: The artifact path to delete.
+ """
+ # Clean the local directory:
+ for test_output in [
+ *os.listdir(artifact_path),
+ "schedules",
+ "runs",
+ "artifacts",
+ "functions",
+ ]:
+ test_output_path = os.path.abspath(f"./{test_output}")
+ if os.path.exists(test_output_path):
+ if os.path.isdir(test_output_path):
+ shutil.rmtree(test_output_path)
+ else:
+ os.remove(test_output_path)
+
+ # Clean the artifacts directory:
+ shutil.rmtree(artifact_path)
+
+
+def _log_tf_keras_model(context: mlrun.MLClientCtx, model_name: str):
+ """
+ Create and log a tf.keras model - MobileNetV2.
+
+ :param context: The context to log to.
+ :param model_name: The model name to use.
+ """
+ from mlrun.frameworks.tf_keras import TFKerasModelHandler
+ from tensorflow import keras
+
+ # Download the MobileNetV2 model:
+ model = keras.applications.mobilenet_v2.MobileNetV2()
+
+ # Initialize a model handler for logging the model:
+ model_handler = TFKerasModelHandler(
+ model_name=model_name, model=model, context=context
+ )
+
+ # Log the model:
+ model_handler.log()
+
+
+def _log_pytorch_model(context: mlrun.MLClientCtx, model_name: str):
+ """
+ Create and log a pytorch model - MobileNetV2.
+
+ :param context: The context to log to.
+ :param model_name: The model name to use.
+ """
+ from mlrun.frameworks.pytorch import PyTorchModelHandler
+ import torchvision
+
+ # Download the MobileNetV2 model:
+ model = torchvision.models.mobilenet_v2()
+
+ # Initialize a model handler for logging the model:
+ model_handler = PyTorchModelHandler(
+ model_name=model_name,
+ model=model,
+ model_class="mobilenet_v2",
+ modules_map={"torchvision.models": "mobilenet_v2"},
+ context=context,
+ )
+
+ # Log the model:
+ model_handler.log()
+
+
+def _log_onnx_model(context: mlrun.MLClientCtx, model_name: str):
+ """
+ Create and log an ONNX model - MNIST.
+
+ :param context: The context to log to.
+ :param model_name: The model name to use.
+ """
+ import mlrun.frameworks.onnx as mlrun_onnx
+ import requests
+
+ # Download the MNIST model:
+ mnist_model_name = "mnist-12"
+ requested_model = requests.get(
+ f"https://github.com/onnx/models/blob/main/vision/classification/mnist/model/{mnist_model_name}.onnx?raw=true"
+ )
+ with open(
+ os.path.join(context.artifact_path, f"{model_name}.onnx"), "bw"
+ ) as onnx_file:
+ onnx_file.write(requested_model.content)
+
+ # Initialize a model handler for logging the model:
+ model_handler = mlrun_onnx.ONNXModelHandler(
+ model_name=model_name,
+ model_path=context.artifact_path,
+ context=context,
+ )
+ model_handler.load()
+
+ # Log the model:
+ model_handler.log()
+
+
+def test_to_onnx_help():
+ """
+ Test the 'to_onnx' handler, passing "help" in the 'framework_kwargs'.
+ """
+ # Setup the tests environment:
+ artifact_path = _setup_environment()
+
+ # Create the function parsing this notebook's code using 'code_to_function':
+ log_model_function = mlrun.code_to_function(
+ filename="test_onnx_utils.py",
+ name="log_model",
+ kind="job",
+ image="mlrun/ml-models",
+ )
+
+ # Run the function to log the model:
+ log_model_run = log_model_function.run(
+ handler="_log_tf_keras_model",
+ artifact_path=artifact_path,
+ params={"model_name": MODEL_NAME},
+ local=True,
+ )
+
+ # Import the ONNX Utils function:
+ onnx_function = mlrun.import_function("function.yaml")
+
+ # Run the function, passing "help" in 'framework_kwargs' and see that no exception was raised:
+ is_test_passed = True
+ try:
+ onnx_function.run(
+ handler="to_onnx",
+ artifact_path=artifact_path,
+ params={
+ "model_path": log_model_run.outputs[
+ "model"
+ ], # <- Take the logged model from the previous function.
+ "framework_kwargs": "help",
+ },
+ local=True,
+ )
+ except TypeError as exception:
+ print(
+ f"The test failed, the help was not handled properly and raised the following error: {exception}"
+ )
+ is_test_passed = False
+
+ # Cleanup the tests environment:
+ _cleanup_environment(artifact_path=artifact_path)
+
+ assert is_test_passed
+
+
+def test_tf_keras_to_onnx():
+ """
+ Test the 'to_onnx' handler, giving it a tf.keras model.
+ """
+ # Setup the tests environment:
+ artifact_path = _setup_environment()
+
+ # Create the function parsing this notebook's code using 'code_to_function':
+ log_model_function = mlrun.code_to_function(
+ filename="test_onnx_utils.py",
+ name="log_model",
+ kind="job",
+ image="mlrun/ml-models",
+ )
+
+ # Run the function to log the model:
+ log_model_run = log_model_function.run(
+ handler="_log_tf_keras_model",
+ artifact_path=artifact_path,
+ params={"model_name": MODEL_NAME},
+ local=True,
+ )
+
+ # Import the ONNX Utils function:
+ onnx_function = mlrun.import_function("function.yaml")
+
+ # Run the function to convert our model to ONNX:
+ onnx_function_run = onnx_function.run(
+ handler="to_onnx",
+ artifact_path=artifact_path,
+ params={
+ "model_path": log_model_run.outputs[
+ "model"
+ ], # <- Take the logged model from the previous function.
+ "onnx_model_name": ONNX_MODEL_NAME,
+ },
+ local=True,
+ )
+
+ # Cleanup the tests environment:
+ _cleanup_environment(artifact_path=artifact_path)
+
+ # Print the outputs list:
+ print(f"Produced outputs: {onnx_function_run.outputs}")
+
+ # Verify the '.onnx' model was created:
+ assert "model" in onnx_function_run.outputs
+
+
+def test_pytorch_to_onnx():
+ """
+ Test the 'to_onnx' handler, giving it a pytorch model.
+ """
+ # Setup the tests environment:
+ artifact_path = _setup_environment()
+
+ # Create the function parsing this notebook's code using 'code_to_function':
+ log_model_function = mlrun.code_to_function(
+ filename="test_onnx_utils.py",
+ name="log_model",
+ kind="job",
+ image="mlrun/ml-models",
+ )
+
+ # Run the function to log the model:
+ log_model_run = log_model_function.run(
+ handler="_log_pytorch_model",
+ artifact_path=artifact_path,
+ params={"model_name": MODEL_NAME},
+ local=True,
+ )
+
+ # Import the ONNX Utils function:
+ onnx_function = mlrun.import_function("function.yaml")
+
+ # Run the function to convert our model to ONNX:
+ onnx_function_run = onnx_function.run(
+ handler="to_onnx",
+ artifact_path=artifact_path,
+ params={
+ "model_path": log_model_run.outputs[
+ "model"
+ ], # <- Take the logged model from the previous function.
+ "onnx_model_name": ONNX_MODEL_NAME,
+ "framework_kwargs": {"input_signature": [((32, 3, 224, 224), "float32")]},
+ },
+ local=True,
+ )
+
+ # Cleanup the tests environment:
+ _cleanup_environment(artifact_path=artifact_path)
+
+ # Print the outputs list:
+ print(f"Produced outputs: {onnx_function_run.outputs}")
+
+ # Verify the '.onnx' model was created:
+ assert "model" in onnx_function_run.outputs
+
+
+def test_optimize_help():
+ """
+ Test the 'optimize' handler, passing "help" in the 'optimizations'.
+ """
+ # Setup the tests environment:
+ artifact_path = _setup_environment()
+
+ # Import the ONNX Utils function:
+ onnx_function = mlrun.import_function("function.yaml")
+
+ # Run the function, passing "help" in 'optimizations' and see that no exception was raised:
+ is_test_passed = True
+ try:
+ onnx_function.run(
+ handler="optimize",
+ artifact_path=artifact_path,
+ params={
+ "model_path": "",
+ "optimizations": "help",
+ },
+ local=True,
+ )
+ except TypeError as exception:
+ print(
+ f"The test failed, the help was not handled properly and raised the following error: {exception}"
+ )
+ is_test_passed = False
+
+ # Cleanup the tests environment:
+ _cleanup_environment(artifact_path=artifact_path)
+
+ assert is_test_passed
+
+
+def test_optimize():
+ """
+ Test the 'optimize' handler, giving it a model from the ONNX zoo git repository.
+ """
+ # Setup the tests environment:
+ artifact_path = _setup_environment()
+
+ # Create the function parsing this notebook's code using 'code_to_function':
+ log_model_function = mlrun.code_to_function(
+ filename="test_onnx_utils.py",
+ name="log_model",
+ kind="job",
+ image="mlrun/ml-models",
+ )
+
+ # Run the function to log the model:
+ log_model_run = log_model_function.run(
+ handler="_log_onnx_model",
+ artifact_path=artifact_path,
+ params={"model_name": MODEL_NAME},
+ local=True,
+ )
+
+ # Import the ONNX Utils function:
+ onnx_function = mlrun.import_function("function.yaml")
+
+ # Run the function to optimize our model:
+ onnx_function_run = onnx_function.run(
+ handler="optimize",
+ artifact_path=artifact_path,
+ params={
+ "model_path": log_model_run.outputs[
+ "model"
+ ], # <- Take the logged model from the previous function.
+ "optimized_model_name": OPTIMIZED_ONNX_MODEL_NAME,
+ },
+ local=True,
+ )
+
+ # Cleanup the tests environment:
+ _cleanup_environment(artifact_path=artifact_path)
+
+ # Print the outputs list:
+ print(f"Produced outputs: {onnx_function_run.outputs}")
+
+ # Verify the '.onnx' model was created:
+ assert "model" in onnx_function_run.outputs
diff --git a/functions/master/onnx_utils/1.2.0/static/documentation.html b/functions/master/onnx_utils/1.2.0/static/documentation.html
new file mode 100644
index 00000000..0d0f67d9
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/static/documentation.html
@@ -0,0 +1,259 @@
+
+
+
+
+
+
+
+onnx_utils package
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
onnx_utils package
+
+
+
+
+
+
+onnx_utils package
+
+
+onnx_utils.onnx_utils module
+
+
+onnx_utils.onnx_utils. optimize ( context : mlrun.execution.MLClientCtx , model_path : str , optimizations : Optional [ List [ str ] ] = None , fixed_point : bool = False , optimized_model_name : Optional [ str ] = None ) [source]
+Optimize the given ONNX model.
+
+Parameters
+
+context – The MLRun function execution context.
+model_path – Path to the ONNX model object.
+optimizations – List of possible optimizations. To see what optimizations are available, pass “help”.
+If None, all of the optimizations will be used. Defaulted to None.
+fixed_point – Optimize the weights using fixed point. Defaulted to False.
+optimized_model_name – The name of the optimized model. If None, the original model will be overridden.
+Defaulted to None.
+
+
+
+
+
+
+onnx_utils.onnx_utils. to_onnx ( context : mlrun.execution.MLClientCtx , model_path : str , onnx_model_name : Optional [ str ] = None , optimize_model : bool = True , framework_kwargs : Optional [ Dict [ str , Any ] ] = None ) [source]
+Convert the given model to an ONNX model.
+
+Parameters
+
+context – The MLRun function execution context
+model_path – The model path store object.
+onnx_model_name – The name to use to log the converted ONNX model. If not given, the given model_name will
+be used with an additional suffix _onnx . Defaulted to None.
+optimize_model – Whether to optimize the ONNX model using ‘onnxoptimizer’ before saving the model. Defaulted
+to True.
+framework_kwargs – Additional arguments each framework may require in order to convert to ONNX. To get the doc
+string of the desired framework onnx conversion function, pass “help”.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/static/example.html b/functions/master/onnx_utils/1.2.0/static/example.html
new file mode 100644
index 00000000..c0a76600
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/static/example.html
@@ -0,0 +1,554 @@
+
+
+
+
+
+
+
+ONNX Utils
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ONNX Utils
+A collection of ONNX utils in one MLRun function. The function includes the following handlers:
+
+to_onnx - Convert your model into onnx
format.
+optimize - Perform ONNX optimizations using onnxmodeloptimizer
on a given ONNX model.
+
+
+
+1. to_onnx
+
+1.1. Docs
+Convert the given model to an ONNX model.
+
+Parameters:
+
+context
: mlrun.MLClientCtx
- The MLRun function execution context
+model_path
: str
- The model path store object.
+onnx_model_name
: str = None
- The name to use to log the converted ONNX model. If not given, the given model_name
will be used with an additional suffix _onnx
. Defaulted to None.
+optimize_model
: bool = True
- Whether to optimize the ONNX model using ‘onnxoptimizer’ before saving the model. Defaulted to True.
+framework
: str = None
- The model’s framework. If None, it will be read from the ‘framework’ label of the model artifact provided. Defaulted to None.
+framework_kwargs
: Dict[str, Any] = None
- Additional arguments each framework may require in order to convert to ONNX. To get the doc string of the desired framework onnx conversion function, pass “help” .
+
+
+
+Supported keyword arguments (framework_kwargs
) per framework:
+tensorflow.keras
:
+
+input_signature
: List[Tuple[Tuple[int], str]] = None
- A list of the input layers shape and data type properties. Expected to receive a list where each element is an input layer tuple. An input layer tuple is a tuple of:
+
+[0] = Layer’s shape, a tuple of integers.
+[1] = Layer’s data type, a mlrun.data_types.ValueType string.
+
+If None, the input signature will be tried to be read automatically before converting to ONNX or from the model artifact if available. Defaulted to None.
+
+
+torch
:
+
+input_signature
: List[Tuple[Tuple[int], str]] = None
- A list of the input layers shape and data type properties. Expected to receive a list where each element is an input layer tuple. An input layer tuple is a tuple of:
+
+[0] = Layer’s shape, a tuple of integers.
+[1] = Layer’s data type, a mlrun.data_types.ValueType string.
+
+If None, the input signature will be read from the model artifact if available. Defaulted to None.
+
+input_layers_names
: List[str] = None
- List of names to assign to the input nodes of the graph in order. All of the other parameters (inner layers) can be set as well by passing additional names in the list. The order is by the order of the parameters in the model. If None, the inputs will be read from the handler’s inputs. If its also None, it is defaulted to: “input_0”, “input_1”, …
+output_layers_names
: List[str] = None
- List of names to assign to the output nodes of the graph in order. If None, the outputs will be read from the handler’s outputs. If its also None, it is defaulted to: “output_0” (for multiple outputs, this parameter must be provided).
+param dynamic_axes
: Dict[str, Dict[int, str]] = None
- If part of the input / output shape is dynamic, like (batch_size, 3, 32, 32) you can specify it by giving a dynamic axis to the input / output layer by its name as follows:
+
+{
+ "input layer name" : { 0 : "batch_size" },
+ "output layer name" : { 0 : "batch_size" },
+}
+
+
+If provided, the ‘is_batched’ flag will be ignored. Defaulted to None.
+
+
+
+
+1.2. Demo
+We will use the TF.Keras
framework, a MobileNetV2
as our model and we will convert it to ONNX using the to_onnx
handler.
+1.2.1. First we will set a temporary artifact path for our model to be saved in and choose the models names:
+
+1.2.2. Download the model from keras.applications
and log it with MLRun’s TFKerasModelHandler
:
+
+
+
+1.2.3. Create the function using MLRun’s code_to_function
and run it:
+
+1.2.4. Import the onnx_utils
MLRun function and run it:
+
+1.2.5. Now, listing the artifact directory we will see both our tf.keras
model and the onnx
model:
+
+
+
+
+
+2. optimize
+
+2.1. Docs
+Optimize the given ONNX model.
+
+Parameters:
+
+context
: mlrun.MLClientCtx
- The MLRun function execution context
+model_path
: str
- The model path store object.
+optimizations
: List[str] = None
- List of possible optimizations. To see what optimizations are available, pass “help” . If None, all of the optimizations will be used. Defaulted to None.
+fixed_point
: bool = False
- Optimize the weights using fixed point. Defaulted to False.
+optimized_model_name
: str = None
- The name of the optimized model. If None, the original model will be overridden. Defaulted to None.
+
+
+
+
+2.2. Demo
+We will use our converted model from the last example and optimize it.
+2.2.1. We will call now the optimize
handler:
+
+2.2.2. And now our model was optimized and can be seen under the ARTIFACT_PATH
:
+
+Lastly, run this code to clean up the models:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/static/function.html b/functions/master/onnx_utils/1.2.0/static/function.html
new file mode 100644
index 00000000..feceb076
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/static/function.html
@@ -0,0 +1,216 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+kind: job
+metadata:
+ name: onnx-utils
+ tag: ''
+ hash: 0c4a6491b976d5220d3ebfb83a3905dd47e86be2
+ project: ''
+ labels:
+ author: guyl
+ categories:
+ - utils
+spec:
+ command: ''
+ args: []
+ image: ''
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKZnJvbSB0eXBpbmcgaW1wb3J0IEFueSwgQ2FsbGFibGUsIERpY3QsIExpc3QsIFR1cGxlCgppbXBvcnQgbWxydW4KCgpjbGFzcyBfVG9PTk5YQ29udmVyc2lvbnM6CiAgICAiIiIKICAgIEFuIE9OTlggY29udmVyc2lvbiBmdW5jdGlvbnMgbGlicmFyeSBjbGFzcy4KICAgICIiIgoKICAgIEBzdGF0aWNtZXRob2QKICAgIGRlZiB0Zl9rZXJhc190b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50XSwgc3RyXV0gPSBOb25lLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBDb252ZXJ0IGEgVEYuS2VyYXMgbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICBBbiBpbml0aWFsaXplZCBURktlcmFzTW9kZWxIYW5kbGVyIHdpdGggYSBsb2FkZWQgbW9kZWwgdG8gY29udmVydCB0byBPTk5YLgogICAgICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6IFRoZSBuYW1lIHRvIHVzZSB0byBsb2cgdGhlIGNvbnZlcnRlZCBPTk5YIG1vZGVsLiBJZiBub3QgZ2l2ZW4sIHRoZSBnaXZlbiBgbW9kZWxfbmFtZWAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICBXaGV0aGVyIG9yIG5vdCB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRGVmYXVsdGVkIHRvIFRydWUuCiAgICAgICAgOnBhcmFtIGlucHV0X3NpZ25hdHVyZTogQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEgbGlzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdoZXJlIGVhY2ggZWxlbWVudCBpcyBhbiBpbnB1dCBsYXllciB0dXBsZS4gQW4gaW5wdXQgbGF5ZXIgdHVwbGUgaXMgYSB0dXBsZSBvZjoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBbMF0gPSBMYXllcidzIHNoYXBlLCBhIHR1cGxlIG9mIGludGVnZXJzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiBOb25lLCB0aGUgaW5wdXQgc2lnbmF0dXJlIHdpbGwgYmUgdHJpZWQgdG8gYmUgcmVhZCBmcm9tIHRoZSBtb2RlbCBhcnRpZmFjdC4gRGVmYXVsdGVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG8gTm9uZS4KICAgICAgICAiIiIKICAgICAgICAjIEltcG9ydCB0aGUgZnJhbWV3b3JrIGFuZCBoYW5kbGVyOgogICAgICAgIGltcG9ydCB0ZW5zb3JmbG93IGFzIHRmCiAgICAgICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLnRmX2tlcmFzIGltcG9ydCBURktlcmFzVXRpbHMKCiAgICAgICAgIyBDaGVjayB0aGUgZ2l2ZW4gJ2lucHV0X3NpZ25hdHVyZScgcGFyYW1ldGVyOgogICAgICAgIGlmIGlucHV0X3NpZ25hdHVyZSBpcyBOb25lOgogICAgICAgICAgICAjIFJlYWQgdGhlIGlucHV0cyBmcm9tIHRoZSBtb2RlbDoKICAgICAgICAgICAgdHJ5OgogICAgICAgICAgICAgICAgbW9kZWxfaGFuZGxlci5yZWFkX2lucHV0c19mcm9tX21vZGVsKCkKICAgICAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlcnJvcjoKICAgICAgICAgICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1blJ1bnRpbWVFcnJvcigKICAgICAgICAgICAgICAgICAgICBmIlBsZWFzZSBwcm92aWRlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXIuIFRoZSBmdW5jdGlvbiB0cmllZCByZWFkaW5nIHRoZSBpbnB1dCBsYXllcnMgIgogICAgICAgICAgICAgICAgICAgIGYiaW5mb3JtYXRpb24gYXV0b21hdGljYWxseSBidXQgZmFpbGVkIHdpdGggdGhlIGZvbGxvd2luZyBlcnJvcjoge2Vycm9yfSIKICAgICAgICAgICAgICAgICkKICAgICAgICBlbHNlOgogICAgICAgICAgICAjIFBhcnNlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXI6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IFsKICAgICAgICAgICAgICAgIHRmLlRlbnNvclNwZWMoCiAgICAgICAgICAgICAgICAgICAgc2hhcGU9c2hhcGUsCiAgICAgICAgICAgICAgICAgICAgZHR5cGU9VEZLZXJhc1V0aWxzLmNvbnZlcnRfdmFsdWVfdHlwZV90b190Zl9kdHlwZSgKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICBdCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICkKCiAgICBAc3RhdGljbWV0aG9kCiAgICBkZWYgcHl0b3JjaF90b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50LCAuLi5dLCBzdHJdXSA9IE5vbmUsCiAgICAgICAgaW5wdXRfbGF5ZXJzX25hbWVzOiBMaXN0W3N0cl0gPSBOb25lLAogICAgICAgIG91dHB1dF9sYXllcnNfbmFtZXM6IExpc3Rbc3RyXSA9IE5vbmUsCiAgICAgICAgZHluYW1pY19heGVzOiBEaWN0W3N0ciwgRGljdFtpbnQsIHN0cl1dID0gTm9uZSwKICAgICAgICBpc19iYXRjaGVkOiBib29sID0gVHJ1ZSwKICAgICk6CiAgICAgICAgIiIiCiAgICAgICAgQ29udmVydCBhIFB5VG9yY2ggbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICAgICAgQW4gaW5pdGlhbGl6ZWQgUHlUb3JjaE1vZGVsSGFuZGxlciB3aXRoIGEgbG9hZGVkIG1vZGVsIHRvIGNvbnZlcnQgdG8gT05OWC4KICAgICAgICA6cGFyYW0gb25ueF9tb2RlbF9uYW1lOiAgICAgVGhlIG5hbWUgdG8gdXNlIHRvIGxvZyB0aGUgY29udmVydGVkIE9OTlggbW9kZWwuIElmIG5vdCBnaXZlbiwgdGhlIGdpdmVuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGBtb2RlbF9uYW1lYCB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgICAgV2hldGhlciBvciBub3QgdG8gb3B0aW1pemUgdGhlIE9OTlggbW9kZWwgdXNpbmcgJ29ubnhvcHRpbWl6ZXInIGJlZm9yZSBzYXZpbmcgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsLiBEZWZhdWx0ZWQgdG8gVHJ1ZS4KICAgICAgICA6cGFyYW0gaW5wdXRfc2lnbmF0dXJlOiAgICAgQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdCB3aGVyZSBlYWNoIGVsZW1lbnQgaXMgYW4gaW5wdXQgbGF5ZXIgdHVwbGUuIEFuIGlucHV0IGxheWVyIHR1cGxlIGlzIGEgdHVwbGUgb2Y6CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFswXSA9IExheWVyJ3Mgc2hhcGUsIGEgdHVwbGUgb2YgaW50ZWdlcnMuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgdGhlIGlucHV0IHNpZ25hdHVyZSB3aWxsIGJlIHRyaWVkIHRvIGJlIHJlYWQgZnJvbSB0aGUgbW9kZWwgYXJ0aWZhY3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpbnB1dF9sYXllcnNfbmFtZXM6ICBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgaW5wdXQgbm9kZXMgb2YgdGhlIGdyYXBoIGluIG9yZGVyLiBBbGwgb2YgdGhlIG90aGVyCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFtZXRlcnMgKGlubmVyIGxheWVycykgY2FuIGJlIHNldCBhcyB3ZWxsIGJ5IHBhc3NpbmcgYWRkaXRpb25hbCBuYW1lcyBpbiB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdC4gVGhlIG9yZGVyIGlzIGJ5IHRoZSBvcmRlciBvZiB0aGUgcGFyYW1ldGVycyBpbiB0aGUgbW9kZWwuIElmIE5vbmUsIHRoZSBpbnB1dHMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBpbnB1dHMuIElmIGl0cyBhbHNvIE5vbmUsIGl0IGlzIGRlZmF1bHRlZCB0bzoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImlucHV0XzAiLCAiaW5wdXRfMSIsIC4uLgogICAgICAgIDpwYXJhbSBvdXRwdXRfbGF5ZXJzX25hbWVzOiBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgb3V0cHV0IG5vZGVzIG9mIHRoZSBncmFwaCBpbiBvcmRlci4gSWYgTm9uZSwgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG91dHB1dHMgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBvdXRwdXRzLiBJZiBpdHMgYWxzbyBOb25lLCBpdCBpcyBkZWZhdWx0ZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG86ICJvdXRwdXRfMCIgKGZvciBtdWx0aXBsZSBvdXRwdXRzLCB0aGlzIHBhcmFtZXRlciBtdXN0IGJlIHByb3ZpZGVkKS4KICAgICAgICA6cGFyYW0gZHluYW1pY19heGVzOiAgICAgICAgSWYgcGFydCBvZiB0aGUgaW5wdXQgLyBvdXRwdXQgc2hhcGUgaXMgZHluYW1pYywgbGlrZSAoYmF0Y2hfc2l6ZSwgMywgMzIsIDMyKSB5b3UgY2FuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwZWNpZnkgaXQgYnkgZ2l2aW5nIGEgZHluYW1pYyBheGlzIHRvIHRoZSBpbnB1dCAvIG91dHB1dCBsYXllciBieSBpdHMgbmFtZSBhcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmb2xsb3dzOiB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiaW5wdXQgbGF5ZXIgbmFtZSI6IHswOiAiYmF0Y2hfc2l6ZSJ9LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIm91dHB1dCBsYXllciBuYW1lIjogezA6ICJiYXRjaF9zaXplIn0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgcHJvdmlkZWQsIHRoZSAnaXNfYmF0Y2hlZCcgZmxhZyB3aWxsIGJlIGlnbm9yZWQuIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpc19iYXRjaGVkOiAgICAgICAgICBXaGV0aGVyIHRvIGluY2x1ZGUgYSBiYXRjaCBzaXplIGFzIHRoZSBmaXJzdCBheGlzIGluIGV2ZXJ5IGlucHV0IGFuZCBvdXRwdXQgbGF5ZXIuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBUcnVlLiBXaWxsIGJlIGlnbm9yZWQgaWYgJ2R5bmFtaWNfYXhlcycgaXMgcHJvdmlkZWQuCiAgICAgICAgIiIiCiAgICAgICAgIyBJbXBvcnQgdGhlIGZyYW1ld29yayBhbmQgaGFuZGxlcjoKICAgICAgICBpbXBvcnQgdG9yY2gKICAgICAgICBmcm9tIG1scnVuLmZyYW1ld29ya3MucHl0b3JjaCBpbXBvcnQgUHlUb3JjaFV0aWxzCgogICAgICAgICMgUGFyc2UgdGhlICdpbnB1dF9zaWduYXR1cmUnIHBhcmFtZXRlcjoKICAgICAgICBpZiBpbnB1dF9zaWduYXR1cmUgaXMgbm90IE5vbmU6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IHR1cGxlKAogICAgICAgICAgICAgICAgWwogICAgICAgICAgICAgICAgICAgIHRvcmNoLnplcm9zKAogICAgICAgICAgICAgICAgICAgICAgICBzaXplPXNoYXBlLAogICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1QeVRvcmNoVXRpbHMuY29udmVydF92YWx1ZV90eXBlX3RvX3RvcmNoX2R0eXBlKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICAgICAgXQogICAgICAgICAgICApCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NhbXBsZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICAgICBpbnB1dF9sYXllcnNfbmFtZXM9aW5wdXRfbGF5ZXJzX25hbWVzLAogICAgICAgICAgICBvdXRwdXRfbGF5ZXJzX25hbWVzPW91dHB1dF9sYXllcnNfbmFtZXMsCiAgICAgICAgICAgIGR5bmFtaWNfYXhlcz1keW5hbWljX2F4ZXMsCiAgICAgICAgICAgIGlzX2JhdGNoZWQ9aXNfYmF0Y2hlZAogICAgICAgICkKCgojIE1hcCBmb3IgZ2V0dGluZyB0aGUgY29udmVyc2lvbiBmdW5jdGlvbiBhY2NvcmRpbmcgdG8gdGhlIHByb3ZpZGVkIGZyYW1ld29yazoKX0NPTlZFUlNJT05fTUFQID0gewogICAgInRlbnNvcmZsb3cua2VyYXMiOiBfVG9PTk5YQ29udmVyc2lvbnMudGZfa2VyYXNfdG9fb25ueCwKICAgICJ0b3JjaCI6IF9Ub09OTlhDb252ZXJzaW9ucy5weXRvcmNoX3RvX29ubngsCn0gICMgdHlwZTogRGljdFtzdHIsIENhbGxhYmxlXQoKCmRlZiB0b19vbm54KAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvbm54X21vZGVsX25hbWU6IHN0ciA9IE5vbmUsCiAgICBvcHRpbWl6ZV9tb2RlbDogYm9vbCA9IFRydWUsCiAgICBmcmFtZXdvcmtfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSA9IE5vbmUsCik6CiAgICAiIiIKICAgIENvbnZlcnQgdGhlIGdpdmVuIG1vZGVsIHRvIGFuIE9OTlggbW9kZWwuCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dAogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgIFRoZSBtb2RlbCBwYXRoIHN0b3JlIG9iamVjdC4KICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6ICBUaGUgbmFtZSB0byB1c2UgdG8gbG9nIHRoZSBjb252ZXJ0ZWQgT05OWCBtb2RlbC4gSWYgbm90IGdpdmVuLCB0aGUgZ2l2ZW4gYG1vZGVsX25hbWVgIHdpbGwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiZSB1c2VkIHdpdGggYW4gYWRkaXRpb25hbCBzdWZmaXggYF9vbm54YC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgV2hldGhlciB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuIERlZmF1bHRlZAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvIFRydWUuCiAgICA6cGFyYW0gZnJhbWV3b3JrX2t3YXJnczogQWRkaXRpb25hbCBhcmd1bWVudHMgZWFjaCBmcmFtZXdvcmsgbWF5IHJlcXVpcmUgaW4gb3JkZXIgdG8gY29udmVydCB0byBPTk5YLiBUbyBnZXQgdGhlIGRvYwogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0cmluZyBvZiB0aGUgZGVzaXJlZCBmcmFtZXdvcmsgb25ueCBjb252ZXJzaW9uIGZ1bmN0aW9uLCBwYXNzICJoZWxwIi4KICAgICIiIgogICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLmF1dG9fbWxydW4uYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgogICAgIyBHZXQgYSBtb2RlbCBoYW5kbGVyIG9mIHRoZSByZXF1aXJlZCBmcmFtZXdvcms6CiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgIyBHZXQgdGhlIG1vZGVsJ3MgZnJhbWV3b3JrOgogICAgZnJhbWV3b3JrID0gbW9kZWxfaGFuZGxlci5GUkFNRVdPUktfTkFNRQoKICAgICMgVXNlIHRoZSBjb252ZXJzaW9uIG1hcCB0byBnZXQgdGhlIHNwZWNpZmljIGZyYW1ld29yayB0byBvbm54IGNvbnZlcnNpb246CiAgICBpZiBmcmFtZXdvcmsgbm90IGluIF9DT05WRVJTSU9OX01BUDoKICAgICAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5JbnZhbGlkQXJndW1lbnRFcnJvcigKICAgICAgICAgICAgZiJUaGUgZm9sbG93aW5nIGZyYW1ld29yazogJ3tmcmFtZXdvcmt9JywgaGFzIG5vIE9OTlggY29udmVyc2lvbi4iCiAgICAgICAgKQogICAgY29udmVyc2lvbl9mdW5jdGlvbiA9IF9DT05WRVJTSU9OX01BUFtmcmFtZXdvcmtdCgogICAgIyBDaGVjayBpZiBuZWVkZWQgdG8gcHJpbnQgdGhlIGZ1bmN0aW9uJ3MgZG9jIHN0cmluZyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzID09ICJoZWxwIjoKICAgICAgICBwcmludChjb252ZXJzaW9uX2Z1bmN0aW9uLl9fZG9jX18pCiAgICAgICAgcmV0dXJuCgogICAgIyBTZXQgdGhlIGRlZmF1bHQgZW1wdHkgZnJhbWV3b3JrIGt3YXJncyBpZiBuZWVkZWQ6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzIGlzIE5vbmU6CiAgICAgICAgZnJhbWV3b3JrX2t3YXJncyA9IHt9CgogICAgIyBSdW4gdGhlIGNvbnZlcnNpb246CiAgICB0cnk6CiAgICAgICAgY29udmVyc2lvbl9mdW5jdGlvbigKICAgICAgICAgICAgbW9kZWxfaGFuZGxlcj1tb2RlbF9oYW5kbGVyLAogICAgICAgICAgICBvbm54X21vZGVsX25hbWU9b25ueF9tb2RlbF9uYW1lLAogICAgICAgICAgICBvcHRpbWl6ZV9tb2RlbD1vcHRpbWl6ZV9tb2RlbCwKICAgICAgICAgICAgKipmcmFtZXdvcmtfa3dhcmdzLAogICAgICAgICkKICAgIGV4Y2VwdCBUeXBlRXJyb3IgYXMgZXhjZXB0aW9uOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIkVSUk9SOiBBIFR5cGVFcnJvciBleGNlcHRpb24gd2FzIHJhaXNlZCBkdXJpbmcgdGhlIGNvbnZlcnNpb246XG57ZXhjZXB0aW9ufS4gIgogICAgICAgICAgICBmIlBsZWFzZSByZWFkIHRoZSB7ZnJhbWV3b3JrfSBmcmFtZXdvcmsgY29udmVyc2lvbiBmdW5jdGlvbiBkb2Mgc3RyaW5nIGJ5IHBhc3NpbmcgJ2hlbHAnIGluIHRoZSAiCiAgICAgICAgICAgIGYiJ2ZyYW1ld29ya19rd2FyZ3MnIGRpY3Rpb25hcnkgcGFyYW1ldGVyLiIKICAgICAgICApCgoKZGVmIG9wdGltaXplKAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvcHRpbWl6YXRpb25zOiBMaXN0W3N0cl0gPSBOb25lLAogICAgZml4ZWRfcG9pbnQ6IGJvb2wgPSBGYWxzZSwKICAgIG9wdGltaXplZF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAopOgogICAgIiIiCiAgICBPcHRpbWl6ZSB0aGUgZ2l2ZW4gT05OWCBtb2RlbC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dC4KICAgIDpwYXJhbSBtb2RlbF9wYXRoOiAgICAgICAgICAgUGF0aCB0byB0aGUgT05OWCBtb2RlbCBvYmplY3QuCiAgICA6cGFyYW0gb3B0aW1pemF0aW9uczogICAgICAgIExpc3Qgb2YgcG9zc2libGUgb3B0aW1pemF0aW9ucy4gVG8gc2VlIHdoYXQgb3B0aW1pemF0aW9ucyBhcmUgYXZhaWxhYmxlLCBwYXNzICJoZWxwIi4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgYWxsIG9mIHRoZSBvcHRpbWl6YXRpb25zIHdpbGwgYmUgdXNlZC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gZml4ZWRfcG9pbnQ6ICAgICAgICAgIE9wdGltaXplIHRoZSB3ZWlnaHRzIHVzaW5nIGZpeGVkIHBvaW50LiBEZWZhdWx0ZWQgdG8gRmFsc2UuCiAgICA6cGFyYW0gb3B0aW1pemVkX21vZGVsX25hbWU6IFRoZSBuYW1lIG9mIHRoZSBvcHRpbWl6ZWQgbW9kZWwuIElmIE5vbmUsIHRoZSBvcmlnaW5hbCBtb2RlbCB3aWxsIGJlIG92ZXJyaWRkZW4uCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgIiIiCiAgICAjIEltcG9ydCB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIGltcG9ydCBvbm54b3B0aW1pemVyCiAgICBmcm9tIG1scnVuLmZyYW1ld29ya3Mub25ueCBpbXBvcnQgT05OWE1vZGVsSGFuZGxlcgoKICAgICMgQ2hlY2sgaWYgbmVlZGVkIHRvIHByaW50IHRoZSBhdmFpbGFibGUgb3B0aW1pemF0aW9ucyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBvcHRpbWl6YXRpb25zID09ICJoZWxwIjoKICAgICAgICBhdmFpbGFibGVfcGFzc2VzID0gIlxuKiAiLmpvaW4ob25ueG9wdGltaXplci5nZXRfYXZhaWxhYmxlX3Bhc3NlcygpKQogICAgICAgIHByaW50KGYiVGhlIGF2YWlsYWJsZSBvcHRpbWl6YXRpb25zIGFyZTpcbioge2F2YWlsYWJsZV9wYXNzZXN9IikKICAgICAgICByZXR1cm4KCiAgICAjIENyZWF0ZSB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIG1vZGVsX2hhbmRsZXIgPSBPTk5YTW9kZWxIYW5kbGVyKAogICAgICAgIG1vZGVsX3BhdGg9bW9kZWxfcGF0aCwgY29udGV4dD1jb250ZXh0CiAgICApCgogICAgIyBMb2FkIHRoZSBPTk5YIG1vZGVsOgogICAgbW9kZWxfaGFuZGxlci5sb2FkKCkKCiAgICAjIE9wdGltaXplIHRoZSBtb2RlbCB1c2luZyB0aGUgZ2l2ZW4gY29uZmlndXJhdGlvbnM6CiAgICBtb2RlbF9oYW5kbGVyLm9wdGltaXplKG9wdGltaXphdGlvbnM9b3B0aW1pemF0aW9ucywgZml4ZWRfcG9pbnQ9Zml4ZWRfcG9pbnQpCgogICAgIyBSZW5hbWUgaWYgbmVlZGVkOgogICAgaWYgb3B0aW1pemVkX21vZGVsX25hbWUgaXMgbm90IE5vbmU6CiAgICAgICAgbW9kZWxfaGFuZGxlci5zZXRfbW9kZWxfbmFtZShtb2RlbF9uYW1lPW9wdGltaXplZF9tb2RlbF9uYW1lKQoKICAgICMgTG9nIHRoZSBvcHRpbWl6ZWQgbW9kZWw6CiAgICBtb2RlbF9oYW5kbGVyLmxvZygpCg==
+ base_image: mlrun/mlrun
+ commands: []
+ code_origin: https://github.com/yonishelach/functions.git#f84b9565a33d8159315992ebba5838d41f6cc112:/Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
+ origin_filename: /Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
+ with_mlrun: false
+ auto_build: true
+ requirements:
+ - onnx~=1.13.0
+ - onnxruntime~=1.14.0
+ - onnxoptimizer~=0.3.0
+ - onnxmltools~=1.11.0
+ - tf2onnx~=1.13.0
+ entry_points:
+ tf_keras_to_onnx:
+ name: tf_keras_to_onnx
+ doc: Convert a TF.Keras model to an ONNX model and log it back to MLRun as a
+ new model object.
+ parameters:
+ - name: model_handler
+ doc: An initialized TFKerasModelHandler with a loaded model to convert to
+ ONNX.
+ default: ''
+ - name: onnx_model_name
+ type: str
+ doc: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to
+ None.
+ default: null
+ - name: optimize_model
+ type: bool
+ doc: Whether or not to optimize the ONNX model using 'onnxoptimizer' before
+ saving the model. Defaulted to True.
+ default: true
+ - name: input_signature
+ type: List[Tuple[Tuple[int], str]]
+ doc: 'A list of the input layers shape and data type properties. Expected
+ to receive a list where each element is an input layer tuple. An input layer
+ tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
+ data type, a mlrun.data_types.ValueType string. If None, the input signature
+ will be tried to be read from the model artifact. Defaulted to None.'
+ default: null
+ outputs:
+ - default: ''
+ lineno: 26
+ pytorch_to_onnx:
+ name: pytorch_to_onnx
+ doc: Convert a PyTorch model to an ONNX model and log it back to MLRun as a
+ new model object.
+ parameters:
+ - name: model_handler
+ doc: An initialized PyTorchModelHandler with a loaded model to convert to
+ ONNX.
+ default: ''
+ - name: onnx_model_name
+ type: str
+ doc: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to
+ None.
+ default: null
+ - name: optimize_model
+ type: bool
+ doc: Whether or not to optimize the ONNX model using 'onnxoptimizer' before
+ saving the model. Defaulted to True.
+ default: true
+ - name: input_signature
+ type: List[Tuple[Tuple[int, ], str]]
+ doc: 'A list of the input layers shape and data type properties. Expected
+ to receive a list where each element is an input layer tuple. An input layer
+ tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
+ data type, a mlrun.data_types.ValueType string. If None, the input signature
+ will be tried to be read from the model artifact. Defaulted to None.'
+ default: null
+ - name: input_layers_names
+ type: List[str]
+ doc: 'List of names to assign to the input nodes of the graph in order. All
+ of the other parameters (inner layers) can be set as well by passing additional
+ names in the list. The order is by the order of the parameters in the model.
+ If None, the inputs will be read from the handler''s inputs. If its also
+ None, it is defaulted to: "input_0", "input_1", ...'
+ default: null
+ - name: output_layers_names
+ type: List[str]
+ doc: 'List of names to assign to the output nodes of the graph in order. If
+ None, the outputs will be read from the handler''s outputs. If its also
+ None, it is defaulted to: "output_0" (for multiple outputs, this parameter
+ must be provided).'
+ default: null
+ - name: dynamic_axes
+ type: Dict[str, Dict[int, str]]
+ doc: 'If part of the input / output shape is dynamic, like (batch_size, 3,
+ 32, 32) you can specify it by giving a dynamic axis to the input / output
+ layer by its name as follows: { "input layer name": {0: "batch_size"}, "output
+ layer name": {0: "batch_size"}, } If provided, the ''is_batched'' flag will
+ be ignored. Defaulted to None.'
+ default: null
+ - name: is_batched
+ type: bool
+ doc: Whether to include a batch size as the first axis in every input and
+ output layer. Defaulted to True. Will be ignored if 'dynamic_axes' is provided.
+ default: true
+ outputs:
+ - default: ''
+ lineno: 81
+ to_onnx:
+ name: to_onnx
+ doc: Convert the given model to an ONNX model.
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: The MLRun function execution context
+ default: ''
+ - name: model_path
+ type: str
+ doc: The model path store object.
+ default: ''
+ - name: onnx_model_name
+ type: str
+ doc: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to
+ None.
+ default: null
+ - name: optimize_model
+ type: bool
+ doc: Whether to optimize the ONNX model using 'onnxoptimizer' before saving
+ the model. Defaulted to True.
+ default: true
+ - name: framework_kwargs
+ type: Dict[str, Any]
+ doc: Additional arguments each framework may require in order to convert to
+ ONNX. To get the doc string of the desired framework onnx conversion function,
+ pass "help".
+ default: null
+ outputs:
+ - default: ''
+ lineno: 160
+ optimize:
+ name: optimize
+ doc: Optimize the given ONNX model.
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: The MLRun function execution context.
+ default: ''
+ - name: model_path
+ type: str
+ doc: Path to the ONNX model object.
+ default: ''
+ - name: optimizations
+ type: List[str]
+ doc: List of possible optimizations. To see what optimizations are available,
+ pass "help". If None, all of the optimizations will be used. Defaulted to
+ None.
+ default: null
+ - name: fixed_point
+ type: bool
+ doc: Optimize the weights using fixed point. Defaulted to False.
+ default: false
+ - name: optimized_model_name
+ type: str
+ doc: The name of the optimized model. If None, the original model will be
+ overridden. Defaulted to None.
+ default: null
+ outputs:
+ - default: ''
+ lineno: 219
+ description: ONNX intigration in MLRun, some utils functions for the ONNX framework,
+ optimizing and converting models from different framework to ONNX using MLRun.
+ default_handler: to_onnx
+ disable_auto_mount: false
+ allow_empty_resources: true
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/static/item.html b/functions/master/onnx_utils/1.2.0/static/item.html
new file mode 100644
index 00000000..07129b01
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/static/item.html
@@ -0,0 +1,57 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+apiVersion: v1
+categories:
+- utils
+description: ONNX intigration in MLRun, some utils functions for the ONNX framework,
+ optimizing and converting models from different framework to ONNX using MLRun.
+doc: ''
+example: onnx_utils.ipynb
+generationDate: 2022-08-28:17-25
+hidden: false
+icon: ''
+labels:
+ author: guyl
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.1.0
+name: onnx_utils
+platformVersion: 3.5.0
+spec:
+ extra_spec:
+ allow_empty_resources: true
+ build:
+ auto_build: true
+ with_mlrun: false
+ filename: onnx_utils.py
+ handler: to_onnx
+ image: mlrun/mlrun
+ kind: job
+ requirements:
+ - onnx~=1.13.0
+ - onnxruntime~=1.14.0
+ - onnxoptimizer~=0.3.0
+ - onnxmltools~=1.11.0
+ - tf2onnx~=1.13.0
+url: ''
+version: 1.2.0
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/static/onnx_utils.html b/functions/master/onnx_utils/1.2.0/static/onnx_utils.html
new file mode 100644
index 00000000..52c337bc
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/static/onnx_utils.html
@@ -0,0 +1,403 @@
+
+
+
+
+
+
+
+onnx_utils.onnx_utils
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Source code for onnx_utils.onnx_utils
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from typing import Any , Callable , Dict , List , Tuple
+
+import mlrun
+
+
+class _ToONNXConversions :
+ """
+ An ONNX conversion functions library class.
+ """
+
+ @staticmethod
+ def tf_keras_to_onnx (
+ model_handler ,
+ onnx_model_name : str = None ,
+ optimize_model : bool = True ,
+ input_signature : List [ Tuple [ Tuple [ int ], str ]] = None ,
+ ):
+ """
+ Convert a TF.Keras model to an ONNX model and log it back to MLRun as a new model object.
+
+ :param model_handler: An initialized TFKerasModelHandler with a loaded model to convert to ONNX.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given `model_name`
+ will be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether or not to optimize the ONNX model using 'onnxoptimizer' before saving the model.
+ Defaulted to True.
+ :param input_signature: A list of the input layers shape and data type properties. Expected to receive a list
+ where each element is an input layer tuple. An input layer tuple is a tuple of:
+ [0] = Layer's shape, a tuple of integers.
+ [1] = Layer's data type, a mlrun.data_types.ValueType string.
+ If None, the input signature will be tried to be read from the model artifact. Defaulted
+ to None.
+ """
+ # Import the framework and handler:
+ import tensorflow as tf
+ from mlrun.frameworks.tf_keras import TFKerasUtils
+
+ # Check the given 'input_signature' parameter:
+ if input_signature is None :
+ # Read the inputs from the model:
+ try :
+ model_handler . read_inputs_from_model ()
+ except Exception as error :
+ raise mlrun . errors . MLRunRuntimeError (
+ f "Please provide the 'input_signature' parameter. The function tried reading the input layers "
+ f "information automatically but failed with the following error: { error } "
+ )
+ else :
+ # Parse the 'input_signature' parameter:
+ input_signature = [
+ tf . TensorSpec (
+ shape = shape ,
+ dtype = TFKerasUtils . convert_value_type_to_tf_dtype (
+ value_type = value_type
+ ),
+ )
+ for ( shape , value_type ) in input_signature
+ ]
+
+ # Convert to ONNX:
+ model_handler . to_onnx (
+ model_name = onnx_model_name ,
+ input_signature = input_signature ,
+ optimize = optimize_model ,
+ )
+
+ @staticmethod
+ def pytorch_to_onnx (
+ model_handler ,
+ onnx_model_name : str = None ,
+ optimize_model : bool = True ,
+ input_signature : List [ Tuple [ Tuple [ int , ... ], str ]] = None ,
+ input_layers_names : List [ str ] = None ,
+ output_layers_names : List [ str ] = None ,
+ dynamic_axes : Dict [ str , Dict [ int , str ]] = None ,
+ is_batched : bool = True ,
+ ):
+ """
+ Convert a PyTorch model to an ONNX model and log it back to MLRun as a new model object.
+
+ :param model_handler: An initialized PyTorchModelHandler with a loaded model to convert to ONNX.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether or not to optimize the ONNX model using 'onnxoptimizer' before saving the
+ model. Defaulted to True.
+ :param input_signature: A list of the input layers shape and data type properties. Expected to receive a
+ list where each element is an input layer tuple. An input layer tuple is a tuple of:
+ [0] = Layer's shape, a tuple of integers.
+ [1] = Layer's data type, a mlrun.data_types.ValueType string.
+ If None, the input signature will be tried to be read from the model artifact.
+ Defaulted to None.
+ :param input_layers_names: List of names to assign to the input nodes of the graph in order. All of the other
+ parameters (inner layers) can be set as well by passing additional names in the
+ list. The order is by the order of the parameters in the model. If None, the inputs
+ will be read from the handler's inputs. If its also None, it is defaulted to:
+ "input_0", "input_1", ...
+ :param output_layers_names: List of names to assign to the output nodes of the graph in order. If None, the
+ outputs will be read from the handler's outputs. If its also None, it is defaulted
+ to: "output_0" (for multiple outputs, this parameter must be provided).
+ :param dynamic_axes: If part of the input / output shape is dynamic, like (batch_size, 3, 32, 32) you can
+ specify it by giving a dynamic axis to the input / output layer by its name as
+ follows: {
+ "input layer name": {0: "batch_size"},
+ "output layer name": {0: "batch_size"},
+ }
+ If provided, the 'is_batched' flag will be ignored. Defaulted to None.
+ :param is_batched: Whether to include a batch size as the first axis in every input and output layer.
+ Defaulted to True. Will be ignored if 'dynamic_axes' is provided.
+ """
+ # Import the framework and handler:
+ import torch
+ from mlrun.frameworks.pytorch import PyTorchUtils
+
+ # Parse the 'input_signature' parameter:
+ if input_signature is not None :
+ input_signature = tuple (
+ [
+ torch . zeros (
+ size = shape ,
+ dtype = PyTorchUtils . convert_value_type_to_torch_dtype (
+ value_type = value_type
+ ),
+ )
+ for ( shape , value_type ) in input_signature
+ ]
+ )
+
+ # Convert to ONNX:
+ model_handler . to_onnx (
+ model_name = onnx_model_name ,
+ input_sample = input_signature ,
+ optimize = optimize_model ,
+ input_layers_names = input_layers_names ,
+ output_layers_names = output_layers_names ,
+ dynamic_axes = dynamic_axes ,
+ is_batched = is_batched
+ )
+
+
+# Map for getting the conversion function according to the provided framework:
+_CONVERSION_MAP = {
+ "tensorflow.keras" : _ToONNXConversions . tf_keras_to_onnx ,
+ "torch" : _ToONNXConversions . pytorch_to_onnx ,
+} # type: Dict[str, Callable]
+
+
+[docs] def to_onnx (
+
context : mlrun . MLClientCtx ,
+
model_path : str ,
+
onnx_model_name : str = None ,
+
optimize_model : bool = True ,
+
framework_kwargs : Dict [ str , Any ] = None ,
+
):
+
"""
+
Convert the given model to an ONNX model.
+
+
:param context: The MLRun function execution context
+
:param model_path: The model path store object.
+
:param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given `model_name` will
+
be used with an additional suffix `_onnx`. Defaulted to None.
+
:param optimize_model: Whether to optimize the ONNX model using 'onnxoptimizer' before saving the model. Defaulted
+
to True.
+
:param framework_kwargs: Additional arguments each framework may require in order to convert to ONNX. To get the doc
+
string of the desired framework onnx conversion function, pass "help".
+
"""
+
from mlrun.frameworks.auto_mlrun.auto_mlrun import AutoMLRun
+
+
# Get a model handler of the required framework:
+
model_handler = AutoMLRun . load_model ( model_path = model_path , context = context )
+
+
# Get the model's framework:
+
framework = model_handler . FRAMEWORK_NAME
+
+
# Use the conversion map to get the specific framework to onnx conversion:
+
if framework not in _CONVERSION_MAP :
+
raise mlrun . errors . MLRunInvalidArgumentError (
+
f "The following framework: ' { framework } ', has no ONNX conversion."
+
)
+
conversion_function = _CONVERSION_MAP [ framework ]
+
+
# Check if needed to print the function's doc string ("help" is passed):
+
if framework_kwargs == "help" :
+
print ( conversion_function . __doc__ )
+
return
+
+
# Set the default empty framework kwargs if needed:
+
if framework_kwargs is None :
+
framework_kwargs = {}
+
+
# Run the conversion:
+
try :
+
conversion_function (
+
model_handler = model_handler ,
+
onnx_model_name = onnx_model_name ,
+
optimize_model = optimize_model ,
+
** framework_kwargs ,
+
)
+
except TypeError as exception :
+
raise mlrun . errors . MLRunInvalidArgumentError (
+
f "ERROR: A TypeError exception was raised during the conversion: \n { exception } . "
+
f "Please read the { framework } framework conversion function doc string by passing 'help' in the "
+
f "'framework_kwargs' dictionary parameter."
+
)
+
+
+[docs] def optimize (
+
context : mlrun . MLClientCtx ,
+
model_path : str ,
+
optimizations : List [ str ] = None ,
+
fixed_point : bool = False ,
+
optimized_model_name : str = None ,
+
):
+
"""
+
Optimize the given ONNX model.
+
+
:param context: The MLRun function execution context.
+
:param model_path: Path to the ONNX model object.
+
:param optimizations: List of possible optimizations. To see what optimizations are available, pass "help".
+
If None, all of the optimizations will be used. Defaulted to None.
+
:param fixed_point: Optimize the weights using fixed point. Defaulted to False.
+
:param optimized_model_name: The name of the optimized model. If None, the original model will be overridden.
+
Defaulted to None.
+
"""
+
# Import the model handler:
+
import onnxoptimizer
+
from mlrun.frameworks.onnx import ONNXModelHandler
+
+
# Check if needed to print the available optimizations ("help" is passed):
+
if optimizations == "help" :
+
available_passes = " \n * " . join ( onnxoptimizer . get_available_passes ())
+
print ( f "The available optimizations are: \n * { available_passes } " )
+
return
+
+
# Create the model handler:
+
model_handler = ONNXModelHandler (
+
model_path = model_path , context = context
+
)
+
+
# Load the ONNX model:
+
model_handler . load ()
+
+
# Optimize the model using the given configurations:
+
model_handler . optimize ( optimizations = optimizations , fixed_point = fixed_point )
+
+
# Rename if needed:
+
if optimized_model_name is not None :
+
model_handler . set_model_name ( model_name = optimized_model_name )
+
+
# Log the optimized model:
+
model_handler . log ()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/onnx_utils/1.2.0/static/source.html b/functions/master/onnx_utils/1.2.0/static/source.html
new file mode 100644
index 00000000..f10ac64f
--- /dev/null
+++ b/functions/master/onnx_utils/1.2.0/static/source.html
@@ -0,0 +1,285 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+from typing import Any, Callable, Dict, List, Tuple
+
+import mlrun
+
+
+class _ToONNXConversions:
+ """
+ An ONNX conversion functions library class.
+ """
+
+ @staticmethod
+ def tf_keras_to_onnx(
+ model_handler,
+ onnx_model_name: str = None,
+ optimize_model: bool = True,
+ input_signature: List[Tuple[Tuple[int], str]] = None,
+ ):
+ """
+ Convert a TF.Keras model to an ONNX model and log it back to MLRun as a new model object.
+
+ :param model_handler: An initialized TFKerasModelHandler with a loaded model to convert to ONNX.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given `model_name`
+ will be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether or not to optimize the ONNX model using 'onnxoptimizer' before saving the model.
+ Defaulted to True.
+ :param input_signature: A list of the input layers shape and data type properties. Expected to receive a list
+ where each element is an input layer tuple. An input layer tuple is a tuple of:
+ [0] = Layer's shape, a tuple of integers.
+ [1] = Layer's data type, a mlrun.data_types.ValueType string.
+ If None, the input signature will be tried to be read from the model artifact. Defaulted
+ to None.
+ """
+ # Import the framework and handler:
+ import tensorflow as tf
+ from mlrun.frameworks.tf_keras import TFKerasUtils
+
+ # Check the given 'input_signature' parameter:
+ if input_signature is None:
+ # Read the inputs from the model:
+ try:
+ model_handler.read_inputs_from_model()
+ except Exception as error:
+ raise mlrun.errors.MLRunRuntimeError(
+ f"Please provide the 'input_signature' parameter. The function tried reading the input layers "
+ f"information automatically but failed with the following error: {error}"
+ )
+ else:
+ # Parse the 'input_signature' parameter:
+ input_signature = [
+ tf.TensorSpec(
+ shape=shape,
+ dtype=TFKerasUtils.convert_value_type_to_tf_dtype(
+ value_type=value_type
+ ),
+ )
+ for (shape, value_type) in input_signature
+ ]
+
+ # Convert to ONNX:
+ model_handler.to_onnx(
+ model_name=onnx_model_name,
+ input_signature=input_signature,
+ optimize=optimize_model,
+ )
+
+ @staticmethod
+ def pytorch_to_onnx(
+ model_handler,
+ onnx_model_name: str = None,
+ optimize_model: bool = True,
+ input_signature: List[Tuple[Tuple[int, ...], str]] = None,
+ input_layers_names: List[str] = None,
+ output_layers_names: List[str] = None,
+ dynamic_axes: Dict[str, Dict[int, str]] = None,
+ is_batched: bool = True,
+ ):
+ """
+ Convert a PyTorch model to an ONNX model and log it back to MLRun as a new model object.
+
+ :param model_handler: An initialized PyTorchModelHandler with a loaded model to convert to ONNX.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given
+ `model_name` will be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether or not to optimize the ONNX model using 'onnxoptimizer' before saving the
+ model. Defaulted to True.
+ :param input_signature: A list of the input layers shape and data type properties. Expected to receive a
+ list where each element is an input layer tuple. An input layer tuple is a tuple of:
+ [0] = Layer's shape, a tuple of integers.
+ [1] = Layer's data type, a mlrun.data_types.ValueType string.
+ If None, the input signature will be tried to be read from the model artifact.
+ Defaulted to None.
+ :param input_layers_names: List of names to assign to the input nodes of the graph in order. All of the other
+ parameters (inner layers) can be set as well by passing additional names in the
+ list. The order is by the order of the parameters in the model. If None, the inputs
+ will be read from the handler's inputs. If its also None, it is defaulted to:
+ "input_0", "input_1", ...
+ :param output_layers_names: List of names to assign to the output nodes of the graph in order. If None, the
+ outputs will be read from the handler's outputs. If its also None, it is defaulted
+ to: "output_0" (for multiple outputs, this parameter must be provided).
+ :param dynamic_axes: If part of the input / output shape is dynamic, like (batch_size, 3, 32, 32) you can
+ specify it by giving a dynamic axis to the input / output layer by its name as
+ follows: {
+ "input layer name": {0: "batch_size"},
+ "output layer name": {0: "batch_size"},
+ }
+ If provided, the 'is_batched' flag will be ignored. Defaulted to None.
+ :param is_batched: Whether to include a batch size as the first axis in every input and output layer.
+ Defaulted to True. Will be ignored if 'dynamic_axes' is provided.
+ """
+ # Import the framework and handler:
+ import torch
+ from mlrun.frameworks.pytorch import PyTorchUtils
+
+ # Parse the 'input_signature' parameter:
+ if input_signature is not None:
+ input_signature = tuple(
+ [
+ torch.zeros(
+ size=shape,
+ dtype=PyTorchUtils.convert_value_type_to_torch_dtype(
+ value_type=value_type
+ ),
+ )
+ for (shape, value_type) in input_signature
+ ]
+ )
+
+ # Convert to ONNX:
+ model_handler.to_onnx(
+ model_name=onnx_model_name,
+ input_sample=input_signature,
+ optimize=optimize_model,
+ input_layers_names=input_layers_names,
+ output_layers_names=output_layers_names,
+ dynamic_axes=dynamic_axes,
+ is_batched=is_batched
+ )
+
+
+# Map for getting the conversion function according to the provided framework:
+_CONVERSION_MAP = {
+ "tensorflow.keras": _ToONNXConversions.tf_keras_to_onnx,
+ "torch": _ToONNXConversions.pytorch_to_onnx,
+} # type: Dict[str, Callable]
+
+
+def to_onnx(
+ context: mlrun.MLClientCtx,
+ model_path: str,
+ onnx_model_name: str = None,
+ optimize_model: bool = True,
+ framework_kwargs: Dict[str, Any] = None,
+):
+ """
+ Convert the given model to an ONNX model.
+
+ :param context: The MLRun function execution context
+ :param model_path: The model path store object.
+ :param onnx_model_name: The name to use to log the converted ONNX model. If not given, the given `model_name` will
+ be used with an additional suffix `_onnx`. Defaulted to None.
+ :param optimize_model: Whether to optimize the ONNX model using 'onnxoptimizer' before saving the model. Defaulted
+ to True.
+ :param framework_kwargs: Additional arguments each framework may require in order to convert to ONNX. To get the doc
+ string of the desired framework onnx conversion function, pass "help".
+ """
+ from mlrun.frameworks.auto_mlrun.auto_mlrun import AutoMLRun
+
+ # Get a model handler of the required framework:
+ model_handler = AutoMLRun.load_model(model_path=model_path, context=context)
+
+ # Get the model's framework:
+ framework = model_handler.FRAMEWORK_NAME
+
+ # Use the conversion map to get the specific framework to onnx conversion:
+ if framework not in _CONVERSION_MAP:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The following framework: '{framework}', has no ONNX conversion."
+ )
+ conversion_function = _CONVERSION_MAP[framework]
+
+ # Check if needed to print the function's doc string ("help" is passed):
+ if framework_kwargs == "help":
+ print(conversion_function.__doc__)
+ return
+
+ # Set the default empty framework kwargs if needed:
+ if framework_kwargs is None:
+ framework_kwargs = {}
+
+ # Run the conversion:
+ try:
+ conversion_function(
+ model_handler=model_handler,
+ onnx_model_name=onnx_model_name,
+ optimize_model=optimize_model,
+ **framework_kwargs,
+ )
+ except TypeError as exception:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"ERROR: A TypeError exception was raised during the conversion:\n{exception}. "
+ f"Please read the {framework} framework conversion function doc string by passing 'help' in the "
+ f"'framework_kwargs' dictionary parameter."
+ )
+
+
+def optimize(
+ context: mlrun.MLClientCtx,
+ model_path: str,
+ optimizations: List[str] = None,
+ fixed_point: bool = False,
+ optimized_model_name: str = None,
+):
+ """
+ Optimize the given ONNX model.
+
+ :param context: The MLRun function execution context.
+ :param model_path: Path to the ONNX model object.
+ :param optimizations: List of possible optimizations. To see what optimizations are available, pass "help".
+ If None, all of the optimizations will be used. Defaulted to None.
+ :param fixed_point: Optimize the weights using fixed point. Defaulted to False.
+ :param optimized_model_name: The name of the optimized model. If None, the original model will be overridden.
+ Defaulted to None.
+ """
+ # Import the model handler:
+ import onnxoptimizer
+ from mlrun.frameworks.onnx import ONNXModelHandler
+
+ # Check if needed to print the available optimizations ("help" is passed):
+ if optimizations == "help":
+ available_passes = "\n* ".join(onnxoptimizer.get_available_passes())
+ print(f"The available optimizations are:\n* {available_passes}")
+ return
+
+ # Create the model handler:
+ model_handler = ONNXModelHandler(
+ model_path=model_path, context=context
+ )
+
+ # Load the ONNX model:
+ model_handler.load()
+
+ # Optimize the model using the given configurations:
+ model_handler.optimize(optimizations=optimizations, fixed_point=fixed_point)
+
+ # Rename if needed:
+ if optimized_model_name is not None:
+ model_handler.set_model_name(model_name=optimized_model_name)
+
+ # Log the optimized model:
+ model_handler.log()
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/onnx_utils/latest/src/function.yaml b/functions/master/onnx_utils/latest/src/function.yaml
index d59fa2dd..7a0054c4 100644
--- a/functions/master/onnx_utils/latest/src/function.yaml
+++ b/functions/master/onnx_utils/latest/src/function.yaml
@@ -2,7 +2,7 @@ kind: job
metadata:
name: onnx-utils
tag: ''
- hash: d81c2cec3242be94fc9c207bb75fc6495f2a34ae
+ hash: 0c4a6491b976d5220d3ebfb83a3905dd47e86be2
project: ''
labels:
author: guyl
@@ -11,16 +11,21 @@ metadata:
spec:
command: ''
args: []
- image: mlrun/ml-models
+ image: ''
build:
functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKZnJvbSB0eXBpbmcgaW1wb3J0IEFueSwgQ2FsbGFibGUsIERpY3QsIExpc3QsIFR1cGxlCgppbXBvcnQgbWxydW4KCgpjbGFzcyBfVG9PTk5YQ29udmVyc2lvbnM6CiAgICAiIiIKICAgIEFuIE9OTlggY29udmVyc2lvbiBmdW5jdGlvbnMgbGlicmFyeSBjbGFzcy4KICAgICIiIgoKICAgIEBzdGF0aWNtZXRob2QKICAgIGRlZiB0Zl9rZXJhc190b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50XSwgc3RyXV0gPSBOb25lLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBDb252ZXJ0IGEgVEYuS2VyYXMgbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICBBbiBpbml0aWFsaXplZCBURktlcmFzTW9kZWxIYW5kbGVyIHdpdGggYSBsb2FkZWQgbW9kZWwgdG8gY29udmVydCB0byBPTk5YLgogICAgICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6IFRoZSBuYW1lIHRvIHVzZSB0byBsb2cgdGhlIGNvbnZlcnRlZCBPTk5YIG1vZGVsLiBJZiBub3QgZ2l2ZW4sIHRoZSBnaXZlbiBgbW9kZWxfbmFtZWAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICBXaGV0aGVyIG9yIG5vdCB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRGVmYXVsdGVkIHRvIFRydWUuCiAgICAgICAgOnBhcmFtIGlucHV0X3NpZ25hdHVyZTogQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEgbGlzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdoZXJlIGVhY2ggZWxlbWVudCBpcyBhbiBpbnB1dCBsYXllciB0dXBsZS4gQW4gaW5wdXQgbGF5ZXIgdHVwbGUgaXMgYSB0dXBsZSBvZjoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBbMF0gPSBMYXllcidzIHNoYXBlLCBhIHR1cGxlIG9mIGludGVnZXJzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiBOb25lLCB0aGUgaW5wdXQgc2lnbmF0dXJlIHdpbGwgYmUgdHJpZWQgdG8gYmUgcmVhZCBmcm9tIHRoZSBtb2RlbCBhcnRpZmFjdC4gRGVmYXVsdGVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG8gTm9uZS4KICAgICAgICAiIiIKICAgICAgICAjIEltcG9ydCB0aGUgZnJhbWV3b3JrIGFuZCBoYW5kbGVyOgogICAgICAgIGltcG9ydCB0ZW5zb3JmbG93IGFzIHRmCiAgICAgICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLnRmX2tlcmFzIGltcG9ydCBURktlcmFzVXRpbHMKCiAgICAgICAgIyBDaGVjayB0aGUgZ2l2ZW4gJ2lucHV0X3NpZ25hdHVyZScgcGFyYW1ldGVyOgogICAgICAgIGlmIGlucHV0X3NpZ25hdHVyZSBpcyBOb25lOgogICAgICAgICAgICAjIFJlYWQgdGhlIGlucHV0cyBmcm9tIHRoZSBtb2RlbDoKICAgICAgICAgICAgdHJ5OgogICAgICAgICAgICAgICAgbW9kZWxfaGFuZGxlci5yZWFkX2lucHV0c19mcm9tX21vZGVsKCkKICAgICAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlcnJvcjoKICAgICAgICAgICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1blJ1bnRpbWVFcnJvcigKICAgICAgICAgICAgICAgICAgICBmIlBsZWFzZSBwcm92aWRlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXIuIFRoZSBmdW5jdGlvbiB0cmllZCByZWFkaW5nIHRoZSBpbnB1dCBsYXllcnMgIgogICAgICAgICAgICAgICAgICAgIGYiaW5mb3JtYXRpb24gYXV0b21hdGljYWxseSBidXQgZmFpbGVkIHdpdGggdGhlIGZvbGxvd2luZyBlcnJvcjoge2Vycm9yfSIKICAgICAgICAgICAgICAgICkKICAgICAgICBlbHNlOgogICAgICAgICAgICAjIFBhcnNlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXI6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IFsKICAgICAgICAgICAgICAgIHRmLlRlbnNvclNwZWMoCiAgICAgICAgICAgICAgICAgICAgc2hhcGU9c2hhcGUsCiAgICAgICAgICAgICAgICAgICAgZHR5cGU9VEZLZXJhc1V0aWxzLmNvbnZlcnRfdmFsdWVfdHlwZV90b190Zl9kdHlwZSgKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICBdCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICkKCiAgICBAc3RhdGljbWV0aG9kCiAgICBkZWYgcHl0b3JjaF90b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50LCAuLi5dLCBzdHJdXSA9IE5vbmUsCiAgICAgICAgaW5wdXRfbGF5ZXJzX25hbWVzOiBMaXN0W3N0cl0gPSBOb25lLAogICAgICAgIG91dHB1dF9sYXllcnNfbmFtZXM6IExpc3Rbc3RyXSA9IE5vbmUsCiAgICAgICAgZHluYW1pY19heGVzOiBEaWN0W3N0ciwgRGljdFtpbnQsIHN0cl1dID0gTm9uZSwKICAgICAgICBpc19iYXRjaGVkOiBib29sID0gVHJ1ZSwKICAgICk6CiAgICAgICAgIiIiCiAgICAgICAgQ29udmVydCBhIFB5VG9yY2ggbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICAgICAgQW4gaW5pdGlhbGl6ZWQgUHlUb3JjaE1vZGVsSGFuZGxlciB3aXRoIGEgbG9hZGVkIG1vZGVsIHRvIGNvbnZlcnQgdG8gT05OWC4KICAgICAgICA6cGFyYW0gb25ueF9tb2RlbF9uYW1lOiAgICAgVGhlIG5hbWUgdG8gdXNlIHRvIGxvZyB0aGUgY29udmVydGVkIE9OTlggbW9kZWwuIElmIG5vdCBnaXZlbiwgdGhlIGdpdmVuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGBtb2RlbF9uYW1lYCB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgICAgV2hldGhlciBvciBub3QgdG8gb3B0aW1pemUgdGhlIE9OTlggbW9kZWwgdXNpbmcgJ29ubnhvcHRpbWl6ZXInIGJlZm9yZSBzYXZpbmcgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsLiBEZWZhdWx0ZWQgdG8gVHJ1ZS4KICAgICAgICA6cGFyYW0gaW5wdXRfc2lnbmF0dXJlOiAgICAgQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdCB3aGVyZSBlYWNoIGVsZW1lbnQgaXMgYW4gaW5wdXQgbGF5ZXIgdHVwbGUuIEFuIGlucHV0IGxheWVyIHR1cGxlIGlzIGEgdHVwbGUgb2Y6CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFswXSA9IExheWVyJ3Mgc2hhcGUsIGEgdHVwbGUgb2YgaW50ZWdlcnMuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgdGhlIGlucHV0IHNpZ25hdHVyZSB3aWxsIGJlIHRyaWVkIHRvIGJlIHJlYWQgZnJvbSB0aGUgbW9kZWwgYXJ0aWZhY3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpbnB1dF9sYXllcnNfbmFtZXM6ICBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgaW5wdXQgbm9kZXMgb2YgdGhlIGdyYXBoIGluIG9yZGVyLiBBbGwgb2YgdGhlIG90aGVyCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFtZXRlcnMgKGlubmVyIGxheWVycykgY2FuIGJlIHNldCBhcyB3ZWxsIGJ5IHBhc3NpbmcgYWRkaXRpb25hbCBuYW1lcyBpbiB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdC4gVGhlIG9yZGVyIGlzIGJ5IHRoZSBvcmRlciBvZiB0aGUgcGFyYW1ldGVycyBpbiB0aGUgbW9kZWwuIElmIE5vbmUsIHRoZSBpbnB1dHMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBpbnB1dHMuIElmIGl0cyBhbHNvIE5vbmUsIGl0IGlzIGRlZmF1bHRlZCB0bzoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImlucHV0XzAiLCAiaW5wdXRfMSIsIC4uLgogICAgICAgIDpwYXJhbSBvdXRwdXRfbGF5ZXJzX25hbWVzOiBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgb3V0cHV0IG5vZGVzIG9mIHRoZSBncmFwaCBpbiBvcmRlci4gSWYgTm9uZSwgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG91dHB1dHMgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBvdXRwdXRzLiBJZiBpdHMgYWxzbyBOb25lLCBpdCBpcyBkZWZhdWx0ZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG86ICJvdXRwdXRfMCIgKGZvciBtdWx0aXBsZSBvdXRwdXRzLCB0aGlzIHBhcmFtZXRlciBtdXN0IGJlIHByb3ZpZGVkKS4KICAgICAgICA6cGFyYW0gZHluYW1pY19heGVzOiAgICAgICAgSWYgcGFydCBvZiB0aGUgaW5wdXQgLyBvdXRwdXQgc2hhcGUgaXMgZHluYW1pYywgbGlrZSAoYmF0Y2hfc2l6ZSwgMywgMzIsIDMyKSB5b3UgY2FuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwZWNpZnkgaXQgYnkgZ2l2aW5nIGEgZHluYW1pYyBheGlzIHRvIHRoZSBpbnB1dCAvIG91dHB1dCBsYXllciBieSBpdHMgbmFtZSBhcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmb2xsb3dzOiB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiaW5wdXQgbGF5ZXIgbmFtZSI6IHswOiAiYmF0Y2hfc2l6ZSJ9LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIm91dHB1dCBsYXllciBuYW1lIjogezA6ICJiYXRjaF9zaXplIn0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgcHJvdmlkZWQsIHRoZSAnaXNfYmF0Y2hlZCcgZmxhZyB3aWxsIGJlIGlnbm9yZWQuIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpc19iYXRjaGVkOiAgICAgICAgICBXaGV0aGVyIHRvIGluY2x1ZGUgYSBiYXRjaCBzaXplIGFzIHRoZSBmaXJzdCBheGlzIGluIGV2ZXJ5IGlucHV0IGFuZCBvdXRwdXQgbGF5ZXIuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBUcnVlLiBXaWxsIGJlIGlnbm9yZWQgaWYgJ2R5bmFtaWNfYXhlcycgaXMgcHJvdmlkZWQuCiAgICAgICAgIiIiCiAgICAgICAgIyBJbXBvcnQgdGhlIGZyYW1ld29yayBhbmQgaGFuZGxlcjoKICAgICAgICBpbXBvcnQgdG9yY2gKICAgICAgICBmcm9tIG1scnVuLmZyYW1ld29ya3MucHl0b3JjaCBpbXBvcnQgUHlUb3JjaFV0aWxzCgogICAgICAgICMgUGFyc2UgdGhlICdpbnB1dF9zaWduYXR1cmUnIHBhcmFtZXRlcjoKICAgICAgICBpZiBpbnB1dF9zaWduYXR1cmUgaXMgbm90IE5vbmU6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IHR1cGxlKAogICAgICAgICAgICAgICAgWwogICAgICAgICAgICAgICAgICAgIHRvcmNoLnplcm9zKAogICAgICAgICAgICAgICAgICAgICAgICBzaXplPXNoYXBlLAogICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1QeVRvcmNoVXRpbHMuY29udmVydF92YWx1ZV90eXBlX3RvX3RvcmNoX2R0eXBlKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICAgICAgXQogICAgICAgICAgICApCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NhbXBsZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICAgICBpbnB1dF9sYXllcnNfbmFtZXM9aW5wdXRfbGF5ZXJzX25hbWVzLAogICAgICAgICAgICBvdXRwdXRfbGF5ZXJzX25hbWVzPW91dHB1dF9sYXllcnNfbmFtZXMsCiAgICAgICAgICAgIGR5bmFtaWNfYXhlcz1keW5hbWljX2F4ZXMsCiAgICAgICAgICAgIGlzX2JhdGNoZWQ9aXNfYmF0Y2hlZAogICAgICAgICkKCgojIE1hcCBmb3IgZ2V0dGluZyB0aGUgY29udmVyc2lvbiBmdW5jdGlvbiBhY2NvcmRpbmcgdG8gdGhlIHByb3ZpZGVkIGZyYW1ld29yazoKX0NPTlZFUlNJT05fTUFQID0gewogICAgInRlbnNvcmZsb3cua2VyYXMiOiBfVG9PTk5YQ29udmVyc2lvbnMudGZfa2VyYXNfdG9fb25ueCwKICAgICJ0b3JjaCI6IF9Ub09OTlhDb252ZXJzaW9ucy5weXRvcmNoX3RvX29ubngsCn0gICMgdHlwZTogRGljdFtzdHIsIENhbGxhYmxlXQoKCmRlZiB0b19vbm54KAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvbm54X21vZGVsX25hbWU6IHN0ciA9IE5vbmUsCiAgICBvcHRpbWl6ZV9tb2RlbDogYm9vbCA9IFRydWUsCiAgICBmcmFtZXdvcmtfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSA9IE5vbmUsCik6CiAgICAiIiIKICAgIENvbnZlcnQgdGhlIGdpdmVuIG1vZGVsIHRvIGFuIE9OTlggbW9kZWwuCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dAogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgIFRoZSBtb2RlbCBwYXRoIHN0b3JlIG9iamVjdC4KICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6ICBUaGUgbmFtZSB0byB1c2UgdG8gbG9nIHRoZSBjb252ZXJ0ZWQgT05OWCBtb2RlbC4gSWYgbm90IGdpdmVuLCB0aGUgZ2l2ZW4gYG1vZGVsX25hbWVgIHdpbGwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiZSB1c2VkIHdpdGggYW4gYWRkaXRpb25hbCBzdWZmaXggYF9vbm54YC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgV2hldGhlciB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuIERlZmF1bHRlZAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvIFRydWUuCiAgICA6cGFyYW0gZnJhbWV3b3JrX2t3YXJnczogQWRkaXRpb25hbCBhcmd1bWVudHMgZWFjaCBmcmFtZXdvcmsgbWF5IHJlcXVpcmUgaW4gb3JkZXIgdG8gY29udmVydCB0byBPTk5YLiBUbyBnZXQgdGhlIGRvYwogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0cmluZyBvZiB0aGUgZGVzaXJlZCBmcmFtZXdvcmsgb25ueCBjb252ZXJzaW9uIGZ1bmN0aW9uLCBwYXNzICJoZWxwIi4KICAgICIiIgogICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLmF1dG9fbWxydW4uYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgogICAgIyBHZXQgYSBtb2RlbCBoYW5kbGVyIG9mIHRoZSByZXF1aXJlZCBmcmFtZXdvcms6CiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgIyBHZXQgdGhlIG1vZGVsJ3MgZnJhbWV3b3JrOgogICAgZnJhbWV3b3JrID0gbW9kZWxfaGFuZGxlci5GUkFNRVdPUktfTkFNRQoKICAgICMgVXNlIHRoZSBjb252ZXJzaW9uIG1hcCB0byBnZXQgdGhlIHNwZWNpZmljIGZyYW1ld29yayB0byBvbm54IGNvbnZlcnNpb246CiAgICBpZiBmcmFtZXdvcmsgbm90IGluIF9DT05WRVJTSU9OX01BUDoKICAgICAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5JbnZhbGlkQXJndW1lbnRFcnJvcigKICAgICAgICAgICAgZiJUaGUgZm9sbG93aW5nIGZyYW1ld29yazogJ3tmcmFtZXdvcmt9JywgaGFzIG5vIE9OTlggY29udmVyc2lvbi4iCiAgICAgICAgKQogICAgY29udmVyc2lvbl9mdW5jdGlvbiA9IF9DT05WRVJTSU9OX01BUFtmcmFtZXdvcmtdCgogICAgIyBDaGVjayBpZiBuZWVkZWQgdG8gcHJpbnQgdGhlIGZ1bmN0aW9uJ3MgZG9jIHN0cmluZyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzID09ICJoZWxwIjoKICAgICAgICBwcmludChjb252ZXJzaW9uX2Z1bmN0aW9uLl9fZG9jX18pCiAgICAgICAgcmV0dXJuCgogICAgIyBTZXQgdGhlIGRlZmF1bHQgZW1wdHkgZnJhbWV3b3JrIGt3YXJncyBpZiBuZWVkZWQ6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzIGlzIE5vbmU6CiAgICAgICAgZnJhbWV3b3JrX2t3YXJncyA9IHt9CgogICAgIyBSdW4gdGhlIGNvbnZlcnNpb246CiAgICB0cnk6CiAgICAgICAgY29udmVyc2lvbl9mdW5jdGlvbigKICAgICAgICAgICAgbW9kZWxfaGFuZGxlcj1tb2RlbF9oYW5kbGVyLAogICAgICAgICAgICBvbm54X21vZGVsX25hbWU9b25ueF9tb2RlbF9uYW1lLAogICAgICAgICAgICBvcHRpbWl6ZV9tb2RlbD1vcHRpbWl6ZV9tb2RlbCwKICAgICAgICAgICAgKipmcmFtZXdvcmtfa3dhcmdzLAogICAgICAgICkKICAgIGV4Y2VwdCBUeXBlRXJyb3IgYXMgZXhjZXB0aW9uOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIkVSUk9SOiBBIFR5cGVFcnJvciBleGNlcHRpb24gd2FzIHJhaXNlZCBkdXJpbmcgdGhlIGNvbnZlcnNpb246XG57ZXhjZXB0aW9ufS4gIgogICAgICAgICAgICBmIlBsZWFzZSByZWFkIHRoZSB7ZnJhbWV3b3JrfSBmcmFtZXdvcmsgY29udmVyc2lvbiBmdW5jdGlvbiBkb2Mgc3RyaW5nIGJ5IHBhc3NpbmcgJ2hlbHAnIGluIHRoZSAiCiAgICAgICAgICAgIGYiJ2ZyYW1ld29ya19rd2FyZ3MnIGRpY3Rpb25hcnkgcGFyYW1ldGVyLiIKICAgICAgICApCgoKZGVmIG9wdGltaXplKAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvcHRpbWl6YXRpb25zOiBMaXN0W3N0cl0gPSBOb25lLAogICAgZml4ZWRfcG9pbnQ6IGJvb2wgPSBGYWxzZSwKICAgIG9wdGltaXplZF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAopOgogICAgIiIiCiAgICBPcHRpbWl6ZSB0aGUgZ2l2ZW4gT05OWCBtb2RlbC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dC4KICAgIDpwYXJhbSBtb2RlbF9wYXRoOiAgICAgICAgICAgUGF0aCB0byB0aGUgT05OWCBtb2RlbCBvYmplY3QuCiAgICA6cGFyYW0gb3B0aW1pemF0aW9uczogICAgICAgIExpc3Qgb2YgcG9zc2libGUgb3B0aW1pemF0aW9ucy4gVG8gc2VlIHdoYXQgb3B0aW1pemF0aW9ucyBhcmUgYXZhaWxhYmxlLCBwYXNzICJoZWxwIi4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgYWxsIG9mIHRoZSBvcHRpbWl6YXRpb25zIHdpbGwgYmUgdXNlZC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gZml4ZWRfcG9pbnQ6ICAgICAgICAgIE9wdGltaXplIHRoZSB3ZWlnaHRzIHVzaW5nIGZpeGVkIHBvaW50LiBEZWZhdWx0ZWQgdG8gRmFsc2UuCiAgICA6cGFyYW0gb3B0aW1pemVkX21vZGVsX25hbWU6IFRoZSBuYW1lIG9mIHRoZSBvcHRpbWl6ZWQgbW9kZWwuIElmIE5vbmUsIHRoZSBvcmlnaW5hbCBtb2RlbCB3aWxsIGJlIG92ZXJyaWRkZW4uCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgIiIiCiAgICAjIEltcG9ydCB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIGltcG9ydCBvbm54b3B0aW1pemVyCiAgICBmcm9tIG1scnVuLmZyYW1ld29ya3Mub25ueCBpbXBvcnQgT05OWE1vZGVsSGFuZGxlcgoKICAgICMgQ2hlY2sgaWYgbmVlZGVkIHRvIHByaW50IHRoZSBhdmFpbGFibGUgb3B0aW1pemF0aW9ucyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBvcHRpbWl6YXRpb25zID09ICJoZWxwIjoKICAgICAgICBhdmFpbGFibGVfcGFzc2VzID0gIlxuKiAiLmpvaW4ob25ueG9wdGltaXplci5nZXRfYXZhaWxhYmxlX3Bhc3NlcygpKQogICAgICAgIHByaW50KGYiVGhlIGF2YWlsYWJsZSBvcHRpbWl6YXRpb25zIGFyZTpcbioge2F2YWlsYWJsZV9wYXNzZXN9IikKICAgICAgICByZXR1cm4KCiAgICAjIENyZWF0ZSB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIG1vZGVsX2hhbmRsZXIgPSBPTk5YTW9kZWxIYW5kbGVyKAogICAgICAgIG1vZGVsX3BhdGg9bW9kZWxfcGF0aCwgY29udGV4dD1jb250ZXh0CiAgICApCgogICAgIyBMb2FkIHRoZSBPTk5YIG1vZGVsOgogICAgbW9kZWxfaGFuZGxlci5sb2FkKCkKCiAgICAjIE9wdGltaXplIHRoZSBtb2RlbCB1c2luZyB0aGUgZ2l2ZW4gY29uZmlndXJhdGlvbnM6CiAgICBtb2RlbF9oYW5kbGVyLm9wdGltaXplKG9wdGltaXphdGlvbnM9b3B0aW1pemF0aW9ucywgZml4ZWRfcG9pbnQ9Zml4ZWRfcG9pbnQpCgogICAgIyBSZW5hbWUgaWYgbmVlZGVkOgogICAgaWYgb3B0aW1pemVkX21vZGVsX25hbWUgaXMgbm90IE5vbmU6CiAgICAgICAgbW9kZWxfaGFuZGxlci5zZXRfbW9kZWxfbmFtZShtb2RlbF9uYW1lPW9wdGltaXplZF9tb2RlbF9uYW1lKQoKICAgICMgTG9nIHRoZSBvcHRpbWl6ZWQgbW9kZWw6CiAgICBtb2RlbF9oYW5kbGVyLmxvZygpCg==
- commands:
- - python -m pip install onnx~=1.13.0 onnxruntime~=1.14.0 onnxoptimizer~=0.3.0
- onnxmltools~=1.11.0 tf2onnx~=1.13.0
- code_origin: https://github.com/mlrun/functions.git#b1365179513d1457e28a797e7d04f63a91238f02:/Users/yonatanshelach/yoni/projects/functions/onnx_utils/onnx_utils.py
- origin_filename: /Users/yonatanshelach/yoni/projects/functions/onnx_utils/onnx_utils.py
+ base_image: mlrun/mlrun
+ commands: []
+ code_origin: https://github.com/yonishelach/functions.git#f84b9565a33d8159315992ebba5838d41f6cc112:/Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
+ origin_filename: /Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
with_mlrun: false
auto_build: true
+ requirements:
+ - onnx~=1.13.0
+ - onnxruntime~=1.14.0
+ - onnxoptimizer~=0.3.0
+ - onnxmltools~=1.11.0
+ - tf2onnx~=1.13.0
entry_points:
tf_keras_to_onnx:
name: tf_keras_to_onnx
@@ -43,7 +48,7 @@ spec:
saving the model. Defaulted to True.
default: true
- name: input_signature
- type: List[Tuple[int], str]
+ type: List[Tuple[Tuple[int], str]]
doc: 'A list of the input layers shape and data type properties. Expected
to receive a list where each element is an input layer tuple. An input layer
tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
@@ -74,7 +79,7 @@ spec:
saving the model. Defaulted to True.
default: true
- name: input_signature
- type: List[Tuple[int, ], str]
+ type: List[Tuple[Tuple[int, ], str]]
doc: 'A list of the input layers shape and data type properties. Expected
to receive a list where each element is an input layer tuple. An input layer
tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
@@ -179,6 +184,7 @@ spec:
default_handler: to_onnx
disable_auto_mount: false
allow_empty_resources: true
+ clone_target_dir: ''
env: []
priority_class_name: ''
preemption_mode: prevent
diff --git a/functions/master/onnx_utils/latest/src/item.yaml b/functions/master/onnx_utils/latest/src/item.yaml
index b7ca891d..36335837 100644
--- a/functions/master/onnx_utils/latest/src/item.yaml
+++ b/functions/master/onnx_utils/latest/src/item.yaml
@@ -23,7 +23,7 @@ spec:
with_mlrun: false
filename: onnx_utils.py
handler: to_onnx
- image: mlrun/ml-models
+ image: mlrun/mlrun
kind: job
requirements:
- onnx~=1.13.0
@@ -32,4 +32,4 @@ spec:
- onnxmltools~=1.11.0
- tf2onnx~=1.13.0
url: ''
-version: 1.1.1
+version: 1.2.0
diff --git a/functions/master/onnx_utils/latest/static/function.html b/functions/master/onnx_utils/latest/static/function.html
index 6dfede79..feceb076 100644
--- a/functions/master/onnx_utils/latest/static/function.html
+++ b/functions/master/onnx_utils/latest/static/function.html
@@ -19,7 +19,7 @@
metadata:
name: onnx-utils
tag: ''
- hash: d81c2cec3242be94fc9c207bb75fc6495f2a34ae
+ hash: 0c4a6491b976d5220d3ebfb83a3905dd47e86be2
project: ''
labels:
author: guyl
@@ -28,16 +28,21 @@
spec:
command: ''
args: []
- image: mlrun/ml-models
+ image: ''
build:
functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKZnJvbSB0eXBpbmcgaW1wb3J0IEFueSwgQ2FsbGFibGUsIERpY3QsIExpc3QsIFR1cGxlCgppbXBvcnQgbWxydW4KCgpjbGFzcyBfVG9PTk5YQ29udmVyc2lvbnM6CiAgICAiIiIKICAgIEFuIE9OTlggY29udmVyc2lvbiBmdW5jdGlvbnMgbGlicmFyeSBjbGFzcy4KICAgICIiIgoKICAgIEBzdGF0aWNtZXRob2QKICAgIGRlZiB0Zl9rZXJhc190b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50XSwgc3RyXV0gPSBOb25lLAogICAgKToKICAgICAgICAiIiIKICAgICAgICBDb252ZXJ0IGEgVEYuS2VyYXMgbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICBBbiBpbml0aWFsaXplZCBURktlcmFzTW9kZWxIYW5kbGVyIHdpdGggYSBsb2FkZWQgbW9kZWwgdG8gY29udmVydCB0byBPTk5YLgogICAgICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6IFRoZSBuYW1lIHRvIHVzZSB0byBsb2cgdGhlIGNvbnZlcnRlZCBPTk5YIG1vZGVsLiBJZiBub3QgZ2l2ZW4sIHRoZSBnaXZlbiBgbW9kZWxfbmFtZWAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICBXaGV0aGVyIG9yIG5vdCB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgRGVmYXVsdGVkIHRvIFRydWUuCiAgICAgICAgOnBhcmFtIGlucHV0X3NpZ25hdHVyZTogQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEgbGlzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdoZXJlIGVhY2ggZWxlbWVudCBpcyBhbiBpbnB1dCBsYXllciB0dXBsZS4gQW4gaW5wdXQgbGF5ZXIgdHVwbGUgaXMgYSB0dXBsZSBvZjoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBbMF0gPSBMYXllcidzIHNoYXBlLCBhIHR1cGxlIG9mIGludGVnZXJzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiBOb25lLCB0aGUgaW5wdXQgc2lnbmF0dXJlIHdpbGwgYmUgdHJpZWQgdG8gYmUgcmVhZCBmcm9tIHRoZSBtb2RlbCBhcnRpZmFjdC4gRGVmYXVsdGVkCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG8gTm9uZS4KICAgICAgICAiIiIKICAgICAgICAjIEltcG9ydCB0aGUgZnJhbWV3b3JrIGFuZCBoYW5kbGVyOgogICAgICAgIGltcG9ydCB0ZW5zb3JmbG93IGFzIHRmCiAgICAgICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLnRmX2tlcmFzIGltcG9ydCBURktlcmFzVXRpbHMKCiAgICAgICAgIyBDaGVjayB0aGUgZ2l2ZW4gJ2lucHV0X3NpZ25hdHVyZScgcGFyYW1ldGVyOgogICAgICAgIGlmIGlucHV0X3NpZ25hdHVyZSBpcyBOb25lOgogICAgICAgICAgICAjIFJlYWQgdGhlIGlucHV0cyBmcm9tIHRoZSBtb2RlbDoKICAgICAgICAgICAgdHJ5OgogICAgICAgICAgICAgICAgbW9kZWxfaGFuZGxlci5yZWFkX2lucHV0c19mcm9tX21vZGVsKCkKICAgICAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlcnJvcjoKICAgICAgICAgICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1blJ1bnRpbWVFcnJvcigKICAgICAgICAgICAgICAgICAgICBmIlBsZWFzZSBwcm92aWRlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXIuIFRoZSBmdW5jdGlvbiB0cmllZCByZWFkaW5nIHRoZSBpbnB1dCBsYXllcnMgIgogICAgICAgICAgICAgICAgICAgIGYiaW5mb3JtYXRpb24gYXV0b21hdGljYWxseSBidXQgZmFpbGVkIHdpdGggdGhlIGZvbGxvd2luZyBlcnJvcjoge2Vycm9yfSIKICAgICAgICAgICAgICAgICkKICAgICAgICBlbHNlOgogICAgICAgICAgICAjIFBhcnNlIHRoZSAnaW5wdXRfc2lnbmF0dXJlJyBwYXJhbWV0ZXI6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IFsKICAgICAgICAgICAgICAgIHRmLlRlbnNvclNwZWMoCiAgICAgICAgICAgICAgICAgICAgc2hhcGU9c2hhcGUsCiAgICAgICAgICAgICAgICAgICAgZHR5cGU9VEZLZXJhc1V0aWxzLmNvbnZlcnRfdmFsdWVfdHlwZV90b190Zl9kdHlwZSgKICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgKSwKICAgICAgICAgICAgICAgICkKICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICBdCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICkKCiAgICBAc3RhdGljbWV0aG9kCiAgICBkZWYgcHl0b3JjaF90b19vbm54KAogICAgICAgIG1vZGVsX2hhbmRsZXIsCiAgICAgICAgb25ueF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAogICAgICAgIG9wdGltaXplX21vZGVsOiBib29sID0gVHJ1ZSwKICAgICAgICBpbnB1dF9zaWduYXR1cmU6IExpc3RbVHVwbGVbVHVwbGVbaW50LCAuLi5dLCBzdHJdXSA9IE5vbmUsCiAgICAgICAgaW5wdXRfbGF5ZXJzX25hbWVzOiBMaXN0W3N0cl0gPSBOb25lLAogICAgICAgIG91dHB1dF9sYXllcnNfbmFtZXM6IExpc3Rbc3RyXSA9IE5vbmUsCiAgICAgICAgZHluYW1pY19heGVzOiBEaWN0W3N0ciwgRGljdFtpbnQsIHN0cl1dID0gTm9uZSwKICAgICAgICBpc19iYXRjaGVkOiBib29sID0gVHJ1ZSwKICAgICk6CiAgICAgICAgIiIiCiAgICAgICAgQ29udmVydCBhIFB5VG9yY2ggbW9kZWwgdG8gYW4gT05OWCBtb2RlbCBhbmQgbG9nIGl0IGJhY2sgdG8gTUxSdW4gYXMgYSBuZXcgbW9kZWwgb2JqZWN0LgoKICAgICAgICA6cGFyYW0gbW9kZWxfaGFuZGxlcjogICAgICAgQW4gaW5pdGlhbGl6ZWQgUHlUb3JjaE1vZGVsSGFuZGxlciB3aXRoIGEgbG9hZGVkIG1vZGVsIHRvIGNvbnZlcnQgdG8gT05OWC4KICAgICAgICA6cGFyYW0gb25ueF9tb2RlbF9uYW1lOiAgICAgVGhlIG5hbWUgdG8gdXNlIHRvIGxvZyB0aGUgY29udmVydGVkIE9OTlggbW9kZWwuIElmIG5vdCBnaXZlbiwgdGhlIGdpdmVuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGBtb2RlbF9uYW1lYCB3aWxsIGJlIHVzZWQgd2l0aCBhbiBhZGRpdGlvbmFsIHN1ZmZpeCBgX29ubnhgLiBEZWZhdWx0ZWQgdG8gTm9uZS4KICAgICAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgICAgV2hldGhlciBvciBub3QgdG8gb3B0aW1pemUgdGhlIE9OTlggbW9kZWwgdXNpbmcgJ29ubnhvcHRpbWl6ZXInIGJlZm9yZSBzYXZpbmcgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsLiBEZWZhdWx0ZWQgdG8gVHJ1ZS4KICAgICAgICA6cGFyYW0gaW5wdXRfc2lnbmF0dXJlOiAgICAgQSBsaXN0IG9mIHRoZSBpbnB1dCBsYXllcnMgc2hhcGUgYW5kIGRhdGEgdHlwZSBwcm9wZXJ0aWVzLiBFeHBlY3RlZCB0byByZWNlaXZlIGEKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdCB3aGVyZSBlYWNoIGVsZW1lbnQgaXMgYW4gaW5wdXQgbGF5ZXIgdHVwbGUuIEFuIGlucHV0IGxheWVyIHR1cGxlIGlzIGEgdHVwbGUgb2Y6CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFswXSA9IExheWVyJ3Mgc2hhcGUsIGEgdHVwbGUgb2YgaW50ZWdlcnMuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFsxXSA9IExheWVyJ3MgZGF0YSB0eXBlLCBhIG1scnVuLmRhdGFfdHlwZXMuVmFsdWVUeXBlIHN0cmluZy4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgdGhlIGlucHV0IHNpZ25hdHVyZSB3aWxsIGJlIHRyaWVkIHRvIGJlIHJlYWQgZnJvbSB0aGUgbW9kZWwgYXJ0aWZhY3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpbnB1dF9sYXllcnNfbmFtZXM6ICBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgaW5wdXQgbm9kZXMgb2YgdGhlIGdyYXBoIGluIG9yZGVyLiBBbGwgb2YgdGhlIG90aGVyCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBhcmFtZXRlcnMgKGlubmVyIGxheWVycykgY2FuIGJlIHNldCBhcyB3ZWxsIGJ5IHBhc3NpbmcgYWRkaXRpb25hbCBuYW1lcyBpbiB0aGUKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGlzdC4gVGhlIG9yZGVyIGlzIGJ5IHRoZSBvcmRlciBvZiB0aGUgcGFyYW1ldGVycyBpbiB0aGUgbW9kZWwuIElmIE5vbmUsIHRoZSBpbnB1dHMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBpbnB1dHMuIElmIGl0cyBhbHNvIE5vbmUsIGl0IGlzIGRlZmF1bHRlZCB0bzoKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImlucHV0XzAiLCAiaW5wdXRfMSIsIC4uLgogICAgICAgIDpwYXJhbSBvdXRwdXRfbGF5ZXJzX25hbWVzOiBMaXN0IG9mIG5hbWVzIHRvIGFzc2lnbiB0byB0aGUgb3V0cHV0IG5vZGVzIG9mIHRoZSBncmFwaCBpbiBvcmRlci4gSWYgTm9uZSwgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG91dHB1dHMgd2lsbCBiZSByZWFkIGZyb20gdGhlIGhhbmRsZXIncyBvdXRwdXRzLiBJZiBpdHMgYWxzbyBOb25lLCBpdCBpcyBkZWZhdWx0ZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdG86ICJvdXRwdXRfMCIgKGZvciBtdWx0aXBsZSBvdXRwdXRzLCB0aGlzIHBhcmFtZXRlciBtdXN0IGJlIHByb3ZpZGVkKS4KICAgICAgICA6cGFyYW0gZHluYW1pY19heGVzOiAgICAgICAgSWYgcGFydCBvZiB0aGUgaW5wdXQgLyBvdXRwdXQgc2hhcGUgaXMgZHluYW1pYywgbGlrZSAoYmF0Y2hfc2l6ZSwgMywgMzIsIDMyKSB5b3UgY2FuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNwZWNpZnkgaXQgYnkgZ2l2aW5nIGEgZHluYW1pYyBheGlzIHRvIHRoZSBpbnB1dCAvIG91dHB1dCBsYXllciBieSBpdHMgbmFtZSBhcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmb2xsb3dzOiB7CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiaW5wdXQgbGF5ZXIgbmFtZSI6IHswOiAiYmF0Y2hfc2l6ZSJ9LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIm91dHB1dCBsYXllciBuYW1lIjogezA6ICJiYXRjaF9zaXplIn0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgcHJvdmlkZWQsIHRoZSAnaXNfYmF0Y2hlZCcgZmxhZyB3aWxsIGJlIGlnbm9yZWQuIERlZmF1bHRlZCB0byBOb25lLgogICAgICAgIDpwYXJhbSBpc19iYXRjaGVkOiAgICAgICAgICBXaGV0aGVyIHRvIGluY2x1ZGUgYSBiYXRjaCBzaXplIGFzIHRoZSBmaXJzdCBheGlzIGluIGV2ZXJ5IGlucHV0IGFuZCBvdXRwdXQgbGF5ZXIuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBUcnVlLiBXaWxsIGJlIGlnbm9yZWQgaWYgJ2R5bmFtaWNfYXhlcycgaXMgcHJvdmlkZWQuCiAgICAgICAgIiIiCiAgICAgICAgIyBJbXBvcnQgdGhlIGZyYW1ld29yayBhbmQgaGFuZGxlcjoKICAgICAgICBpbXBvcnQgdG9yY2gKICAgICAgICBmcm9tIG1scnVuLmZyYW1ld29ya3MucHl0b3JjaCBpbXBvcnQgUHlUb3JjaFV0aWxzCgogICAgICAgICMgUGFyc2UgdGhlICdpbnB1dF9zaWduYXR1cmUnIHBhcmFtZXRlcjoKICAgICAgICBpZiBpbnB1dF9zaWduYXR1cmUgaXMgbm90IE5vbmU6CiAgICAgICAgICAgIGlucHV0X3NpZ25hdHVyZSA9IHR1cGxlKAogICAgICAgICAgICAgICAgWwogICAgICAgICAgICAgICAgICAgIHRvcmNoLnplcm9zKAogICAgICAgICAgICAgICAgICAgICAgICBzaXplPXNoYXBlLAogICAgICAgICAgICAgICAgICAgICAgICBkdHlwZT1QeVRvcmNoVXRpbHMuY29udmVydF92YWx1ZV90eXBlX3RvX3RvcmNoX2R0eXBlKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgdmFsdWVfdHlwZT12YWx1ZV90eXBlCiAgICAgICAgICAgICAgICAgICAgICAgICksCiAgICAgICAgICAgICAgICAgICAgKQogICAgICAgICAgICAgICAgICAgIGZvciAoc2hhcGUsIHZhbHVlX3R5cGUpIGluIGlucHV0X3NpZ25hdHVyZQogICAgICAgICAgICAgICAgXQogICAgICAgICAgICApCgogICAgICAgICMgQ29udmVydCB0byBPTk5YOgogICAgICAgIG1vZGVsX2hhbmRsZXIudG9fb25ueCgKICAgICAgICAgICAgbW9kZWxfbmFtZT1vbm54X21vZGVsX25hbWUsCiAgICAgICAgICAgIGlucHV0X3NhbXBsZT1pbnB1dF9zaWduYXR1cmUsCiAgICAgICAgICAgIG9wdGltaXplPW9wdGltaXplX21vZGVsLAogICAgICAgICAgICBpbnB1dF9sYXllcnNfbmFtZXM9aW5wdXRfbGF5ZXJzX25hbWVzLAogICAgICAgICAgICBvdXRwdXRfbGF5ZXJzX25hbWVzPW91dHB1dF9sYXllcnNfbmFtZXMsCiAgICAgICAgICAgIGR5bmFtaWNfYXhlcz1keW5hbWljX2F4ZXMsCiAgICAgICAgICAgIGlzX2JhdGNoZWQ9aXNfYmF0Y2hlZAogICAgICAgICkKCgojIE1hcCBmb3IgZ2V0dGluZyB0aGUgY29udmVyc2lvbiBmdW5jdGlvbiBhY2NvcmRpbmcgdG8gdGhlIHByb3ZpZGVkIGZyYW1ld29yazoKX0NPTlZFUlNJT05fTUFQID0gewogICAgInRlbnNvcmZsb3cua2VyYXMiOiBfVG9PTk5YQ29udmVyc2lvbnMudGZfa2VyYXNfdG9fb25ueCwKICAgICJ0b3JjaCI6IF9Ub09OTlhDb252ZXJzaW9ucy5weXRvcmNoX3RvX29ubngsCn0gICMgdHlwZTogRGljdFtzdHIsIENhbGxhYmxlXQoKCmRlZiB0b19vbm54KAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvbm54X21vZGVsX25hbWU6IHN0ciA9IE5vbmUsCiAgICBvcHRpbWl6ZV9tb2RlbDogYm9vbCA9IFRydWUsCiAgICBmcmFtZXdvcmtfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSA9IE5vbmUsCik6CiAgICAiIiIKICAgIENvbnZlcnQgdGhlIGdpdmVuIG1vZGVsIHRvIGFuIE9OTlggbW9kZWwuCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dAogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgIFRoZSBtb2RlbCBwYXRoIHN0b3JlIG9iamVjdC4KICAgIDpwYXJhbSBvbm54X21vZGVsX25hbWU6ICBUaGUgbmFtZSB0byB1c2UgdG8gbG9nIHRoZSBjb252ZXJ0ZWQgT05OWCBtb2RlbC4gSWYgbm90IGdpdmVuLCB0aGUgZ2l2ZW4gYG1vZGVsX25hbWVgIHdpbGwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiZSB1c2VkIHdpdGggYW4gYWRkaXRpb25hbCBzdWZmaXggYF9vbm54YC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gb3B0aW1pemVfbW9kZWw6ICAgV2hldGhlciB0byBvcHRpbWl6ZSB0aGUgT05OWCBtb2RlbCB1c2luZyAnb25ueG9wdGltaXplcicgYmVmb3JlIHNhdmluZyB0aGUgbW9kZWwuIERlZmF1bHRlZAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRvIFRydWUuCiAgICA6cGFyYW0gZnJhbWV3b3JrX2t3YXJnczogQWRkaXRpb25hbCBhcmd1bWVudHMgZWFjaCBmcmFtZXdvcmsgbWF5IHJlcXVpcmUgaW4gb3JkZXIgdG8gY29udmVydCB0byBPTk5YLiBUbyBnZXQgdGhlIGRvYwogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0cmluZyBvZiB0aGUgZGVzaXJlZCBmcmFtZXdvcmsgb25ueCBjb252ZXJzaW9uIGZ1bmN0aW9uLCBwYXNzICJoZWxwIi4KICAgICIiIgogICAgZnJvbSBtbHJ1bi5mcmFtZXdvcmtzLmF1dG9fbWxydW4uYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgogICAgIyBHZXQgYSBtb2RlbCBoYW5kbGVyIG9mIHRoZSByZXF1aXJlZCBmcmFtZXdvcms6CiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgIyBHZXQgdGhlIG1vZGVsJ3MgZnJhbWV3b3JrOgogICAgZnJhbWV3b3JrID0gbW9kZWxfaGFuZGxlci5GUkFNRVdPUktfTkFNRQoKICAgICMgVXNlIHRoZSBjb252ZXJzaW9uIG1hcCB0byBnZXQgdGhlIHNwZWNpZmljIGZyYW1ld29yayB0byBvbm54IGNvbnZlcnNpb246CiAgICBpZiBmcmFtZXdvcmsgbm90IGluIF9DT05WRVJTSU9OX01BUDoKICAgICAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5JbnZhbGlkQXJndW1lbnRFcnJvcigKICAgICAgICAgICAgZiJUaGUgZm9sbG93aW5nIGZyYW1ld29yazogJ3tmcmFtZXdvcmt9JywgaGFzIG5vIE9OTlggY29udmVyc2lvbi4iCiAgICAgICAgKQogICAgY29udmVyc2lvbl9mdW5jdGlvbiA9IF9DT05WRVJTSU9OX01BUFtmcmFtZXdvcmtdCgogICAgIyBDaGVjayBpZiBuZWVkZWQgdG8gcHJpbnQgdGhlIGZ1bmN0aW9uJ3MgZG9jIHN0cmluZyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzID09ICJoZWxwIjoKICAgICAgICBwcmludChjb252ZXJzaW9uX2Z1bmN0aW9uLl9fZG9jX18pCiAgICAgICAgcmV0dXJuCgogICAgIyBTZXQgdGhlIGRlZmF1bHQgZW1wdHkgZnJhbWV3b3JrIGt3YXJncyBpZiBuZWVkZWQ6CiAgICBpZiBmcmFtZXdvcmtfa3dhcmdzIGlzIE5vbmU6CiAgICAgICAgZnJhbWV3b3JrX2t3YXJncyA9IHt9CgogICAgIyBSdW4gdGhlIGNvbnZlcnNpb246CiAgICB0cnk6CiAgICAgICAgY29udmVyc2lvbl9mdW5jdGlvbigKICAgICAgICAgICAgbW9kZWxfaGFuZGxlcj1tb2RlbF9oYW5kbGVyLAogICAgICAgICAgICBvbm54X21vZGVsX25hbWU9b25ueF9tb2RlbF9uYW1lLAogICAgICAgICAgICBvcHRpbWl6ZV9tb2RlbD1vcHRpbWl6ZV9tb2RlbCwKICAgICAgICAgICAgKipmcmFtZXdvcmtfa3dhcmdzLAogICAgICAgICkKICAgIGV4Y2VwdCBUeXBlRXJyb3IgYXMgZXhjZXB0aW9uOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIkVSUk9SOiBBIFR5cGVFcnJvciBleGNlcHRpb24gd2FzIHJhaXNlZCBkdXJpbmcgdGhlIGNvbnZlcnNpb246XG57ZXhjZXB0aW9ufS4gIgogICAgICAgICAgICBmIlBsZWFzZSByZWFkIHRoZSB7ZnJhbWV3b3JrfSBmcmFtZXdvcmsgY29udmVyc2lvbiBmdW5jdGlvbiBkb2Mgc3RyaW5nIGJ5IHBhc3NpbmcgJ2hlbHAnIGluIHRoZSAiCiAgICAgICAgICAgIGYiJ2ZyYW1ld29ya19rd2FyZ3MnIGRpY3Rpb25hcnkgcGFyYW1ldGVyLiIKICAgICAgICApCgoKZGVmIG9wdGltaXplKAogICAgY29udGV4dDogbWxydW4uTUxDbGllbnRDdHgsCiAgICBtb2RlbF9wYXRoOiBzdHIsCiAgICBvcHRpbWl6YXRpb25zOiBMaXN0W3N0cl0gPSBOb25lLAogICAgZml4ZWRfcG9pbnQ6IGJvb2wgPSBGYWxzZSwKICAgIG9wdGltaXplZF9tb2RlbF9uYW1lOiBzdHIgPSBOb25lLAopOgogICAgIiIiCiAgICBPcHRpbWl6ZSB0aGUgZ2l2ZW4gT05OWCBtb2RlbC4KCiAgICA6cGFyYW0gY29udGV4dDogICAgICAgICAgICAgIFRoZSBNTFJ1biBmdW5jdGlvbiBleGVjdXRpb24gY29udGV4dC4KICAgIDpwYXJhbSBtb2RlbF9wYXRoOiAgICAgICAgICAgUGF0aCB0byB0aGUgT05OWCBtb2RlbCBvYmplY3QuCiAgICA6cGFyYW0gb3B0aW1pemF0aW9uczogICAgICAgIExpc3Qgb2YgcG9zc2libGUgb3B0aW1pemF0aW9ucy4gVG8gc2VlIHdoYXQgb3B0aW1pemF0aW9ucyBhcmUgYXZhaWxhYmxlLCBwYXNzICJoZWxwIi4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgTm9uZSwgYWxsIG9mIHRoZSBvcHRpbWl6YXRpb25zIHdpbGwgYmUgdXNlZC4gRGVmYXVsdGVkIHRvIE5vbmUuCiAgICA6cGFyYW0gZml4ZWRfcG9pbnQ6ICAgICAgICAgIE9wdGltaXplIHRoZSB3ZWlnaHRzIHVzaW5nIGZpeGVkIHBvaW50LiBEZWZhdWx0ZWQgdG8gRmFsc2UuCiAgICA6cGFyYW0gb3B0aW1pemVkX21vZGVsX25hbWU6IFRoZSBuYW1lIG9mIHRoZSBvcHRpbWl6ZWQgbW9kZWwuIElmIE5vbmUsIHRoZSBvcmlnaW5hbCBtb2RlbCB3aWxsIGJlIG92ZXJyaWRkZW4uCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIERlZmF1bHRlZCB0byBOb25lLgogICAgIiIiCiAgICAjIEltcG9ydCB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIGltcG9ydCBvbm54b3B0aW1pemVyCiAgICBmcm9tIG1scnVuLmZyYW1ld29ya3Mub25ueCBpbXBvcnQgT05OWE1vZGVsSGFuZGxlcgoKICAgICMgQ2hlY2sgaWYgbmVlZGVkIHRvIHByaW50IHRoZSBhdmFpbGFibGUgb3B0aW1pemF0aW9ucyAoImhlbHAiIGlzIHBhc3NlZCk6CiAgICBpZiBvcHRpbWl6YXRpb25zID09ICJoZWxwIjoKICAgICAgICBhdmFpbGFibGVfcGFzc2VzID0gIlxuKiAiLmpvaW4ob25ueG9wdGltaXplci5nZXRfYXZhaWxhYmxlX3Bhc3NlcygpKQogICAgICAgIHByaW50KGYiVGhlIGF2YWlsYWJsZSBvcHRpbWl6YXRpb25zIGFyZTpcbioge2F2YWlsYWJsZV9wYXNzZXN9IikKICAgICAgICByZXR1cm4KCiAgICAjIENyZWF0ZSB0aGUgbW9kZWwgaGFuZGxlcjoKICAgIG1vZGVsX2hhbmRsZXIgPSBPTk5YTW9kZWxIYW5kbGVyKAogICAgICAgIG1vZGVsX3BhdGg9bW9kZWxfcGF0aCwgY29udGV4dD1jb250ZXh0CiAgICApCgogICAgIyBMb2FkIHRoZSBPTk5YIG1vZGVsOgogICAgbW9kZWxfaGFuZGxlci5sb2FkKCkKCiAgICAjIE9wdGltaXplIHRoZSBtb2RlbCB1c2luZyB0aGUgZ2l2ZW4gY29uZmlndXJhdGlvbnM6CiAgICBtb2RlbF9oYW5kbGVyLm9wdGltaXplKG9wdGltaXphdGlvbnM9b3B0aW1pemF0aW9ucywgZml4ZWRfcG9pbnQ9Zml4ZWRfcG9pbnQpCgogICAgIyBSZW5hbWUgaWYgbmVlZGVkOgogICAgaWYgb3B0aW1pemVkX21vZGVsX25hbWUgaXMgbm90IE5vbmU6CiAgICAgICAgbW9kZWxfaGFuZGxlci5zZXRfbW9kZWxfbmFtZShtb2RlbF9uYW1lPW9wdGltaXplZF9tb2RlbF9uYW1lKQoKICAgICMgTG9nIHRoZSBvcHRpbWl6ZWQgbW9kZWw6CiAgICBtb2RlbF9oYW5kbGVyLmxvZygpCg==
- commands:
- - python -m pip install onnx~=1.13.0 onnxruntime~=1.14.0 onnxoptimizer~=0.3.0
- onnxmltools~=1.11.0 tf2onnx~=1.13.0
- code_origin: https://github.com/mlrun/functions.git#b1365179513d1457e28a797e7d04f63a91238f02:/Users/yonatanshelach/yoni/projects/functions/onnx_utils/onnx_utils.py
- origin_filename: /Users/yonatanshelach/yoni/projects/functions/onnx_utils/onnx_utils.py
+ base_image: mlrun/mlrun
+ commands: []
+ code_origin: https://github.com/yonishelach/functions.git#f84b9565a33d8159315992ebba5838d41f6cc112:/Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
+ origin_filename: /Users/Yonatan_Shelach/projects/functions/onnx_utils/onnx_utils.py
with_mlrun: false
auto_build: true
+ requirements:
+ - onnx~=1.13.0
+ - onnxruntime~=1.14.0
+ - onnxoptimizer~=0.3.0
+ - onnxmltools~=1.11.0
+ - tf2onnx~=1.13.0
entry_points:
tf_keras_to_onnx:
name: tf_keras_to_onnx
@@ -60,7 +65,7 @@
saving the model. Defaulted to True.
default: true
- name: input_signature
- type: List[Tuple[int], str]
+ type: List[Tuple[Tuple[int], str]]
doc: 'A list of the input layers shape and data type properties. Expected
to receive a list where each element is an input layer tuple. An input layer
tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
@@ -91,7 +96,7 @@
saving the model. Defaulted to True.
default: true
- name: input_signature
- type: List[Tuple[int, ], str]
+ type: List[Tuple[Tuple[int, ], str]]
doc: 'A list of the input layers shape and data type properties. Expected
to receive a list where each element is an input layer tuple. An input layer
tuple is a tuple of: [0] = Layer''s shape, a tuple of integers. [1] = Layer''s
@@ -196,6 +201,7 @@
default_handler: to_onnx
disable_auto_mount: false
allow_empty_resources: true
+ clone_target_dir: ''
env: []
priority_class_name: ''
preemption_mode: prevent
diff --git a/functions/master/onnx_utils/latest/static/item.html b/functions/master/onnx_utils/latest/static/item.html
index 526607d9..07129b01 100644
--- a/functions/master/onnx_utils/latest/static/item.html
+++ b/functions/master/onnx_utils/latest/static/item.html
@@ -40,7 +40,7 @@
with_mlrun: false
filename: onnx_utils.py
handler: to_onnx
- image: mlrun/ml-models
+ image: mlrun/mlrun
kind: job
requirements:
- onnx~=1.13.0
@@ -49,7 +49,7 @@
- onnxmltools~=1.11.0
- tf2onnx~=1.13.0
url: ''
-version: 1.1.1
+version: 1.2.0
diff --git a/functions/master/pii_recognizer/0.1.0/src/item.yaml b/functions/master/pii_recognizer/0.1.0/src/item.yaml
index 922b82cd..5fa9f0ae 100644
--- a/functions/master/pii_recognizer/0.1.0/src/item.yaml
+++ b/functions/master/pii_recognizer/0.1.0/src/item.yaml
@@ -31,3 +31,4 @@ spec:
- https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl
url: ''
version: 0.1.0
+test_valid: False
diff --git a/functions/master/pii_recognizer/0.1.0/static/item.html b/functions/master/pii_recognizer/0.1.0/static/item.html
index bcc8d18c..aab22fee 100644
--- a/functions/master/pii_recognizer/0.1.0/static/item.html
+++ b/functions/master/pii_recognizer/0.1.0/static/item.html
@@ -48,6 +48,7 @@
- https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl
url: ''
version: 0.1.0
+test_valid: False
diff --git a/functions/master/pii_recognizer/latest/src/item.yaml b/functions/master/pii_recognizer/latest/src/item.yaml
index 922b82cd..5fa9f0ae 100644
--- a/functions/master/pii_recognizer/latest/src/item.yaml
+++ b/functions/master/pii_recognizer/latest/src/item.yaml
@@ -31,3 +31,4 @@ spec:
- https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl
url: ''
version: 0.1.0
+test_valid: False
diff --git a/functions/master/pii_recognizer/latest/static/item.html b/functions/master/pii_recognizer/latest/static/item.html
index bcc8d18c..aab22fee 100644
--- a/functions/master/pii_recognizer/latest/static/item.html
+++ b/functions/master/pii_recognizer/latest/static/item.html
@@ -48,6 +48,7 @@
- https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl
url: ''
version: 0.1.0
+test_valid: False
diff --git a/functions/master/sentiment_analysis_serving/1.1.0/src/item.yaml b/functions/master/sentiment_analysis_serving/1.1.0/src/item.yaml
index c74dbd99..d6ec3d7c 100644
--- a/functions/master/sentiment_analysis_serving/1.1.0/src/item.yaml
+++ b/functions/master/sentiment_analysis_serving/1.1.0/src/item.yaml
@@ -25,3 +25,4 @@ spec:
- transformers==3.0.2
url: ''
version: 1.1.0
+test_valid: False
diff --git a/functions/master/sentiment_analysis_serving/1.1.0/static/item.html b/functions/master/sentiment_analysis_serving/1.1.0/static/item.html
index c4bdbcb8..d3f07cba 100644
--- a/functions/master/sentiment_analysis_serving/1.1.0/static/item.html
+++ b/functions/master/sentiment_analysis_serving/1.1.0/static/item.html
@@ -42,6 +42,7 @@
- transformers==3.0.2
url: ''
version: 1.1.0
+test_valid: False
diff --git a/functions/master/sentiment_analysis_serving/latest/src/item.yaml b/functions/master/sentiment_analysis_serving/latest/src/item.yaml
index c74dbd99..d6ec3d7c 100644
--- a/functions/master/sentiment_analysis_serving/latest/src/item.yaml
+++ b/functions/master/sentiment_analysis_serving/latest/src/item.yaml
@@ -25,3 +25,4 @@ spec:
- transformers==3.0.2
url: ''
version: 1.1.0
+test_valid: False
diff --git a/functions/master/sentiment_analysis_serving/latest/static/item.html b/functions/master/sentiment_analysis_serving/latest/static/item.html
index c4bdbcb8..d3f07cba 100644
--- a/functions/master/sentiment_analysis_serving/latest/static/item.html
+++ b/functions/master/sentiment_analysis_serving/latest/static/item.html
@@ -42,6 +42,7 @@
- transformers==3.0.2
url: ''
version: 1.1.0
+test_valid: False
diff --git a/functions/master/tags.json b/functions/master/tags.json
index b929eaff..74657aa1 100644
--- a/functions/master/tags.json
+++ b/functions/master/tags.json
@@ -1 +1 @@
-{"categories": ["model-serving", "data-validation", "etl", "monitoring", "model-testing", "model-training", "data-preparation", "data-analysis", "utils", "feature-store", "machine-learning"], "kind": ["nuclio", "nuclio:serving", "serving", "dask", "job"]}
\ No newline at end of file
+{"categories": ["model-serving", "data-analysis", "data-validation", "model-testing", "model-training", "monitoring", "etl", "machine-learning", "feature-store", "data-preparation", "utils"], "kind": ["serving", "nuclio", "job", "nuclio:serving", "dask"]}
\ No newline at end of file
diff --git a/functions/master/transcribe/0.0.1/src/item.yaml b/functions/master/transcribe/0.0.1/src/item.yaml
index b8cfee2d..13ff048f 100644
--- a/functions/master/transcribe/0.0.1/src/item.yaml
+++ b/functions/master/transcribe/0.0.1/src/item.yaml
@@ -25,3 +25,4 @@ spec:
- tqdm
url: ''
version: 0.0.1
+test_valid: False
diff --git a/functions/master/transcribe/0.0.1/src/test_transcribe.py b/functions/master/transcribe/0.0.1/src/test_transcribe.py
index cab2b663..d8448004 100644
--- a/functions/master/transcribe/0.0.1/src/test_transcribe.py
+++ b/functions/master/transcribe/0.0.1/src/test_transcribe.py
@@ -29,7 +29,7 @@
"The crowd roars, a symphony of passion, "
"as the game writes its unpredictable story on the field of destiny.",
]
-whisper_models = ["tiny_en", "tiny", "base_en", "base_en"]
+whisper_models = ["tiny.en", "tiny", "base.en", "base"]
@pytest.mark.skipif(
condition=sys.version_info[:2] < (3, 8),
diff --git a/functions/master/transcribe/0.0.1/static/item.html b/functions/master/transcribe/0.0.1/static/item.html
index c642100e..53849767 100644
--- a/functions/master/transcribe/0.0.1/static/item.html
+++ b/functions/master/transcribe/0.0.1/static/item.html
@@ -42,6 +42,7 @@
- tqdm
url: ''
version: 0.0.1
+test_valid: False
diff --git a/functions/master/transcribe/latest/src/item.yaml b/functions/master/transcribe/latest/src/item.yaml
index b8cfee2d..13ff048f 100644
--- a/functions/master/transcribe/latest/src/item.yaml
+++ b/functions/master/transcribe/latest/src/item.yaml
@@ -25,3 +25,4 @@ spec:
- tqdm
url: ''
version: 0.0.1
+test_valid: False
diff --git a/functions/master/transcribe/latest/src/test_transcribe.py b/functions/master/transcribe/latest/src/test_transcribe.py
index cab2b663..d8448004 100644
--- a/functions/master/transcribe/latest/src/test_transcribe.py
+++ b/functions/master/transcribe/latest/src/test_transcribe.py
@@ -29,7 +29,7 @@
"The crowd roars, a symphony of passion, "
"as the game writes its unpredictable story on the field of destiny.",
]
-whisper_models = ["tiny_en", "tiny", "base_en", "base_en"]
+whisper_models = ["tiny.en", "tiny", "base.en", "base"]
@pytest.mark.skipif(
condition=sys.version_info[:2] < (3, 8),
diff --git a/functions/master/transcribe/latest/static/item.html b/functions/master/transcribe/latest/static/item.html
index c642100e..53849767 100644
--- a/functions/master/transcribe/latest/static/item.html
+++ b/functions/master/transcribe/latest/static/item.html
@@ -42,6 +42,7 @@
- tqdm
url: ''
version: 0.0.1
+test_valid: False