diff --git a/README.md b/README.md index 42353baa..efe36787 100644 --- a/README.md +++ b/README.md @@ -1,3 +1,47 @@ +### Change log [2024-09-25 13:49:46] +1. Item Updated: `v2_model_server` (from version: `1.2.0` to `1.2.0`) +2. Item Updated: `translate` (from version: `0.1.0` to `0.1.0`) +3. Item Updated: `text_to_audio_generator` (from version: `1.2.0` to `1.2.0`) +4. Item Updated: `gen_class_data` (from version: `1.2.0` to `1.2.0`) +5. Item Updated: `feature_selection` (from version: `1.5.0` to `1.5.0`) +6. Item Updated: `arc_to_parquet` (from version: `1.4.1` to `1.4.1`) +7. Item Updated: `azureml_serving` (from version: `1.1.0` to `1.1.0`) +8. Item Updated: `describe_dask` (from version: `1.1.0` to `1.1.0`) +9. Item Updated: `question_answering` (from version: `0.4.0` to `0.4.0`) +10. Item Updated: `transcribe` (from version: `1.1.0` to `1.1.0`) +11. Item Updated: `sklearn_classifier_dask` (from version: `1.1.1` to `1.1.1`) +12. Item Updated: `pyannote_audio` (from version: `1.2.0` to `1.2.0`) +13. Item Updated: `pii_recognizer` (from version: `0.3.0` to `0.3.0`) +14. Item Updated: `silero_vad` (from version: `1.3.0` to `1.3.0`) +15. Item Updated: `test_classifier` (from version: `1.1.0` to `1.1.0`) +16. Item Updated: `batch_inference_v2` (from version: `2.5.0` to `2.5.0`) +17. Item Updated: `open_archive` (from version: `1.1.0` to `1.1.0`) +18. Item Updated: `hugging_face_serving` (from version: `1.1.0` to `1.1.0`) +19. Item Updated: `batch_inference` (from version: `1.7.0` to `1.7.0`) +20. Item Updated: `sklearn_classifier` (from version: `1.1.1` to `1.1.1`) +21. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`) +22. Item Updated: `model_monitoring_batch` (from version: `1.1.0` to `1.1.0`) +23. Item Updated: `validate_great_expectations` (from version: `1.1.0` to `1.1.0`) +24. Item Updated: `structured_data_generator` (from version: `1.5.0` to `1.5.0`) +25. Item Updated: `describe_spark` (from version: `1.1.0` to `1.1.0`) +26. Item Updated: `onnx_utils` (from version: `1.2.0` to `1.2.0`) +27. Item Updated: `v2_model_tester` (from version: `1.1.0` to `1.1.0`) +28. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`) +29. Item Updated: `send_email` (from version: `1.2.0` to `1.2.0`) +30. Item Updated: `auto_trainer` (from version: `1.7.0` to `1.7.0`) +31. Item Updated: `azureml_utils` (from version: `1.3.0` to `1.3.0`) +32. Item Updated: `load_dataset` (from version: `1.2.0` to `1.2.0`) +33. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`) +34. Item Updated: `describe` (from version: `1.3.0` to `1.3.0`) +35. Item Updated: `mlflow_utils` (from version: `1.0.0` to `1.0.0`) +36. Item Updated: `model_server` (from version: `1.1.0` to `1.1.0`) +37. Item Updated: `noise_reduction` (from version: `1.0.0` to `1.0.0`) +38. Item Updated: `github_utils` (from version: `1.1.0` to `1.1.0`) +39. Item Removed: `churn_server` +40. Item Removed: `coxph_test` +41. Item Removed: `churn_server` +42. Item Removed: `coxph_test` + ### Change log [2024-09-25 13:27:37] 1. Item Updated: `coxph_test` (from version: `1.1.0` to `1.1.0`) 2. Item Updated: `v2_model_server` (from version: `1.2.0` to `1.2.0`) diff --git a/catalog.json b/catalog.json index 648d8fee..d440c3ee 100644 --- a/catalog.json +++ b/catalog.json @@ -1 +1 @@ -{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}}}} \ No newline at end of file +{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}}}} \ No newline at end of file diff --git a/functions/development/catalog.json b/functions/development/catalog.json index c6b986fb..695754e2 100644 --- a/functions/development/catalog.json +++ b/functions/development/catalog.json @@ -1 +1 @@ -{"load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}} \ No newline at end of file +{"load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}} \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/src/README.md b/functions/development/churn_server/0.0.1/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/0.0.1/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/src/churn_server.ipynb b/functions/development/churn_server/0.0.1/src/churn_server.ipynb deleted file mode 100644 index f2cd1830..00000000 --- a/functions/development/churn_server/0.0.1/src/churn_server.ipynb +++ /dev/null @@ -1,216 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# Churn Server\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from cloudpickle import load\n", - "\n", - "\n", - "import mlrun\n", - "class ChurnModel(mlrun.serving.V2ModelServer):\n", - " def load(self):\n", - " \"\"\"\n", - " load multiple models in nested folders, churn model only\n", - " \"\"\"\n", - " clf_model_file, extra_data = self.get_model(\".pkl\")\n", - " self.model = load(open(str(clf_model_file), \"rb\"))\n", - " if \"cox\" in extra_data.keys():\n", - " cox_model_file = extra_data[\"cox\"]\n", - " self.cox_model = load(open(str(cox_model_file), \"rb\"))\n", - " if \"cox/km\" in extra_data.keys():\n", - " km_model_file = extra_data[\"cox/km\"]\n", - " self.km_model = load(open(str(km_model_file), \"rb\"))\n", - "\n", - " def predict(self, body):\n", - " try:\n", - " # we have potentially 3 models to work with:\n", - " #if hasattr(self, \"cox_model\") and hasattr(self, \"km_model\"):\n", - " # hack for now, just predict using one:\n", - " feats = np.asarray(body[\"instances\"], dtype=np.float32).reshape(-1, 23)\n", - " result = self.model.predict(feats, validate_features=False)\n", - " return result.tolist()\n", - " #else:\n", - " # raise Exception(\"models not found\")\n", - " except Exception as e:\n", - " raise Exception(\"Failed to predict %s\" % e)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# nuclio: end-code" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configuration\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mlrun import mlconf\n", - "import os\n", - "mlconf.dbpath = mlconf.dbpath or \"http://mlrun-api:8080\"\n", - "mlconf.artifact_path = mlconf.artifact_path or f\"{os.environ['HOME']}/artifacts\"\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "import pandas as pd\n", - "\n", - "DATA_URL = f\"https://raw.githubusercontent.com/yjb-ds/testdata/master/demos/churn/churn-tests.csv\"\n", - "xtest = pd.read_csv(DATA_URL)\n" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "### Deploy our serving class using as a serverless function\n", - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "\n", - "the `models` dict store model names and the assosiated model **dir** URL (the URL can start with `S3://` and other blob store options), the faster way is to use a shared file volume, we use `.apply(mount_v3io())` to attach a v3io (iguazio data fabric) volume to our function. By default v3io will mount the current user home into the `\\User` function path.\n", - "\n", - "**verify the model dir does contain a valid `model.bst` file**" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from mlrun import import_function\n", - "from mlrun.platforms.other import auto_mount\n", - "import requests" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [], - "source": [ - "fn = import_function(\"hub://churn_server\")\n", - "\n", - "model_dir = os.path.join(mlconf.artifact_path, \"churn\", \"models\")\n", - "fn.add_model(\"churn_server_v1\", model_path=model_dir)\n", - "\n", - "fn.apply(auto_mount())" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tests" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "addr = fn.deploy()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **test our model server using HTTP request**\n", - "We invoke our model serving function using test data, the data vector is specified in the `instances` attribute." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"instances\": xtest.values[:10,:-1].tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import json\n", - "resp = requests.put(addr + \"/churn_server_v1/predict\", json=json.dumps(event_data))\n", - "\n", - "tl = resp.text.replace(\"[\",\"\").replace(\"]\",\"\").split(\",\")\n", - "tl" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**[back to top](#top)**" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/src/churn_server.py b/functions/development/churn_server/0.0.1/src/churn_server.py deleted file mode 100644 index 644f0d60..00000000 --- a/functions/development/churn_server/0.0.1/src/churn_server.py +++ /dev/null @@ -1,41 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["instances"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - - -from mlrun.runtimes import nuclio_init_hook - - -def init_context(context): - nuclio_init_hook(context, globals(), "serving_v2") - - -def handler(context, event): - return context.mlrun_handler(context, event) diff --git a/functions/development/churn_server/0.0.1/src/function.yaml b/functions/development/churn_server/0.0.1/src/function.yaml deleted file mode 100644 index 3b06febc..00000000 --- a/functions/development/churn_server/0.0.1/src/function.yaml +++ /dev/null @@ -1,48 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: b3d36552fbed4f069175bf4b8df8bd4eb9389ee1 - project: default - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /home/kali/functions/churn_server/churn_server.py - spec: - runtime: python:3.6 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5zdGFuY2VzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/churn_server/churn_server.py - secret_sources: [] - affinity: null -verbose: false diff --git a/functions/development/churn_server/0.0.1/src/item.yaml b/functions/development/churn_server/0.0.1/src/item.yaml deleted file mode 100644 index 0aa3e2c4..00000000 --- a/functions/development/churn_server/0.0.1/src/item.yaml +++ /dev/null @@ -1,29 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2021-05-19:22-04 -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: '' -name: churn-server -platformVersion: '' -spec: - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: [] - env: - ENABLE_EXPLAINER: 'False' - customFields: - default_class: ChurnModel -url: '' -version: 0.0.1 diff --git a/functions/development/churn_server/0.0.1/src/requirements.txt b/functions/development/churn_server/0.0.1/src/requirements.txt deleted file mode 100644 index 0061fc07..00000000 --- a/functions/development/churn_server/0.0.1/src/requirements.txt +++ /dev/null @@ -1,3 +0,0 @@ -mlrun -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/src/test_churn_server.py b/functions/development/churn_server/0.0.1/src/test_churn_server.py deleted file mode 100644 index 13fb9d9f..00000000 --- a/functions/development/churn_server/0.0.1/src/test_churn_server.py +++ /dev/null @@ -1,53 +0,0 @@ -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/0.0.1/static/documentation.html b/functions/development/churn_server/0.0.1/static/documentation.html deleted file mode 100644 index 61bce5b6..00000000 --- a/functions/development/churn_server/0.0.1/static/documentation.html +++ /dev/null @@ -1,148 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

churn_server package

-
-

Submodules

-
-
-

churn_server.churn_server module

-
-
-class churn_server.churn_server.ChurnModel(context, name: str, model_path: Optional[str] = None, model=None, protocol=None, **class_args)[source]
-

Bases: mlrun.serving.v2_serving.V2ModelServer

-
-
-load()[source]
-

load multiple models in nested folders, churn model only

-
-
-
-predict(body)[source]
-

model prediction operation

-
-
-
-
-churn_server.churn_server.handler(context, event)[source]
-
-
-
-churn_server.churn_server.init_context(context)[source]
-
-
-
-

Module contents

-
-
-
-
-
-
-
- -
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/static/example.html b/functions/development/churn_server/0.0.1/static/example.html deleted file mode 100644 index 820f3c86..00000000 --- a/functions/development/churn_server/0.0.1/static/example.html +++ /dev/null @@ -1,256 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

Churn Server

-
-
-
import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            # we have potentially 3 models to work with:
-            #if hasattr(self, "cox_model") and hasattr(self, "km_model"):
-                # hack for now, just predict using one:
-            feats = np.asarray(body["instances"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-            #else:
-            #    raise Exception("models not found")
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-
-
-
-
-
# nuclio: end-code
-
-
-
-
-
-

Configuration

-
-
-
from mlrun import mlconf
-import os
-mlconf.dbpath = mlconf.dbpath or "http://mlrun-api:8080"
-mlconf.artifact_path = mlconf.artifact_path or f"{os.environ['HOME']}/artifacts"
-
-
-
-
-
-
-
import pandas as pd
-
-DATA_URL = f"https://raw.githubusercontent.com/yjb-ds/testdata/master/demos/churn/churn-tests.csv"
-xtest = pd.read_csv(DATA_URL)
-
-
-
-
-

-
-

Deploy our serving class using as a serverless function

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources.

-

the models dict store model names and the assosiated model dir URL (the URL can start with S3:// and other blob store options), the faster way is to use a shared file volume, we use .apply(mount_v3io()) to attach a v3io (iguazio data fabric) volume to our function. By default v3io will mount the current user home into the \User function path.

-

verify the model dir does contain a valid model.bst file

-
-
-
from mlrun import import_function
-from mlrun.platforms.other import auto_mount
-import requests
-
-
-
-
-
-
-
fn = import_function("hub://churn_server")
-
-model_dir = os.path.join(mlconf.artifact_path, "churn", "models")
-fn.add_model("churn_server_v1", model_path=model_dir)
-
-fn.apply(auto_mount())
-
-
-
-
-
-
-
-

Tests

-
-
-
addr = fn.deploy()
-
-
-
-
-
-

test our model server using HTTP request

-

We invoke our model serving function using test data, the data vector is specified in the instances attribute.

-
-
-
# KFServing protocol event
-event_data = {"instances": xtest.values[:10,:-1].tolist()}
-
-
-
-
-
-
-
import json
-resp = requests.put(addr + "/churn_server_v1/predict", json=json.dumps(event_data))
-
-tl = resp.text.replace("[","").replace("]","").split(",")
-tl
-
-
-
-
-

back to top

-
-
-
-
-
-
-
-
- -
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/static/function.html b/functions/development/churn_server/0.0.1/static/function.html deleted file mode 100644 index 14728c92..00000000 --- a/functions/development/churn_server/0.0.1/static/function.html +++ /dev/null @@ -1,70 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: b3d36552fbed4f069175bf4b8df8bd4eb9389ee1
-  project: default
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /home/kali/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.6
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5zdGFuY2VzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/churn_server/churn_server.py
-  secret_sources: []
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/static/item.html b/functions/development/churn_server/0.0.1/static/item.html deleted file mode 100644 index dced0a13..00000000 --- a/functions/development/churn_server/0.0.1/static/item.html +++ /dev/null @@ -1,51 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-05-19:22-04
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: ''
-name: churn-server
-platformVersion: ''
-spec:
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements: []
-  env:
-    ENABLE_EXPLAINER: 'False'
-  customFields:
-    default_class: ChurnModel
-url: ''
-version: 0.0.1
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.0.1/static/source.html b/functions/development/churn_server/0.0.1/static/source.html deleted file mode 100644 index eec0f14b..00000000 --- a/functions/development/churn_server/0.0.1/static/source.html +++ /dev/null @@ -1,63 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["instances"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
-    nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
-    return context.mlrun_handler(context, event)
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/src/README.md b/functions/development/churn_server/0.8.0/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/0.8.0/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/src/churn_server.ipynb b/functions/development/churn_server/0.8.0/src/churn_server.ipynb deleted file mode 100644 index b8a96277..00000000 --- a/functions/development/churn_server/0.8.0/src/churn_server.ipynb +++ /dev/null @@ -1,503 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# **Churn Server**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n", - "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction).
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Testing the function locally](#Testing-the-function-locally)\n", - "4. [Testing the function remotely](#Testing-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Following packages are required, make sure to install\n", - "# !pip install xgboost==1.3.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up models path\n", - "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "# Importing the function from the hub\n", - "fn = mlrun.import_function(\"hub://churn_server:development\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "# Manually specifying needed packages \n", - "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n", - "\n", - "# Adding the model \n", - "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function locally**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> Note that this function is a serving function, hence not needs to run, but deployed.
\n", - "\n", - "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n", - "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n", - "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n" - ] - } - ], - "source": [ - "# When mocking, class has to be present\n", - "from churn_server import *\n", - "\n", - "# Mocking function\n", - "server = fn.to_mock_server()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " gender senior partner deps tenure PhoneService MultipleLines \\\n", - "0 0 0 1 0 27 1 0 \n", - "1 0 1 0 0 1 1 1 \n", - "2 1 0 0 0 1 1 0 \n", - "3 0 0 0 0 53 1 1 \n", - "4 0 0 0 0 43 1 1 \n", - "\n", - " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n", - "0 1 0 0 ... 1 \n", - "1 0 0 0 ... 1 \n", - "2 0 0 0 ... 1 \n", - "3 0 1 1 ... 0 \n", - "4 0 1 1 ... 1 \n", - "\n", - " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n", - "0 101.90 2.0 1 0 1 0 \n", - "1 85.70 0.0 1 0 0 0 \n", - "2 69.55 0.0 1 0 0 0 \n", - "3 105.55 4.0 1 0 0 1 \n", - "4 104.60 3.0 1 0 0 1 \n", - "\n", - " Payment_1 Payment_2 Payment_3 \n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "#declaring test_set path\n", - "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n", - "\n", - "# Getting the data\n", - "x_test = pd.read_csv(test_set_path)\n", - "y_test = x_test['labels']\n", - "x_test.drop(['labels'],axis=1,inplace=True)\n", - "x_test.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"inputs\": x_test.values.tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "When mocking to server, returned dict has the following fields : id, model_name, outputs\n" - ] - } - ], - "source": [ - "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n", - "2021-10-14 06:10:20 (info) Deploying function\n", - "2021-10-14 06:10:20 (info) Building\n", - "2021-10-14 06:10:20 (info) Staging files and preparing base images\n", - "2021-10-14 06:10:20 (info) Building processor image\n", - "2021-10-14 06:10:21 (info) Build complete\n", - "2021-10-14 06:10:29 (info) Function deploy complete\n", - "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n" - ] - } - ], - "source": [ - "address = fn.deploy()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model's accuracy : 0.7913907284768212\n" - ] - } - ], - "source": [ - "import json\n", - "import requests\n", - "\n", - "# using requests to predict\n", - "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n", - "\n", - "# returned data is a string \n", - "y_predict = json.loads(response.text)['outputs']\n", - "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n", - "print(f\"model's accuracy : {accuracy}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#Churn-Server)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/churn_server/0.8.0/src/churn_server.py b/functions/development/churn_server/0.8.0/src/churn_server.py deleted file mode 100644 index a726c74d..00000000 --- a/functions/development/churn_server/0.8.0/src/churn_server.py +++ /dev/null @@ -1,41 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - - -from mlrun.runtimes import nuclio_init_hook - - -def init_context(context): - nuclio_init_hook(context, globals(), "serving_v2") - - -def handler(context, event): - return context.mlrun_handler(context, event) diff --git a/functions/development/churn_server/0.8.0/src/function.yaml b/functions/development/churn_server/0.8.0/src/function.yaml deleted file mode 100644 index 27c1ccf1..00000000 --- a/functions/development/churn_server/0.8.0/src/function.yaml +++ /dev/null @@ -1,51 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8 - project: default - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py - spec: - runtime: python:3.6 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: - - python -m pip install xgboost==1.3.1 lifelines==0.22.8 - code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py - origin_filename: /User/functions/churn_server/churn_server.py - secret_sources: [] - disable_auto_mount: false - affinity: null -verbose: false diff --git a/functions/development/churn_server/0.8.0/src/item.yaml b/functions/development/churn_server/0.8.0/src/item.yaml deleted file mode 100644 index dac569eb..00000000 --- a/functions/development/churn_server/0.8.0/src/item.yaml +++ /dev/null @@ -1,31 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2021-05-19:22-04 -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: 0.8.0 -name: churn-server -platformVersion: 3.2.0 -spec: - customFields: - default_class: ChurnModel - env: - ENABLE_EXPLAINER: 'False' - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: - - xgboost==1.3.1 - - lifelines==0.22.8 -url: '' -version: 0.8.0 diff --git a/functions/development/churn_server/0.8.0/src/requirements.txt b/functions/development/churn_server/0.8.0/src/requirements.txt deleted file mode 100644 index 0061fc07..00000000 --- a/functions/development/churn_server/0.8.0/src/requirements.txt +++ /dev/null @@ -1,3 +0,0 @@ -mlrun -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/src/test_churn_server.py b/functions/development/churn_server/0.8.0/src/test_churn_server.py deleted file mode 100644 index 13fb9d9f..00000000 --- a/functions/development/churn_server/0.8.0/src/test_churn_server.py +++ /dev/null @@ -1,53 +0,0 @@ -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/0.8.0/static/documentation.html b/functions/development/churn_server/0.8.0/static/documentation.html deleted file mode 100644 index 8535a8ba..00000000 --- a/functions/development/churn_server/0.8.0/static/documentation.html +++ /dev/null @@ -1,148 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

churn_server package

-
-

Submodules

-
-
-

churn_server.churn_server module

-
-
-class churn_server.churn_server.ChurnModel(context=None, name: Optional[str] = None, model_path: Optional[str] = None, model=None, protocol=None, **kwargs)[source]
-

Bases: mlrun.serving.v2_serving.V2ModelServer

-
-
-load()[source]
-

load multiple models in nested folders, churn model only

-
-
-
-predict(body)[source]
-

model prediction operation

-
-
-
-
-churn_server.churn_server.handler(context, event)[source]
-
-
-
-churn_server.churn_server.init_context(context)[source]
-
-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/static/example.html b/functions/development/churn_server/0.8.0/static/example.html deleted file mode 100644 index db2418e9..00000000 --- a/functions/development/churn_server/0.8.0/static/example.html +++ /dev/null @@ -1,484 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

Churn Server

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources. -Deploying the serving function will provide us an http endpoint that can handle requests in real time. -This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer and xgb_trainer functions from the function marketplace repository.

-
-

Steps

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Testing the function locally

  6. -
  7. Testing the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
# Following packages are required, make sure to install
-# !pip install xgboost==1.3.1
-
-
-
-
-
-
-

Setup function parameters

-
-
-
# Setting up models path
-xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'
-
-
-
-
-
-
-

Importing the function

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-# Importing the function from the hub
-fn = mlrun.import_function("hub://churn_server:development")
-fn.apply(mlrun.auto_mount())
-
-# Manually specifying needed packages 
-fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']
-
-# Adding the model 
-fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')
-
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-

Testing the function locally

-
-

Note that this function is a serving function, hence not needs to run, but deployed.

-
-

in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.

-
-
-
# When mocking, class has to be present
-from churn_server import *
-
-# Mocking function
-server = fn.to_mock_server()
-
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
import pandas as pd
-
-#declaring test_set path
-test_set_path = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv"
-
-# Getting the data
-x_test = pd.read_csv(test_set_path)
-y_test = x_test['labels']
-x_test.drop(['labels'],axis=1,inplace=True)
-x_test.head()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
-

5 rows × 23 columns

-
-
-
-
-
# KFServing protocol event
-event_data = {"inputs": x_test.values.tolist()}
-
-
-
-
-
-
-
response = server.test(path='/v2/models/xgb_model/predict',body=event_data)
-
-
-
-
-
-
-
print(f'When mocking to server, returned dict has the following fields : {", ".join([x for x in response.keys()])}')
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-

Testing the function remotely

-
-
-
address = fn.deploy()
-
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20  (info) Deploying function
-2021-10-14 06:10:20  (info) Building
-2021-10-14 06:10:20  (info) Staging files and preparing base images
-2021-10-14 06:10:20  (info) Building processor image
-2021-10-14 06:10:21  (info) Build complete
-2021-10-14 06:10:29  (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
import json
-import requests
-
-# using requests to predict
-response = requests.put(address + "/v2/models/xgb_model/predict", json=json.dumps(event_data))
-
-# returned data is a string 
-y_predict = json.loads(response.text)['outputs']
-accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)
-print(f"model's accuracy : {accuracy}")
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-

Back to the top

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/static/function.html b/functions/development/churn_server/0.8.0/static/function.html deleted file mode 100644 index ba5a268b..00000000 --- a/functions/development/churn_server/0.8.0/static/function.html +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
-  project: default
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.6
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands:
-    - python -m pip install xgboost==1.3.1 lifelines==0.22.8
-    code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
-    origin_filename: /User/functions/churn_server/churn_server.py
-  secret_sources: []
-  disable_auto_mount: false
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/static/item.html b/functions/development/churn_server/0.8.0/static/item.html deleted file mode 100644 index df85ce3e..00000000 --- a/functions/development/churn_server/0.8.0/static/item.html +++ /dev/null @@ -1,53 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-05-19:22-04
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
-  customFields:
-    default_class: ChurnModel
-  env:
-    ENABLE_EXPLAINER: 'False'
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements:
-  - xgboost==1.3.1
-  - lifelines==0.22.8
-url: ''
-version: 0.8.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.8.0/static/source.html b/functions/development/churn_server/0.8.0/static/source.html deleted file mode 100644 index d7188095..00000000 --- a/functions/development/churn_server/0.8.0/static/source.html +++ /dev/null @@ -1,63 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
-    nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
-    return context.mlrun_handler(context, event)
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/src/README.md b/functions/development/churn_server/0.9.0/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/0.9.0/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/src/churn_server.ipynb b/functions/development/churn_server/0.9.0/src/churn_server.ipynb deleted file mode 100644 index b8a96277..00000000 --- a/functions/development/churn_server/0.9.0/src/churn_server.ipynb +++ /dev/null @@ -1,503 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# **Churn Server**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n", - "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction).
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Testing the function locally](#Testing-the-function-locally)\n", - "4. [Testing the function remotely](#Testing-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Following packages are required, make sure to install\n", - "# !pip install xgboost==1.3.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up models path\n", - "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "# Importing the function from the hub\n", - "fn = mlrun.import_function(\"hub://churn_server:development\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "# Manually specifying needed packages \n", - "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n", - "\n", - "# Adding the model \n", - "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function locally**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> Note that this function is a serving function, hence not needs to run, but deployed.
\n", - "\n", - "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n", - "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n", - "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n" - ] - } - ], - "source": [ - "# When mocking, class has to be present\n", - "from churn_server import *\n", - "\n", - "# Mocking function\n", - "server = fn.to_mock_server()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " gender senior partner deps tenure PhoneService MultipleLines \\\n", - "0 0 0 1 0 27 1 0 \n", - "1 0 1 0 0 1 1 1 \n", - "2 1 0 0 0 1 1 0 \n", - "3 0 0 0 0 53 1 1 \n", - "4 0 0 0 0 43 1 1 \n", - "\n", - " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n", - "0 1 0 0 ... 1 \n", - "1 0 0 0 ... 1 \n", - "2 0 0 0 ... 1 \n", - "3 0 1 1 ... 0 \n", - "4 0 1 1 ... 1 \n", - "\n", - " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n", - "0 101.90 2.0 1 0 1 0 \n", - "1 85.70 0.0 1 0 0 0 \n", - "2 69.55 0.0 1 0 0 0 \n", - "3 105.55 4.0 1 0 0 1 \n", - "4 104.60 3.0 1 0 0 1 \n", - "\n", - " Payment_1 Payment_2 Payment_3 \n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "#declaring test_set path\n", - "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n", - "\n", - "# Getting the data\n", - "x_test = pd.read_csv(test_set_path)\n", - "y_test = x_test['labels']\n", - "x_test.drop(['labels'],axis=1,inplace=True)\n", - "x_test.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"inputs\": x_test.values.tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "When mocking to server, returned dict has the following fields : id, model_name, outputs\n" - ] - } - ], - "source": [ - "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n", - "2021-10-14 06:10:20 (info) Deploying function\n", - "2021-10-14 06:10:20 (info) Building\n", - "2021-10-14 06:10:20 (info) Staging files and preparing base images\n", - "2021-10-14 06:10:20 (info) Building processor image\n", - "2021-10-14 06:10:21 (info) Build complete\n", - "2021-10-14 06:10:29 (info) Function deploy complete\n", - "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n" - ] - } - ], - "source": [ - "address = fn.deploy()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model's accuracy : 0.7913907284768212\n" - ] - } - ], - "source": [ - "import json\n", - "import requests\n", - "\n", - "# using requests to predict\n", - "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n", - "\n", - "# returned data is a string \n", - "y_predict = json.loads(response.text)['outputs']\n", - "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n", - "print(f\"model's accuracy : {accuracy}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#Churn-Server)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/churn_server/0.9.0/src/churn_server.py b/functions/development/churn_server/0.9.0/src/churn_server.py deleted file mode 100644 index a726c74d..00000000 --- a/functions/development/churn_server/0.9.0/src/churn_server.py +++ /dev/null @@ -1,41 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - - -from mlrun.runtimes import nuclio_init_hook - - -def init_context(context): - nuclio_init_hook(context, globals(), "serving_v2") - - -def handler(context, event): - return context.mlrun_handler(context, event) diff --git a/functions/development/churn_server/0.9.0/src/function.yaml b/functions/development/churn_server/0.9.0/src/function.yaml deleted file mode 100644 index 7a73c11a..00000000 --- a/functions/development/churn_server/0.9.0/src/function.yaml +++ /dev/null @@ -1,51 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8 - project: '' - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py - spec: - runtime: python:3.6 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: - - python -m pip install xgboost==1.3.1 lifelines==0.22.8 - code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py - origin_filename: /User/functions/churn_server/churn_server.py - secret_sources: [] - disable_auto_mount: false - affinity: null -verbose: false diff --git a/functions/development/churn_server/0.9.0/src/item.yaml b/functions/development/churn_server/0.9.0/src/item.yaml deleted file mode 100644 index 287396bb..00000000 --- a/functions/development/churn_server/0.9.0/src/item.yaml +++ /dev/null @@ -1,31 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2021-11-18:12-28 -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: 0.8.0 -name: churn-server -platformVersion: 3.2.0 -spec: - customFields: - default_class: ChurnModel - env: - ENABLE_EXPLAINER: 'False' - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: - - xgboost==1.3.1 - - lifelines==0.22.8 -url: '' -version: 0.9.0 diff --git a/functions/development/churn_server/0.9.0/src/requirements.txt b/functions/development/churn_server/0.9.0/src/requirements.txt deleted file mode 100644 index 0061fc07..00000000 --- a/functions/development/churn_server/0.9.0/src/requirements.txt +++ /dev/null @@ -1,3 +0,0 @@ -mlrun -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/src/test_churn_server.py b/functions/development/churn_server/0.9.0/src/test_churn_server.py deleted file mode 100644 index 13fb9d9f..00000000 --- a/functions/development/churn_server/0.9.0/src/test_churn_server.py +++ /dev/null @@ -1,53 +0,0 @@ -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/0.9.0/static/documentation.html b/functions/development/churn_server/0.9.0/static/documentation.html deleted file mode 100644 index 57896b83..00000000 --- a/functions/development/churn_server/0.9.0/static/documentation.html +++ /dev/null @@ -1,125 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

churn_server package

-
-

Submodules

-
-
-

churn_server.churn_server module

-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/static/example.html b/functions/development/churn_server/0.9.0/static/example.html deleted file mode 100644 index db2418e9..00000000 --- a/functions/development/churn_server/0.9.0/static/example.html +++ /dev/null @@ -1,484 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

Churn Server

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources. -Deploying the serving function will provide us an http endpoint that can handle requests in real time. -This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer and xgb_trainer functions from the function marketplace repository.

-
-

Steps

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Testing the function locally

  6. -
  7. Testing the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
# Following packages are required, make sure to install
-# !pip install xgboost==1.3.1
-
-
-
-
-
-
-

Setup function parameters

-
-
-
# Setting up models path
-xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'
-
-
-
-
-
-
-

Importing the function

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-# Importing the function from the hub
-fn = mlrun.import_function("hub://churn_server:development")
-fn.apply(mlrun.auto_mount())
-
-# Manually specifying needed packages 
-fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']
-
-# Adding the model 
-fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')
-
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-

Testing the function locally

-
-

Note that this function is a serving function, hence not needs to run, but deployed.

-
-

in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.

-
-
-
# When mocking, class has to be present
-from churn_server import *
-
-# Mocking function
-server = fn.to_mock_server()
-
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
import pandas as pd
-
-#declaring test_set path
-test_set_path = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv"
-
-# Getting the data
-x_test = pd.read_csv(test_set_path)
-y_test = x_test['labels']
-x_test.drop(['labels'],axis=1,inplace=True)
-x_test.head()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
-

5 rows × 23 columns

-
-
-
-
-
# KFServing protocol event
-event_data = {"inputs": x_test.values.tolist()}
-
-
-
-
-
-
-
response = server.test(path='/v2/models/xgb_model/predict',body=event_data)
-
-
-
-
-
-
-
print(f'When mocking to server, returned dict has the following fields : {", ".join([x for x in response.keys()])}')
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-

Testing the function remotely

-
-
-
address = fn.deploy()
-
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20  (info) Deploying function
-2021-10-14 06:10:20  (info) Building
-2021-10-14 06:10:20  (info) Staging files and preparing base images
-2021-10-14 06:10:20  (info) Building processor image
-2021-10-14 06:10:21  (info) Build complete
-2021-10-14 06:10:29  (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
import json
-import requests
-
-# using requests to predict
-response = requests.put(address + "/v2/models/xgb_model/predict", json=json.dumps(event_data))
-
-# returned data is a string 
-y_predict = json.loads(response.text)['outputs']
-accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)
-print(f"model's accuracy : {accuracy}")
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-

Back to the top

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/static/function.html b/functions/development/churn_server/0.9.0/static/function.html deleted file mode 100644 index 171a9472..00000000 --- a/functions/development/churn_server/0.9.0/static/function.html +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
-  project: ''
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.6
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands:
-    - python -m pip install xgboost==1.3.1 lifelines==0.22.8
-    code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
-    origin_filename: /User/functions/churn_server/churn_server.py
-  secret_sources: []
-  disable_auto_mount: false
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/static/item.html b/functions/development/churn_server/0.9.0/static/item.html deleted file mode 100644 index 1cc9b01d..00000000 --- a/functions/development/churn_server/0.9.0/static/item.html +++ /dev/null @@ -1,53 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
-  customFields:
-    default_class: ChurnModel
-  env:
-    ENABLE_EXPLAINER: 'False'
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements:
-  - xgboost==1.3.1
-  - lifelines==0.22.8
-url: ''
-version: 0.9.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/0.9.0/static/source.html b/functions/development/churn_server/0.9.0/static/source.html deleted file mode 100644 index d7188095..00000000 --- a/functions/development/churn_server/0.9.0/static/source.html +++ /dev/null @@ -1,63 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
-    nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
-    return context.mlrun_handler(context, event)
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/src/README.md b/functions/development/churn_server/1.0.0/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/1.0.0/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/src/churn_server.ipynb b/functions/development/churn_server/1.0.0/src/churn_server.ipynb deleted file mode 100644 index b8a96277..00000000 --- a/functions/development/churn_server/1.0.0/src/churn_server.ipynb +++ /dev/null @@ -1,503 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# **Churn Server**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n", - "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction).
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Testing the function locally](#Testing-the-function-locally)\n", - "4. [Testing the function remotely](#Testing-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Following packages are required, make sure to install\n", - "# !pip install xgboost==1.3.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up models path\n", - "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "# Importing the function from the hub\n", - "fn = mlrun.import_function(\"hub://churn_server:development\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "# Manually specifying needed packages \n", - "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n", - "\n", - "# Adding the model \n", - "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function locally**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> Note that this function is a serving function, hence not needs to run, but deployed.
\n", - "\n", - "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n", - "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n", - "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n" - ] - } - ], - "source": [ - "# When mocking, class has to be present\n", - "from churn_server import *\n", - "\n", - "# Mocking function\n", - "server = fn.to_mock_server()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " gender senior partner deps tenure PhoneService MultipleLines \\\n", - "0 0 0 1 0 27 1 0 \n", - "1 0 1 0 0 1 1 1 \n", - "2 1 0 0 0 1 1 0 \n", - "3 0 0 0 0 53 1 1 \n", - "4 0 0 0 0 43 1 1 \n", - "\n", - " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n", - "0 1 0 0 ... 1 \n", - "1 0 0 0 ... 1 \n", - "2 0 0 0 ... 1 \n", - "3 0 1 1 ... 0 \n", - "4 0 1 1 ... 1 \n", - "\n", - " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n", - "0 101.90 2.0 1 0 1 0 \n", - "1 85.70 0.0 1 0 0 0 \n", - "2 69.55 0.0 1 0 0 0 \n", - "3 105.55 4.0 1 0 0 1 \n", - "4 104.60 3.0 1 0 0 1 \n", - "\n", - " Payment_1 Payment_2 Payment_3 \n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "#declaring test_set path\n", - "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n", - "\n", - "# Getting the data\n", - "x_test = pd.read_csv(test_set_path)\n", - "y_test = x_test['labels']\n", - "x_test.drop(['labels'],axis=1,inplace=True)\n", - "x_test.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"inputs\": x_test.values.tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "When mocking to server, returned dict has the following fields : id, model_name, outputs\n" - ] - } - ], - "source": [ - "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n", - "2021-10-14 06:10:20 (info) Deploying function\n", - "2021-10-14 06:10:20 (info) Building\n", - "2021-10-14 06:10:20 (info) Staging files and preparing base images\n", - "2021-10-14 06:10:20 (info) Building processor image\n", - "2021-10-14 06:10:21 (info) Build complete\n", - "2021-10-14 06:10:29 (info) Function deploy complete\n", - "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n" - ] - } - ], - "source": [ - "address = fn.deploy()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model's accuracy : 0.7913907284768212\n" - ] - } - ], - "source": [ - "import json\n", - "import requests\n", - "\n", - "# using requests to predict\n", - "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n", - "\n", - "# returned data is a string \n", - "y_predict = json.loads(response.text)['outputs']\n", - "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n", - "print(f\"model's accuracy : {accuracy}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#Churn-Server)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/churn_server/1.0.0/src/churn_server.py b/functions/development/churn_server/1.0.0/src/churn_server.py deleted file mode 100644 index a726c74d..00000000 --- a/functions/development/churn_server/1.0.0/src/churn_server.py +++ /dev/null @@ -1,41 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - - -from mlrun.runtimes import nuclio_init_hook - - -def init_context(context): - nuclio_init_hook(context, globals(), "serving_v2") - - -def handler(context, event): - return context.mlrun_handler(context, event) diff --git a/functions/development/churn_server/1.0.0/src/function.yaml b/functions/development/churn_server/1.0.0/src/function.yaml deleted file mode 100644 index 7a73c11a..00000000 --- a/functions/development/churn_server/1.0.0/src/function.yaml +++ /dev/null @@ -1,51 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8 - project: '' - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py - spec: - runtime: python:3.6 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: - - python -m pip install xgboost==1.3.1 lifelines==0.22.8 - code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py - origin_filename: /User/functions/churn_server/churn_server.py - secret_sources: [] - disable_auto_mount: false - affinity: null -verbose: false diff --git a/functions/development/churn_server/1.0.0/src/item.yaml b/functions/development/churn_server/1.0.0/src/item.yaml deleted file mode 100644 index 99efa751..00000000 --- a/functions/development/churn_server/1.0.0/src/item.yaml +++ /dev/null @@ -1,31 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2021-11-18:12-28 -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: 0.8.0 -name: churn-server -platformVersion: 3.2.0 -spec: - customFields: - default_class: ChurnModel - env: - ENABLE_EXPLAINER: 'False' - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: - - xgboost==1.3.1 - - lifelines==0.22.8 -url: '' -version: 1.0.0 diff --git a/functions/development/churn_server/1.0.0/src/requirements.txt b/functions/development/churn_server/1.0.0/src/requirements.txt deleted file mode 100644 index 0061fc07..00000000 --- a/functions/development/churn_server/1.0.0/src/requirements.txt +++ /dev/null @@ -1,3 +0,0 @@ -mlrun -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/src/test_churn_server.py b/functions/development/churn_server/1.0.0/src/test_churn_server.py deleted file mode 100644 index 13fb9d9f..00000000 --- a/functions/development/churn_server/1.0.0/src/test_churn_server.py +++ /dev/null @@ -1,53 +0,0 @@ -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/1.0.0/static/documentation.html b/functions/development/churn_server/1.0.0/static/documentation.html deleted file mode 100644 index e852cdbd..00000000 --- a/functions/development/churn_server/1.0.0/static/documentation.html +++ /dev/null @@ -1,151 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

churn_server package

-
-

Submodules

-
-
-

churn_server.churn_server module

-
-
-class churn_server.churn_server.ChurnModel(context=None, name: Optional[str] = None, model_path: Optional[str] = None, model=None, protocol=None, input_path: Optional[str] = None, result_path: Optional[str] = None, **kwargs)[source]
-

Bases: mlrun.serving.v2_serving.V2ModelServer

-
-
-load()[source]
-

load multiple models in nested folders, churn model only

-
-
-
-predict(body)[source]
-

model prediction operation

-
-
-
-
-churn_server.churn_server.handler(context, event)[source]
-
-
-
-churn_server.churn_server.init_context(context)[source]
-
-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/static/example.html b/functions/development/churn_server/1.0.0/static/example.html deleted file mode 100644 index 98be3699..00000000 --- a/functions/development/churn_server/1.0.0/static/example.html +++ /dev/null @@ -1,487 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

Churn Server

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources. -Deploying the serving function will provide us an http endpoint that can handle requests in real time. -This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer and xgb_trainer functions from the function marketplace repository.

-
-

Steps

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Testing the function locally

  6. -
  7. Testing the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
# Following packages are required, make sure to install
-# !pip install xgboost==1.3.1
-
-
-
-
-
-
-

Setup function parameters

-
-
-
# Setting up models path
-xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'
-
-
-
-
-
-
-

Importing the function

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-# Importing the function from the hub
-fn = mlrun.import_function("hub://churn_server:development")
-fn.apply(mlrun.auto_mount())
-
-# Manually specifying needed packages 
-fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']
-
-# Adding the model 
-fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')
-
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-

Testing the function locally

-
-

Note that this function is a serving function, hence not needs to run, but deployed.

-
-

in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.

-
-
-
# When mocking, class has to be present
-from churn_server import *
-
-# Mocking function
-server = fn.to_mock_server()
-
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
import pandas as pd
-
-#declaring test_set path
-test_set_path = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv"
-
-# Getting the data
-x_test = pd.read_csv(test_set_path)
-y_test = x_test['labels']
-x_test.drop(['labels'],axis=1,inplace=True)
-x_test.head()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
-

5 rows × 23 columns

-
-
-
-
-
# KFServing protocol event
-event_data = {"inputs": x_test.values.tolist()}
-
-
-
-
-
-
-
response = server.test(path='/v2/models/xgb_model/predict',body=event_data)
-
-
-
-
-
-
-
print(f'When mocking to server, returned dict has the following fields : {", ".join([x for x in response.keys()])}')
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-

Testing the function remotely

-
-
-
address = fn.deploy()
-
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20  (info) Deploying function
-2021-10-14 06:10:20  (info) Building
-2021-10-14 06:10:20  (info) Staging files and preparing base images
-2021-10-14 06:10:20  (info) Building processor image
-2021-10-14 06:10:21  (info) Build complete
-2021-10-14 06:10:29  (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
import json
-import requests
-
-# using requests to predict
-response = requests.put(address + "/v2/models/xgb_model/predict", json=json.dumps(event_data))
-
-# returned data is a string 
-y_predict = json.loads(response.text)['outputs']
-accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)
-print(f"model's accuracy : {accuracy}")
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-

Back to the top

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/static/function.html b/functions/development/churn_server/1.0.0/static/function.html deleted file mode 100644 index 171a9472..00000000 --- a/functions/development/churn_server/1.0.0/static/function.html +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
-  project: ''
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.6
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands:
-    - python -m pip install xgboost==1.3.1 lifelines==0.22.8
-    code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
-    origin_filename: /User/functions/churn_server/churn_server.py
-  secret_sources: []
-  disable_auto_mount: false
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/static/item.html b/functions/development/churn_server/1.0.0/static/item.html deleted file mode 100644 index f1c9c3d9..00000000 --- a/functions/development/churn_server/1.0.0/static/item.html +++ /dev/null @@ -1,53 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
-  customFields:
-    default_class: ChurnModel
-  env:
-    ENABLE_EXPLAINER: 'False'
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements:
-  - xgboost==1.3.1
-  - lifelines==0.22.8
-url: ''
-version: 1.0.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.0.0/static/source.html b/functions/development/churn_server/1.0.0/static/source.html deleted file mode 100644 index d7188095..00000000 --- a/functions/development/churn_server/1.0.0/static/source.html +++ /dev/null @@ -1,63 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
-    nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
-    return context.mlrun_handler(context, event)
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/src/README.md b/functions/development/churn_server/1.1.0/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/1.1.0/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/src/churn_server.ipynb b/functions/development/churn_server/1.1.0/src/churn_server.ipynb deleted file mode 100644 index b8a96277..00000000 --- a/functions/development/churn_server/1.1.0/src/churn_server.ipynb +++ /dev/null @@ -1,503 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# **Churn Server**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n", - "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction).
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Testing the function locally](#Testing-the-function-locally)\n", - "4. [Testing the function remotely](#Testing-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Following packages are required, make sure to install\n", - "# !pip install xgboost==1.3.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up models path\n", - "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "# Importing the function from the hub\n", - "fn = mlrun.import_function(\"hub://churn_server:development\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "# Manually specifying needed packages \n", - "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n", - "\n", - "# Adding the model \n", - "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function locally**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> Note that this function is a serving function, hence not needs to run, but deployed.
\n", - "\n", - "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n", - "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n", - "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n" - ] - } - ], - "source": [ - "# When mocking, class has to be present\n", - "from churn_server import *\n", - "\n", - "# Mocking function\n", - "server = fn.to_mock_server()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " gender senior partner deps tenure PhoneService MultipleLines \\\n", - "0 0 0 1 0 27 1 0 \n", - "1 0 1 0 0 1 1 1 \n", - "2 1 0 0 0 1 1 0 \n", - "3 0 0 0 0 53 1 1 \n", - "4 0 0 0 0 43 1 1 \n", - "\n", - " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n", - "0 1 0 0 ... 1 \n", - "1 0 0 0 ... 1 \n", - "2 0 0 0 ... 1 \n", - "3 0 1 1 ... 0 \n", - "4 0 1 1 ... 1 \n", - "\n", - " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n", - "0 101.90 2.0 1 0 1 0 \n", - "1 85.70 0.0 1 0 0 0 \n", - "2 69.55 0.0 1 0 0 0 \n", - "3 105.55 4.0 1 0 0 1 \n", - "4 104.60 3.0 1 0 0 1 \n", - "\n", - " Payment_1 Payment_2 Payment_3 \n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "#declaring test_set path\n", - "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n", - "\n", - "# Getting the data\n", - "x_test = pd.read_csv(test_set_path)\n", - "y_test = x_test['labels']\n", - "x_test.drop(['labels'],axis=1,inplace=True)\n", - "x_test.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"inputs\": x_test.values.tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "When mocking to server, returned dict has the following fields : id, model_name, outputs\n" - ] - } - ], - "source": [ - "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n", - "2021-10-14 06:10:20 (info) Deploying function\n", - "2021-10-14 06:10:20 (info) Building\n", - "2021-10-14 06:10:20 (info) Staging files and preparing base images\n", - "2021-10-14 06:10:20 (info) Building processor image\n", - "2021-10-14 06:10:21 (info) Build complete\n", - "2021-10-14 06:10:29 (info) Function deploy complete\n", - "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n" - ] - } - ], - "source": [ - "address = fn.deploy()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model's accuracy : 0.7913907284768212\n" - ] - } - ], - "source": [ - "import json\n", - "import requests\n", - "\n", - "# using requests to predict\n", - "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n", - "\n", - "# returned data is a string \n", - "y_predict = json.loads(response.text)['outputs']\n", - "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n", - "print(f\"model's accuracy : {accuracy}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#Churn-Server)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/churn_server/1.1.0/src/churn_server.py b/functions/development/churn_server/1.1.0/src/churn_server.py deleted file mode 100644 index 55f37f28..00000000 --- a/functions/development/churn_server/1.1.0/src/churn_server.py +++ /dev/null @@ -1,55 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - - -from mlrun.runtimes import nuclio_init_hook - - -def init_context(context): - nuclio_init_hook(context, globals(), "serving_v2") - - -def handler(context, event): - return context.mlrun_handler(context, event) diff --git a/functions/development/churn_server/1.1.0/src/function.yaml b/functions/development/churn_server/1.1.0/src/function.yaml deleted file mode 100644 index 7a73c11a..00000000 --- a/functions/development/churn_server/1.1.0/src/function.yaml +++ /dev/null @@ -1,51 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8 - project: '' - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py - spec: - runtime: python:3.6 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: - - python -m pip install xgboost==1.3.1 lifelines==0.22.8 - code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py - origin_filename: /User/functions/churn_server/churn_server.py - secret_sources: [] - disable_auto_mount: false - affinity: null -verbose: false diff --git a/functions/development/churn_server/1.1.0/src/item.yaml b/functions/development/churn_server/1.1.0/src/item.yaml deleted file mode 100644 index 3a3b4b6b..00000000 --- a/functions/development/churn_server/1.1.0/src/item.yaml +++ /dev/null @@ -1,32 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2022-08-28:17-25 -hidden: false -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: 1.1.0 -name: churn-server -platformVersion: 3.5.0 -spec: - customFields: - default_class: ChurnModel - env: - ENABLE_EXPLAINER: 'False' - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: - - xgboost==1.3.1 - - lifelines==0.22.8 -url: '' -version: 1.1.0 diff --git a/functions/development/churn_server/1.1.0/src/requirements.txt b/functions/development/churn_server/1.1.0/src/requirements.txt deleted file mode 100644 index eb8827c5..00000000 --- a/functions/development/churn_server/1.1.0/src/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/src/test_churn_server.py b/functions/development/churn_server/1.1.0/src/test_churn_server.py deleted file mode 100644 index 64d1b849..00000000 --- a/functions/development/churn_server/1.1.0/src/test_churn_server.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/1.1.0/static/churn_server.html b/functions/development/churn_server/1.1.0/static/churn_server.html deleted file mode 100644 index 3cdcc727..00000000 --- a/functions/development/churn_server/1.1.0/static/churn_server.html +++ /dev/null @@ -1,195 +0,0 @@ - - - - - - - -churn_server.churn_server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - -
-
- -
-
-
-
-
- -
-

- -
-
-
-
-
-
-
-

Source code for churn_server.churn_server

-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-
[docs]class ChurnModel(mlrun.serving.V2ModelServer): -
[docs] def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb"))
- -
[docs] def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e)
- - -from mlrun.runtimes import nuclio_init_hook - - -
[docs]def init_context(context): - nuclio_init_hook(context, globals(), "serving_v2")
- - -
[docs]def handler(context, event): - return context.mlrun_handler(context, event)
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/static/documentation.html b/functions/development/churn_server/1.1.0/static/documentation.html deleted file mode 100644 index afff1b02..00000000 --- a/functions/development/churn_server/1.1.0/static/documentation.html +++ /dev/null @@ -1,245 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- -
-

churn_server package

- -
- -
-
-
-
-
-

churn_server package#

-
-

Submodules#

-
-
-

churn_server.churn_server module#

-
-
-class churn_server.churn_server.ChurnModel(context=None, name: Optional[str] = None, model_path: Optional[str] = None, model=None, protocol=None, input_path: Optional[str] = None, result_path: Optional[str] = None, **kwargs)[source]#
-

Bases: mlrun.serving.v2_serving.V2ModelServer

-
-
-load()[source]#
-

load multiple models in nested folders, churn model only

-
-
-
-predict(body)[source]#
-

model prediction operation

-
-
-
-
-churn_server.churn_server.handler(context, event)[source]#
-
-
-
-churn_server.churn_server.init_context(context)[source]#
-
-
-
-

Module contents#

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/static/example.html b/functions/development/churn_server/1.1.0/static/example.html deleted file mode 100644 index 0a82f06d..00000000 --- a/functions/development/churn_server/1.1.0/static/example.html +++ /dev/null @@ -1,611 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- - -
-
-
-

Churn Server#

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources. -Deploying the serving function will provide us an http endpoint that can handle requests in real time. -This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer and xgb_trainer functions from the function marketplace repository.

-
-

Steps#

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Testing the function locally

  6. -
  7. Testing the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
# Following packages are required, make sure to install
-# !pip install xgboost==1.3.1
-
-
-
-
-
-
-

Setup function parameters#

-
-
-
# Setting up models path
-xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'
-
-
-
-
-
-
-

Importing the function#

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-# Importing the function from the hub
-fn = mlrun.import_function("hub://churn_server:development")
-fn.apply(mlrun.auto_mount())
-
-# Manually specifying needed packages 
-fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']
-
-# Adding the model 
-fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')
-
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-

Testing the function locally#

-
-

Note that this function is a serving function, hence not needs to run, but deployed.

-
-

in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.

-
-
-
# When mocking, class has to be present
-from churn_server import *
-
-# Mocking function
-server = fn.to_mock_server()
-
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
import pandas as pd
-
-#declaring test_set path
-test_set_path = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv"
-
-# Getting the data
-x_test = pd.read_csv(test_set_path)
-y_test = x_test['labels']
-x_test.drop(['labels'],axis=1,inplace=True)
-x_test.head()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
-

5 rows × 23 columns

-
-
-
-
-
# KFServing protocol event
-event_data = {"inputs": x_test.values.tolist()}
-
-
-
-
-
-
-
response = server.test(path='/v2/models/xgb_model/predict',body=event_data)
-
-
-
-
-
-
-
print(f'When mocking to server, returned dict has the following fields : {", ".join([x for x in response.keys()])}')
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-

Testing the function remotely#

-
-
-
address = fn.deploy()
-
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20  (info) Deploying function
-2021-10-14 06:10:20  (info) Building
-2021-10-14 06:10:20  (info) Staging files and preparing base images
-2021-10-14 06:10:20  (info) Building processor image
-2021-10-14 06:10:21  (info) Build complete
-2021-10-14 06:10:29  (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
import json
-import requests
-
-# using requests to predict
-response = requests.put(address + "/v2/models/xgb_model/predict", json=json.dumps(event_data))
-
-# returned data is a string 
-y_predict = json.loads(response.text)['outputs']
-accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)
-print(f"model's accuracy : {accuracy}")
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-

Back to the top

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/static/function.html b/functions/development/churn_server/1.1.0/static/function.html deleted file mode 100644 index 171a9472..00000000 --- a/functions/development/churn_server/1.1.0/static/function.html +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
-  project: ''
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.6
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands:
-    - python -m pip install xgboost==1.3.1 lifelines==0.22.8
-    code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
-    origin_filename: /User/functions/churn_server/churn_server.py
-  secret_sources: []
-  disable_auto_mount: false
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/static/item.html b/functions/development/churn_server/1.1.0/static/item.html deleted file mode 100644 index d9e552e3..00000000 --- a/functions/development/churn_server/1.1.0/static/item.html +++ /dev/null @@ -1,54 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
-  customFields:
-    default_class: ChurnModel
-  env:
-    ENABLE_EXPLAINER: 'False'
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements:
-  - xgboost==1.3.1
-  - lifelines==0.22.8
-url: ''
-version: 1.1.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.1.0/static/source.html b/functions/development/churn_server/1.1.0/static/source.html deleted file mode 100644 index 3937ee1b..00000000 --- a/functions/development/churn_server/1.1.0/static/source.html +++ /dev/null @@ -1,77 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
-    nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
-    return context.mlrun_handler(context, event)
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/src/README.md b/functions/development/churn_server/1.2.0/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/1.2.0/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/src/churn_server.ipynb b/functions/development/churn_server/1.2.0/src/churn_server.ipynb deleted file mode 100644 index b8a96277..00000000 --- a/functions/development/churn_server/1.2.0/src/churn_server.ipynb +++ /dev/null @@ -1,503 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# **Churn Server**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n", - "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction).
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Testing the function locally](#Testing-the-function-locally)\n", - "4. [Testing the function remotely](#Testing-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Following packages are required, make sure to install\n", - "# !pip install xgboost==1.3.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up models path\n", - "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "# Importing the function from the hub\n", - "fn = mlrun.import_function(\"hub://churn_server:development\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "# Manually specifying needed packages \n", - "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n", - "\n", - "# Adding the model \n", - "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function locally**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> Note that this function is a serving function, hence not needs to run, but deployed.
\n", - "\n", - "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n", - "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n", - "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n" - ] - } - ], - "source": [ - "# When mocking, class has to be present\n", - "from churn_server import *\n", - "\n", - "# Mocking function\n", - "server = fn.to_mock_server()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " gender senior partner deps tenure PhoneService MultipleLines \\\n", - "0 0 0 1 0 27 1 0 \n", - "1 0 1 0 0 1 1 1 \n", - "2 1 0 0 0 1 1 0 \n", - "3 0 0 0 0 53 1 1 \n", - "4 0 0 0 0 43 1 1 \n", - "\n", - " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n", - "0 1 0 0 ... 1 \n", - "1 0 0 0 ... 1 \n", - "2 0 0 0 ... 1 \n", - "3 0 1 1 ... 0 \n", - "4 0 1 1 ... 1 \n", - "\n", - " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n", - "0 101.90 2.0 1 0 1 0 \n", - "1 85.70 0.0 1 0 0 0 \n", - "2 69.55 0.0 1 0 0 0 \n", - "3 105.55 4.0 1 0 0 1 \n", - "4 104.60 3.0 1 0 0 1 \n", - "\n", - " Payment_1 Payment_2 Payment_3 \n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "#declaring test_set path\n", - "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n", - "\n", - "# Getting the data\n", - "x_test = pd.read_csv(test_set_path)\n", - "y_test = x_test['labels']\n", - "x_test.drop(['labels'],axis=1,inplace=True)\n", - "x_test.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"inputs\": x_test.values.tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "When mocking to server, returned dict has the following fields : id, model_name, outputs\n" - ] - } - ], - "source": [ - "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n", - "2021-10-14 06:10:20 (info) Deploying function\n", - "2021-10-14 06:10:20 (info) Building\n", - "2021-10-14 06:10:20 (info) Staging files and preparing base images\n", - "2021-10-14 06:10:20 (info) Building processor image\n", - "2021-10-14 06:10:21 (info) Build complete\n", - "2021-10-14 06:10:29 (info) Function deploy complete\n", - "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n" - ] - } - ], - "source": [ - "address = fn.deploy()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model's accuracy : 0.7913907284768212\n" - ] - } - ], - "source": [ - "import json\n", - "import requests\n", - "\n", - "# using requests to predict\n", - "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n", - "\n", - "# returned data is a string \n", - "y_predict = json.loads(response.text)['outputs']\n", - "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n", - "print(f\"model's accuracy : {accuracy}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#Churn-Server)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/churn_server/1.2.0/src/churn_server.py b/functions/development/churn_server/1.2.0/src/churn_server.py deleted file mode 100644 index def2850d..00000000 --- a/functions/development/churn_server/1.2.0/src/churn_server.py +++ /dev/null @@ -1,45 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - diff --git a/functions/development/churn_server/1.2.0/src/function.yaml b/functions/development/churn_server/1.2.0/src/function.yaml deleted file mode 100644 index 14f6c8ce..00000000 --- a/functions/development/churn_server/1.2.0/src/function.yaml +++ /dev/null @@ -1,51 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8 - project: '' - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py - spec: - runtime: python:3.9 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg== - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: - - python -m pip install xgboost==1.3.1 lifelines==0.22.8 - code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py - origin_filename: /User/functions/churn_server/churn_server.py - secret_sources: [] - disable_auto_mount: false - affinity: null -verbose: false diff --git a/functions/development/churn_server/1.2.0/src/item.yaml b/functions/development/churn_server/1.2.0/src/item.yaml deleted file mode 100644 index 09ba9b71..00000000 --- a/functions/development/churn_server/1.2.0/src/item.yaml +++ /dev/null @@ -1,32 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2022-08-28:17-25 -hidden: false -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: 1.1.0 -name: churn-server -platformVersion: 3.5.0 -spec: - customFields: - default_class: ChurnModel - env: - ENABLE_EXPLAINER: 'False' - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: - - xgboost==1.3.1 - - lifelines==0.22.8 -url: '' -version: 1.2.0 diff --git a/functions/development/churn_server/1.2.0/src/requirements.txt b/functions/development/churn_server/1.2.0/src/requirements.txt deleted file mode 100644 index eb8827c5..00000000 --- a/functions/development/churn_server/1.2.0/src/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/src/test_churn_server.py b/functions/development/churn_server/1.2.0/src/test_churn_server.py deleted file mode 100644 index 64d1b849..00000000 --- a/functions/development/churn_server/1.2.0/src/test_churn_server.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/1.2.0/static/churn_server.html b/functions/development/churn_server/1.2.0/static/churn_server.html deleted file mode 100644 index 51e99534..00000000 --- a/functions/development/churn_server/1.2.0/static/churn_server.html +++ /dev/null @@ -1,185 +0,0 @@ - - - - - - - -churn_server.churn_server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - -
-
- -
-
-
-
-
- -
-

- -
-
-
-
-
-
-
-

Source code for churn_server.churn_server

-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-
[docs]class ChurnModel(mlrun.serving.V2ModelServer): -
[docs] def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb"))
- -
[docs] def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e)
- -
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/static/documentation.html b/functions/development/churn_server/1.2.0/static/documentation.html deleted file mode 100644 index eef01104..00000000 --- a/functions/development/churn_server/1.2.0/static/documentation.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- -
-

churn_server package

- -
- -
-
-
-
-
-

churn_server package#

-
-

Submodules#

-
-
-

churn_server.churn_server module#

-
-
-class churn_server.churn_server.ChurnModel(context=None, name: Optional[str] = None, model_path: Optional[str] = None, model=None, protocol=None, input_path: Optional[str] = None, result_path: Optional[str] = None, **kwargs)[source]#
-

Bases: mlrun.serving.v2_serving.V2ModelServer

-
-
-load()[source]#
-

load multiple models in nested folders, churn model only

-
-
-
-predict(body)[source]#
-

model prediction operation

-
-
-
-
-

Module contents#

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/static/example.html b/functions/development/churn_server/1.2.0/static/example.html deleted file mode 100644 index 0a82f06d..00000000 --- a/functions/development/churn_server/1.2.0/static/example.html +++ /dev/null @@ -1,611 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- - -
-
-
-

Churn Server#

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources. -Deploying the serving function will provide us an http endpoint that can handle requests in real time. -This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer and xgb_trainer functions from the function marketplace repository.

-
-

Steps#

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Testing the function locally

  6. -
  7. Testing the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
# Following packages are required, make sure to install
-# !pip install xgboost==1.3.1
-
-
-
-
-
-
-

Setup function parameters#

-
-
-
# Setting up models path
-xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'
-
-
-
-
-
-
-

Importing the function#

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-# Importing the function from the hub
-fn = mlrun.import_function("hub://churn_server:development")
-fn.apply(mlrun.auto_mount())
-
-# Manually specifying needed packages 
-fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']
-
-# Adding the model 
-fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')
-
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-

Testing the function locally#

-
-

Note that this function is a serving function, hence not needs to run, but deployed.

-
-

in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.

-
-
-
# When mocking, class has to be present
-from churn_server import *
-
-# Mocking function
-server = fn.to_mock_server()
-
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
import pandas as pd
-
-#declaring test_set path
-test_set_path = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv"
-
-# Getting the data
-x_test = pd.read_csv(test_set_path)
-y_test = x_test['labels']
-x_test.drop(['labels'],axis=1,inplace=True)
-x_test.head()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
-

5 rows × 23 columns

-
-
-
-
-
# KFServing protocol event
-event_data = {"inputs": x_test.values.tolist()}
-
-
-
-
-
-
-
response = server.test(path='/v2/models/xgb_model/predict',body=event_data)
-
-
-
-
-
-
-
print(f'When mocking to server, returned dict has the following fields : {", ".join([x for x in response.keys()])}')
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-

Testing the function remotely#

-
-
-
address = fn.deploy()
-
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20  (info) Deploying function
-2021-10-14 06:10:20  (info) Building
-2021-10-14 06:10:20  (info) Staging files and preparing base images
-2021-10-14 06:10:20  (info) Building processor image
-2021-10-14 06:10:21  (info) Build complete
-2021-10-14 06:10:29  (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
import json
-import requests
-
-# using requests to predict
-response = requests.put(address + "/v2/models/xgb_model/predict", json=json.dumps(event_data))
-
-# returned data is a string 
-y_predict = json.loads(response.text)['outputs']
-accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)
-print(f"model's accuracy : {accuracy}")
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-

Back to the top

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/static/function.html b/functions/development/churn_server/1.2.0/static/function.html deleted file mode 100644 index 74fb1bd8..00000000 --- a/functions/development/churn_server/1.2.0/static/function.html +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
-  project: ''
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.9
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg==
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands:
-    - python -m pip install xgboost==1.3.1 lifelines==0.22.8
-    code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
-    origin_filename: /User/functions/churn_server/churn_server.py
-  secret_sources: []
-  disable_auto_mount: false
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/static/item.html b/functions/development/churn_server/1.2.0/static/item.html deleted file mode 100644 index 0ee13dd2..00000000 --- a/functions/development/churn_server/1.2.0/static/item.html +++ /dev/null @@ -1,54 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
-  customFields:
-    default_class: ChurnModel
-  env:
-    ENABLE_EXPLAINER: 'False'
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements:
-  - xgboost==1.3.1
-  - lifelines==0.22.8
-url: ''
-version: 1.2.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/1.2.0/static/source.html b/functions/development/churn_server/1.2.0/static/source.html deleted file mode 100644 index 00d05b83..00000000 --- a/functions/development/churn_server/1.2.0/static/source.html +++ /dev/null @@ -1,67 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/latest/src/README.md b/functions/development/churn_server/latest/src/README.md deleted file mode 100644 index b6a517a5..00000000 --- a/functions/development/churn_server/latest/src/README.md +++ /dev/null @@ -1,15 +0,0 @@ -# churn server - -the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur. - -the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`: -* the coxph model is stored at `models_dest/cox` -* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km` - -each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios - -with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few. - -**note** - -a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server. \ No newline at end of file diff --git a/functions/development/churn_server/latest/src/churn_server.ipynb b/functions/development/churn_server/latest/src/churn_server.ipynb deleted file mode 100644 index b8a96277..00000000 --- a/functions/development/churn_server/latest/src/churn_server.ipynb +++ /dev/null @@ -1,503 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# **Churn Server**\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n", - "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n", - "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction).
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Testing the function locally](#Testing-the-function-locally)\n", - "4. [Testing the function remotely](#Testing-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# Following packages are required, make sure to install\n", - "# !pip install xgboost==1.3.1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Setting up models path\n", - "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n" - ] - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "# Importing the function from the hub\n", - "fn = mlrun.import_function(\"hub://churn_server:development\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "# Manually specifying needed packages \n", - "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n", - "\n", - "# Adding the model \n", - "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function locally**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "> Note that this function is a serving function, hence not needs to run, but deployed.
\n", - "\n", - "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n", - "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n", - "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n" - ] - } - ], - "source": [ - "# When mocking, class has to be present\n", - "from churn_server import *\n", - "\n", - "# Mocking function\n", - "server = fn.to_mock_server()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
\n", - "

5 rows × 23 columns

\n", - "
" - ], - "text/plain": [ - " gender senior partner deps tenure PhoneService MultipleLines \\\n", - "0 0 0 1 0 27 1 0 \n", - "1 0 1 0 0 1 1 1 \n", - "2 1 0 0 0 1 1 0 \n", - "3 0 0 0 0 53 1 1 \n", - "4 0 0 0 0 43 1 1 \n", - "\n", - " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n", - "0 1 0 0 ... 1 \n", - "1 0 0 0 ... 1 \n", - "2 0 0 0 ... 1 \n", - "3 0 1 1 ... 0 \n", - "4 0 1 1 ... 1 \n", - "\n", - " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n", - "0 101.90 2.0 1 0 1 0 \n", - "1 85.70 0.0 1 0 0 0 \n", - "2 69.55 0.0 1 0 0 0 \n", - "3 105.55 4.0 1 0 0 1 \n", - "4 104.60 3.0 1 0 0 1 \n", - "\n", - " Payment_1 Payment_2 Payment_3 \n", - "0 1 0 0 \n", - "1 0 1 0 \n", - "2 0 1 0 \n", - "3 0 1 0 \n", - "4 0 1 0 \n", - "\n", - "[5 rows x 23 columns]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "\n", - "#declaring test_set path\n", - "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n", - "\n", - "# Getting the data\n", - "x_test = pd.read_csv(test_set_path)\n", - "y_test = x_test['labels']\n", - "x_test.drop(['labels'],axis=1,inplace=True)\n", - "x_test.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "# KFServing protocol event\n", - "event_data = {\"inputs\": x_test.values.tolist()}" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "When mocking to server, returned dict has the following fields : id, model_name, outputs\n" - ] - } - ], - "source": [ - "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Testing the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n", - "2021-10-14 06:10:20 (info) Deploying function\n", - "2021-10-14 06:10:20 (info) Building\n", - "2021-10-14 06:10:20 (info) Staging files and preparing base images\n", - "2021-10-14 06:10:20 (info) Building processor image\n", - "2021-10-14 06:10:21 (info) Build complete\n", - "2021-10-14 06:10:29 (info) Function deploy complete\n", - "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n" - ] - } - ], - "source": [ - "address = fn.deploy()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model's accuracy : 0.7913907284768212\n" - ] - } - ], - "source": [ - "import json\n", - "import requests\n", - "\n", - "# using requests to predict\n", - "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n", - "\n", - "# returned data is a string \n", - "y_predict = json.loads(response.text)['outputs']\n", - "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n", - "print(f\"model's accuracy : {accuracy}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#Churn-Server)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/churn_server/latest/src/churn_server.py b/functions/development/churn_server/latest/src/churn_server.py deleted file mode 100644 index def2850d..00000000 --- a/functions/development/churn_server/latest/src/churn_server.py +++ /dev/null @@ -1,45 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# Generated by nuclio.export.NuclioExporter - -import numpy as np -from cloudpickle import load - - -import mlrun - - -class ChurnModel(mlrun.serving.V2ModelServer): - def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb")) - - def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e) - diff --git a/functions/development/churn_server/latest/src/function.yaml b/functions/development/churn_server/latest/src/function.yaml deleted file mode 100644 index 14f6c8ce..00000000 --- a/functions/development/churn_server/latest/src/function.yaml +++ /dev/null @@ -1,51 +0,0 @@ -kind: serving -metadata: - name: churn-server - tag: '' - hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8 - project: '' - labels: - author: Iguazio - framework: churn - categories: - - model-serving - - machine-learning -spec: - command: '' - args: [] - image: mlrun/ml-models - description: churn classification and predictor - min_replicas: 1 - max_replicas: 4 - env: - - name: ENABLE_EXPLAINER - value: 'False' - base_spec: - apiVersion: nuclio.io/v1 - kind: Function - metadata: - name: churn-server - labels: {} - annotations: - nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py - spec: - runtime: python:3.9 - handler: churn_server:handler - env: [] - volumes: [] - build: - commands: [] - noBaseImagesPull: true - functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg== - source: '' - function_kind: serving_v2 - default_class: ChurnModel - build: - commands: - - python -m pip install xgboost==1.3.1 lifelines==0.22.8 - code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py - origin_filename: /User/functions/churn_server/churn_server.py - secret_sources: [] - disable_auto_mount: false - affinity: null -verbose: false diff --git a/functions/development/churn_server/latest/src/item.yaml b/functions/development/churn_server/latest/src/item.yaml deleted file mode 100644 index 09ba9b71..00000000 --- a/functions/development/churn_server/latest/src/item.yaml +++ /dev/null @@ -1,32 +0,0 @@ -apiVersion: v1 -categories: -- model-serving -- machine-learning -description: churn classification and predictor -doc: '' -example: churn_server.ipynb -generationDate: 2022-08-28:17-25 -hidden: false -icon: '' -labels: - author: Iguazio - framework: churn -maintainers: [] -marketplaceType: '' -mlrunVersion: 1.1.0 -name: churn-server -platformVersion: 3.5.0 -spec: - customFields: - default_class: ChurnModel - env: - ENABLE_EXPLAINER: 'False' - filename: churn_server.py - handler: handler - image: mlrun/ml-models - kind: serving - requirements: - - xgboost==1.3.1 - - lifelines==0.22.8 -url: '' -version: 1.2.0 diff --git a/functions/development/churn_server/latest/src/requirements.txt b/functions/development/churn_server/latest/src/requirements.txt deleted file mode 100644 index eb8827c5..00000000 --- a/functions/development/churn_server/latest/src/requirements.txt +++ /dev/null @@ -1,2 +0,0 @@ -wget -pygit2 \ No newline at end of file diff --git a/functions/development/churn_server/latest/src/test_churn_server.py b/functions/development/churn_server/latest/src/test_churn_server.py deleted file mode 100644 index 64d1b849..00000000 --- a/functions/development/churn_server/latest/src/test_churn_server.py +++ /dev/null @@ -1,67 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -import os -import wget -from mlrun import import_function -import os.path -from os import path -import mlrun -from pygit2 import Repository - - -MODEL_PATH = os.path.join(os.path.abspath("./"), "models") -MODEL = MODEL_PATH + "model.pt" - - -def set_mlrun_hub_url(): - branch = Repository(".").head.shorthand - hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format( - branch - ) - mlrun.mlconf.hub_url = hub_url - - -def download_pretrained_model(model_path): - # Run this to download the pre-trained model to your `models` directory - import os - - model_location = None - saved_models_directory = model_path - # Create paths - os.makedirs(saved_models_directory, exist_ok=1) - model_filepath = os.path.join( - saved_models_directory, os.path.basename(model_location) - ) - wget.download(model_location, model_filepath) - - -def test_local_churn_server(): - # set_mlrun_hub_url() - # model_path = os.path.join(os.path.abspath("./"), "models") - # model = model_path + "/model.pt" - # if not path.exists(model): - # download_pretrained_model(model_path) - # fn = import_function("hub://churn_server") - # fn.add_model("mymodel", model_path=model, class_name="ChurnModel") - # # create an emulator (mock server) from the function configuration) - # server = fn.to_mock_server() - # - # instances = [ - # "I had a pleasure to work with such dedicated team. Looking forward to \ - # cooperate with each and every one of them again." - # ] - # result = server.test("/v2/models/mymodel/infer", {"instances": instances}) - # assert result[0] == 2 - print("we need to download churn model") diff --git a/functions/development/churn_server/latest/static/churn_server.html b/functions/development/churn_server/latest/static/churn_server.html deleted file mode 100644 index 51e99534..00000000 --- a/functions/development/churn_server/latest/static/churn_server.html +++ /dev/null @@ -1,185 +0,0 @@ - - - - - - - -churn_server.churn_server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - -
-
- -
-
-
-
-
- -
-

- -
-
-
-
-
-
-
-

Source code for churn_server.churn_server

-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-
[docs]class ChurnModel(mlrun.serving.V2ModelServer): -
[docs] def load(self): - """ - load multiple models in nested folders, churn model only - """ - clf_model_file, extra_data = self.get_model(".pkl") - self.model = load(open(str(clf_model_file), "rb")) - if "cox" in extra_data.keys(): - cox_model_file = extra_data["cox"] - self.cox_model = load(open(str(cox_model_file), "rb")) - if "cox/km" in extra_data.keys(): - km_model_file = extra_data["cox/km"] - self.km_model = load(open(str(km_model_file), "rb"))
- -
[docs] def predict(self, body): - try: - feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23) - result = self.model.predict(feats, validate_features=False) - return result.tolist() - except Exception as e: - raise Exception("Failed to predict %s" % e)
- -
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/latest/static/documentation.html b/functions/development/churn_server/latest/static/documentation.html deleted file mode 100644 index eef01104..00000000 --- a/functions/development/churn_server/latest/static/documentation.html +++ /dev/null @@ -1,237 +0,0 @@ - - - - - - - -churn_server package - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- -
-

churn_server package

- -
- -
-
-
-
-
-

churn_server package#

-
-

Submodules#

-
-
-

churn_server.churn_server module#

-
-
-class churn_server.churn_server.ChurnModel(context=None, name: Optional[str] = None, model_path: Optional[str] = None, model=None, protocol=None, input_path: Optional[str] = None, result_path: Optional[str] = None, **kwargs)[source]#
-

Bases: mlrun.serving.v2_serving.V2ModelServer

-
-
-load()[source]#
-

load multiple models in nested folders, churn model only

-
-
-
-predict(body)[source]#
-

model prediction operation

-
-
-
-
-

Module contents#

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/latest/static/example.html b/functions/development/churn_server/latest/static/example.html deleted file mode 100644 index 0a82f06d..00000000 --- a/functions/development/churn_server/latest/static/example.html +++ /dev/null @@ -1,611 +0,0 @@ - - - - - - - -Churn Server - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- - -
-
-
-

Churn Server#

-

in the following section we create a new model serving function which wraps our class , and specify model and other resources. -Deploying the serving function will provide us an http endpoint that can handle requests in real time. -This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer and xgb_trainer functions from the function marketplace repository.

-
-

Steps#

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Testing the function locally

  6. -
  7. Testing the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-
# Following packages are required, make sure to install
-# !pip install xgboost==1.3.1
-
-
-
-
-
-
-

Setup function parameters#

-
-
-
# Setting up models path
-xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'
-
-
-
-
-
-
-

Importing the function#

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-# Importing the function from the hub
-fn = mlrun.import_function("hub://churn_server:development")
-fn.apply(mlrun.auto_mount())
-
-# Manually specifying needed packages 
-fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']
-
-# Adding the model 
-fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')
-
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-

Testing the function locally#

-
-

Note that this function is a serving function, hence not needs to run, but deployed.

-
-

in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.

-
-
-
# When mocking, class has to be present
-from churn_server import *
-
-# Mocking function
-server = fn.to_mock_server()
-
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
import pandas as pd
-
-#declaring test_set path
-test_set_path = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv"
-
-# Getting the data
-x_test = pd.read_csv(test_set_path)
-y_test = x_test['labels']
-x_test.drop(['labels'],axis=1,inplace=True)
-x_test.head()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
genderseniorpartnerdepstenurePhoneServiceMultipleLinesOnlineSecurityOnlineBackupDeviceProtection...PaperlessBillingMonthlyChargestenure_mapISP_1ISP_2Contract_1Contract_2Payment_1Payment_2Payment_3
000102710100...1101.902.01010100
10100111000...185.700.01000010
21000110000...169.550.01000010
300005311011...0105.554.01001010
400004311011...1104.603.01001010
-

5 rows × 23 columns

-
-
-
-
-
# KFServing protocol event
-event_data = {"inputs": x_test.values.tolist()}
-
-
-
-
-
-
-
response = server.test(path='/v2/models/xgb_model/predict',body=event_data)
-
-
-
-
-
-
-
print(f'When mocking to server, returned dict has the following fields : {", ".join([x for x in response.keys()])}')
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-

Testing the function remotely#

-
-
-
address = fn.deploy()
-
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20  (info) Deploying function
-2021-10-14 06:10:20  (info) Building
-2021-10-14 06:10:20  (info) Staging files and preparing base images
-2021-10-14 06:10:20  (info) Building processor image
-2021-10-14 06:10:21  (info) Build complete
-2021-10-14 06:10:29  (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
import json
-import requests
-
-# using requests to predict
-response = requests.put(address + "/v2/models/xgb_model/predict", json=json.dumps(event_data))
-
-# returned data is a string 
-y_predict = json.loads(response.text)['outputs']
-accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)
-print(f"model's accuracy : {accuracy}")
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-

Back to the top

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/churn_server/latest/static/function.html b/functions/development/churn_server/latest/static/function.html deleted file mode 100644 index 74fb1bd8..00000000 --- a/functions/development/churn_server/latest/static/function.html +++ /dev/null @@ -1,73 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: serving
-metadata:
-  name: churn-server
-  tag: ''
-  hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
-  project: ''
-  labels:
-    author: Iguazio
-    framework: churn
-  categories:
-  - model-serving
-  - machine-learning
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  description: churn classification and predictor
-  min_replicas: 1
-  max_replicas: 4
-  env:
-  - name: ENABLE_EXPLAINER
-    value: 'False'
-  base_spec:
-    apiVersion: nuclio.io/v1
-    kind: Function
-    metadata:
-      name: churn-server
-      labels: {}
-      annotations:
-        nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
-    spec:
-      runtime: python:3.9
-      handler: churn_server:handler
-      env: []
-      volumes: []
-      build:
-        commands: []
-        noBaseImagesPull: true
-        functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg==
-  source: ''
-  function_kind: serving_v2
-  default_class: ChurnModel
-  build:
-    commands:
-    - python -m pip install xgboost==1.3.1 lifelines==0.22.8
-    code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
-    origin_filename: /User/functions/churn_server/churn_server.py
-  secret_sources: []
-  disable_auto_mount: false
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/latest/static/item.html b/functions/development/churn_server/latest/static/item.html deleted file mode 100644 index 0ee13dd2..00000000 --- a/functions/development/churn_server/latest/static/item.html +++ /dev/null @@ -1,54 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
-  author: Iguazio
-  framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
-  customFields:
-    default_class: ChurnModel
-  env:
-    ENABLE_EXPLAINER: 'False'
-  filename: churn_server.py
-  handler: handler
-  image: mlrun/ml-models
-  kind: serving
-  requirements:
-  - xgboost==1.3.1
-  - lifelines==0.22.8
-url: ''
-version: 1.2.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/churn_server/latest/static/source.html b/functions/development/churn_server/latest/static/source.html deleted file mode 100644 index 00d05b83..00000000 --- a/functions/development/churn_server/latest/static/source.html +++ /dev/null @@ -1,67 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
-    def load(self):
-        """
-        load multiple models in nested folders, churn model only
-        """
-        clf_model_file, extra_data = self.get_model(".pkl")
-        self.model = load(open(str(clf_model_file), "rb"))
-        if "cox" in extra_data.keys():
-            cox_model_file = extra_data["cox"]
-            self.cox_model = load(open(str(cox_model_file), "rb"))
-            if "cox/km" in extra_data.keys():
-                km_model_file = extra_data["cox/km"]
-                self.km_model = load(open(str(km_model_file), "rb"))
-
-    def predict(self, body):
-        try:
-            feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
-            result = self.model.predict(feats, validate_features=False)
-            return result.tolist()
-        except Exception as e:
-            raise Exception("Failed to predict %s" % e)
-
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.0.1/src/coxph_test.ipynb b/functions/development/coxph_test/0.0.1/src/coxph_test.ipynb deleted file mode 100644 index 42e28bf9..00000000 --- a/functions/development/coxph_test/0.0.1/src/coxph_test.ipynb +++ /dev/null @@ -1,440 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# CoxPH tests" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "# nuclio: ignore\n", - "import nuclio" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.simplefilter(action=\"ignore\", category=FutureWarning)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "import os\n", - "import pandas as pd\n", - "from mlrun.datastore import DataItem\n", - "from mlrun.artifacts import get_model\n", - "from cloudpickle import load\n", - "from mlrun.mlutils.models import eval_class_model\n", - "\n", - "def cox_test(\n", - " context,\n", - " models_path: DataItem, \n", - " test_set: DataItem,\n", - " label_column: str,\n", - " plots_dest: str = \"plots\",\n", - " model_evaluator = None\n", - ") -> None:\n", - " \"\"\"Test one or more classifier models against held-out dataset\n", - " \n", - " Using held-out test features, evaluates the peformance of the estimated model\n", - " \n", - " Can be part of a kubeflow pipeline as a test step that is run post EDA and \n", - " training/validation cycles\n", - " \n", - " :param context: the function context\n", - " :param model_file: model artifact to be tested\n", - " :param test_set: test features and labels\n", - " :param label_column: column name for ground truth labels\n", - " :param score_method: for multiclass classification\n", - " :param plots_dest: dir for test plots\n", - " :param model_evaluator: WIP: specific method to generate eval, passed in as string\n", - " or available in this folder\n", - " \"\"\" \n", - " xtest = test_set.as_df()\n", - " ytest = xtest.pop(label_column)\n", - " \n", - " model_file, model_obj, _ = get_model(models_path.url, suffix='.pkl')\n", - " model_obj = load(open(str(model_file), \"rb\"))\n", - "\n", - " try:\n", - " # there could be different eval_models, type of model (xgboost, tfv1, tfv2...)\n", - " if not model_evaluator:\n", - " # binary and multiclass\n", - " eval_metrics = eval_class_model(context, xtest, ytest, model_obj)\n", - "\n", - " # just do this inside log_model?\n", - " model_plots = eval_metrics.pop(\"plots\")\n", - " model_tables = eval_metrics.pop(\"tables\")\n", - " for plot in model_plots:\n", - " context.log_artifact(plot, local_path=f\"{plots_dest}/{plot.key}.html\")\n", - " for tbl in model_tables:\n", - " context.log_artifact(tbl, local_path=f\"{plots_dest}/{plot.key}.csv\")\n", - "\n", - " context.log_results(eval_metrics)\n", - " except:\n", - " #dummy log:\n", - " context.log_dataset(\"cox-test-summary\", df=model_obj.summary, index=True, format=\"csv\")\n", - " context.logger.info(\"cox tester not implemented\")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [], - "source": [ - "# nuclio: end-code" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "task_params = {\n", - " \"name\" : \"tasks cox test\",\n", - " \"params\": {\n", - " \"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"churn/test/plots\"}}" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "DATA_URL = \"https://raw.githubusercontent.com/yjb-ds/testdata/master/demos/churn/churn-tests.csv\"" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Run Locally" - ], - "metadata": { - "collapsed": false - } - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[mlrun] 2020-06-14 13:09:54,707 starting run tasks cox test uid=6284f5f5e6d14a969ba81addcfaf200f -> http://mlrun-api:8080\n", - "[mlrun] 2020-06-14 13:09:55,249 log artifact cox-test-summary at /User/artifacts/cox-test-summary.csv, size: 3395, db: Y\n", - "[mlrun] 2020-06-14 13:09:55,250 cox tester not implemented\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
default0Jun 14 13:09:54completedtasks cox test
v3io_user=admin
kind=handler
owner=admin
host=jupyter-7b44c8d958-kklf7
test_set
models_path
label_column=labels
plots_dest=churn/test/plots
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "to track results use .show() or .logs() or in CLI: \n", - "!mlrun get run 6284f5f5e6d14a969ba81addcfaf200f --project default , !mlrun logs 6284f5f5e6d14a969ba81addcfaf200f --project default\n", - "[mlrun] 2020-06-14 13:09:55,307 run executed, status=completed\n" - ] - } - ], - "source": [ - "from mlrun import run_local, NewTask, mlconf\n", - "\n", - "run = run_local(NewTask(**task_params),\n", - " handler=cox_test,\n", - " inputs={\"test_set\": DATA_URL,\n", - " \"models_path\" : \"models/cox\"},\n", - " workdir=mlconf.artifact_path+\"/churn\")\n" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Run Remotely" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%% md\n" - } - } - }, - { - "cell_type": "code", - "execution_count": null, - "outputs": [], - "source": [ - "from mlrun import import_function\n", - "from mlrun.platforms.other import auto_mount\n", - "\n", - "GPU = False\n", - "\n", - "fn = import_function(\"hub://coxph_test\")\n", - "if GPU:\n", - " fn.image = \"mlrun/ml-models-gpu\"\n", - "fn.apply(auto_mount())\n", - "\n", - "run = fn.run(\n", - " NewTask(**task_params),\n", - " inputs={\n", - " \"test_set\" : DATA_URL,\n", - " \"models_path\" : \"models/cox\"},\n", - " workdir=os.path.join(mlconf.artifact_path, \"churn\"))" - ], - "metadata": { - "collapsed": false, - "pycharm": { - "name": "#%%\n" - } - } - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/functions/development/coxph_test/0.0.1/src/coxph_test.py b/functions/development/coxph_test/0.0.1/src/coxph_test.py deleted file mode 100644 index 83289a2b..00000000 --- a/functions/development/coxph_test/0.0.1/src/coxph_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import warnings - -warnings.simplefilter(action="ignore", category=FutureWarning) - -import os -import pandas as pd -from mlrun.datastore import DataItem -from mlrun.artifacts import get_model -from cloudpickle import load -from mlrun.mlutils.models import eval_class_model - - -def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented") diff --git a/functions/development/coxph_test/0.0.1/src/function.yaml b/functions/development/coxph_test/0.0.1/src/function.yaml deleted file mode 100644 index ca871212..00000000 --- a/functions/development/coxph_test/0.0.1/src/function.yaml +++ /dev/null @@ -1,63 +0,0 @@ -kind: job -metadata: - name: coxph-test - tag: '' - hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab - project: default - labels: - author: Iguazio - framework: survival - categories: - - machine-learning - - model-testing -spec: - command: '' - args: [] - image: mlrun/ml-models - env: [] - default_handler: cox_test - entry_points: - cox_test: - name: cox_test - doc: 'Test one or more classifier models against held-out dataset - - - Using held-out test features, evaluates the peformance of the estimated model - - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - - training/validation cycles' - parameters: - - name: context - doc: the function context - default: '' - - name: models_path - type: DataItem - default: '' - - name: test_set - type: DataItem - doc: test features and labels - default: '' - - name: label_column - type: str - doc: column name for ground truth labels - default: '' - - name: plots_dest - type: str - doc: dir for test plots - default: plots - - name: model_evaluator - doc: 'WIP: specific method to generate eval, passed in as string or available - in this folder' - default: null - outputs: - - default: '' - lineno: 15 - description: Test cox proportional hazards model - build: - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo= - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py - affinity: null -verbose: false diff --git a/functions/development/coxph_test/0.0.1/src/item.yaml b/functions/development/coxph_test/0.0.1/src/item.yaml deleted file mode 100644 index cd9dcdc8..00000000 --- a/functions/development/coxph_test/0.0.1/src/item.yaml +++ /dev/null @@ -1,25 +0,0 @@ -apiVersion: v1 -categories: -- machine-learning -- model-testing -description: Test cox proportional hazards model -doc: '' -example: coxph_test.ipynb -generationDate: 2021-05-19:22-41 -icon: '' -labels: - author: Iguazio - framework: survival -maintainers: [] -marketplaceType: '' -mlrunVersion: '' -name: coxph-test -platformVersion: '' -spec: - filename: coxph_test.py - handler: cox_test - image: mlrun/ml-models - kind: job - requirements: [] -url: '' -version: 0.0.1 diff --git a/functions/development/coxph_test/0.0.1/static/documentation.html b/functions/development/coxph_test/0.0.1/static/documentation.html deleted file mode 100644 index 9f2fc8a8..00000000 --- a/functions/development/coxph_test/0.0.1/static/documentation.html +++ /dev/null @@ -1,147 +0,0 @@ - - - - - - - -coxph_test package - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

coxph_test package

-
-

Submodules

-
-
-

coxph_test.coxph_test module

-
-
-coxph_test.coxph_test.cox_test(context, models_path: mlrun.datastore.base.DataItem, test_set: mlrun.datastore.base.DataItem, label_column: str, plots_dest: str = 'plots', model_evaluator=None)None[source]
-

Test one or more classifier models against held-out dataset

-

Using held-out test features, evaluates the peformance of the estimated model

-

Can be part of a kubeflow pipeline as a test step that is run post EDA and -training/validation cycles

-
-
Parameters
-
    -
  • context – the function context

  • -
  • model_file – model artifact to be tested

  • -
  • test_set – test features and labels

  • -
  • label_column – column name for ground truth labels

  • -
  • score_method – for multiclass classification

  • -
  • plots_dest – dir for test plots

  • -
  • model_evaluator – WIP: specific method to generate eval, passed in as string -or available in this folder

  • -
-
-
-
-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/0.0.1/static/example.html b/functions/development/coxph_test/0.0.1/static/example.html deleted file mode 100644 index aca67f69..00000000 --- a/functions/development/coxph_test/0.0.1/static/example.html +++ /dev/null @@ -1,457 +0,0 @@ - - - - - - - -CoxPH tests - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- -
-
- Contents -
- -
-
-
-
-
-
-
-

CoxPH tests

-
-
-
# nuclio: ignore
-import nuclio
-
-
-
-
-
-
-
import warnings
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-
-
-
-
-
-
import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-def cox_test(
-    context,
-    models_path: DataItem, 
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator = None
-) -> None:
-    """Test one or more classifier models against held-out dataset
-    
-    Using held-out test features, evaluates the peformance of the estimated model
-    
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and 
-    training/validation cycles
-    
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """  
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-    
-    model_file, model_obj, _ = get_model(models_path.url, suffix='.pkl')
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        # there could be different eval_models, type of model (xgboost, tfv1, tfv2...)
-        if not model_evaluator:
-            # binary and multiclass
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        # just do this inside log_model?
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        #dummy log:
-        context.log_dataset("cox-test-summary", df=model_obj.summary, index=True, format="csv")
-        context.logger.info("cox tester not implemented")
-
-
-
-
-
-
-
# nuclio: end-code
-
-
-
-
-
-
-
task_params = {
-    "name" : "tasks cox test",
-    "params": {
-        "label_column"  : "labels",
-        "plots_dest"    : "churn/test/plots"}}
-
-
-
-
-
-
-
DATA_URL = "https://raw.githubusercontent.com/yjb-ds/testdata/master/demos/churn/churn-tests.csv"
-
-
-
-
-
-

Run Locally

-
-
-
from mlrun import run_local, NewTask, mlconf
-
-run = run_local(NewTask(**task_params),
-                handler=cox_test,
-                inputs={"test_set": DATA_URL,
-                        "models_path"   : "models/cox"},
-               workdir=mlconf.artifact_path+"/churn")
-
-
-
-
-
[mlrun] 2020-06-14 13:09:54,707 starting run tasks cox test uid=6284f5f5e6d14a969ba81addcfaf200f  -> http://mlrun-api:8080
-[mlrun] 2020-06-14 13:09:55,249 log artifact cox-test-summary at /User/artifacts/cox-test-summary.csv, size: 3395, db: Y
-[mlrun] 2020-06-14 13:09:55,250 cox tester not implemented
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
default0Jun 14 13:09:54completedtasks cox test
v3io_user=admin
kind=handler
owner=admin
host=jupyter-7b44c8d958-kklf7
test_set
models_path
label_column=labels
plots_dest=churn/test/plots
cox-test-summary
-
- -
-
to track results use .show() or .logs() or in CLI: 
-!mlrun get run 6284f5f5e6d14a969ba81addcfaf200f --project default , !mlrun logs 6284f5f5e6d14a969ba81addcfaf200f --project default
-[mlrun] 2020-06-14 13:09:55,307 run executed, status=completed
-
-
-
-
-
-
-

Run Remotely

-
-
-
from mlrun import import_function
-from mlrun.platforms.other import auto_mount
-
-GPU = False
-
-fn = import_function("hub://coxph_test")
-if GPU:
-    fn.image = "mlrun/ml-models-gpu"
-fn.apply(auto_mount())
-
-run = fn.run(
-    NewTask(**task_params),
-    inputs={
-        "test_set"    : DATA_URL,
-        "models_path" : "models/cox"},
-    workdir=os.path.join(mlconf.artifact_path, "churn"))
-
-
-
-
-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/0.0.1/static/function.html b/functions/development/coxph_test/0.0.1/static/function.html deleted file mode 100644 index 9085ccc3..00000000 --- a/functions/development/coxph_test/0.0.1/static/function.html +++ /dev/null @@ -1,85 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: job
-metadata:
-  name: coxph-test
-  tag: ''
-  hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
-  project: default
-  labels:
-    author: Iguazio
-    framework: survival
-  categories:
-  - machine-learning
-  - model-testing
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  env: []
-  default_handler: cox_test
-  entry_points:
-    cox_test:
-      name: cox_test
-      doc: 'Test one or more classifier models against held-out dataset
-
-
-        Using held-out test features, evaluates the peformance of the estimated model
-
-
-        Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
-        training/validation cycles'
-      parameters:
-      - name: context
-        doc: the function context
-        default: ''
-      - name: models_path
-        type: DataItem
-        default: ''
-      - name: test_set
-        type: DataItem
-        doc: test features and labels
-        default: ''
-      - name: label_column
-        type: str
-        doc: column name for ground truth labels
-        default: ''
-      - name: plots_dest
-        type: str
-        doc: dir for test plots
-        default: plots
-      - name: model_evaluator
-        doc: 'WIP: specific method to generate eval, passed in as string or available
-          in this folder'
-        default: null
-      outputs:
-      - default: ''
-      lineno: 15
-  description: Test cox proportional hazards model
-  build:
-    functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.0.1/static/item.html b/functions/development/coxph_test/0.0.1/static/item.html deleted file mode 100644 index b67eb0d0..00000000 --- a/functions/development/coxph_test/0.0.1/static/item.html +++ /dev/null @@ -1,47 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-05-19:22-41
-icon: ''
-labels:
-  author: Iguazio
-  framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: ''
-name: coxph-test
-platformVersion: ''
-spec:
-  filename: coxph_test.py
-  handler: cox_test
-  image: mlrun/ml-models
-  kind: job
-  requirements: []
-url: ''
-version: 0.0.1
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.0.1/static/source.html b/functions/development/coxph_test/0.0.1/static/source.html deleted file mode 100644 index 6af29faf..00000000 --- a/functions/development/coxph_test/0.0.1/static/source.html +++ /dev/null @@ -1,83 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
-    context,
-    models_path: DataItem,
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator=None,
-) -> None:
-    """Test one or more classifier models against held-out dataset
-
-    Using held-out test features, evaluates the peformance of the estimated model
-
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and
-    training/validation cycles
-
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-
-    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        if not model_evaluator:
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        context.log_dataset(
-            "cox-test-summary", df=model_obj.summary, index=True, format="csv"
-        )
-        context.logger.info("cox tester not implemented")
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.8.0/src/coxph_test.ipynb b/functions/development/coxph_test/0.8.0/src/coxph_test.ipynb deleted file mode 100644 index 0ee0b29c..00000000 --- a/functions/development/coxph_test/0.8.0/src/coxph_test.ipynb +++ /dev/null @@ -1,969 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CoxPH test**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
\n", - "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
\n", - "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo.
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Running the function locally](#Running-the-function-locally)\n", - "4. [Running the function remotely](#Running-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n", - "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n" - ] - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "fn = mlrun.import_function(\"hub://coxph_test\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "fn.spec.build.image=\"mlrun/ml-models\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function locally**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
\n", - "
" - ], - "text/plain": [ - " covariate coef exp(coef) se(coef) coef lower 95% \\\n", - "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n", - "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n", - "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n", - "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n", - "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n", - "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n", - "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n", - "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n", - "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n", - "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n", - "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n", - "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n", - "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n", - "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n", - "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n", - "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n", - "\n", - " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n", - "0 1.386176 1.040598 3.999528 2.075826 \n", - "1 0.541468 0.300670 1.718528 -0.742374 \n", - "2 0.452732 0.288913 1.572603 -0.912562 \n", - "3 1.594543 0.696424 4.926080 1.235031 \n", - "4 1.343648 0.053965 3.832999 -0.724467 \n", - "5 1.780772 0.036365 5.934435 -0.589872 \n", - "6 1.393448 0.097605 4.028715 -0.491736 \n", - "7 1.711453 0.079128 5.537002 -0.380741 \n", - "8 2.799150 0.168699 16.430675 0.436405 \n", - "9 1.151257 0.636789 3.162165 0.856033 \n", - "10 0.302742 0.631574 1.353566 -0.403154 \n", - "11 -0.792398 0.027760 0.452758 -3.072575 \n", - "12 6798.156493 0.000000 inf -0.005732 \n", - "13 0.339993 0.126080 1.404937 -1.407148 \n", - "14 1.334423 0.658562 3.797805 1.025472 \n", - "15 1.489200 0.359097 4.433547 0.362644 \n", - "\n", - " p -log2(p) \n", - "0 0.037910 4.721274 \n", - "1 0.457861 1.127018 \n", - "2 0.361473 1.468041 \n", - "3 0.216819 2.205436 \n", - "4 0.468779 1.093020 \n", - "5 0.555277 0.848721 \n", - "6 0.622906 0.682914 \n", - "7 0.703396 0.507591 \n", - "8 0.662543 0.593915 \n", - "9 0.391980 1.351150 \n", - "10 0.686835 0.541965 \n", - "11 0.002122 8.880219 \n", - "12 0.995426 0.006614 \n", - "13 0.159383 2.649426 \n", - "14 0.305141 1.712453 \n", - "15 0.716870 0.480216 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "coxph_run.artifact('cox-test-summary').show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n", - "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n", - "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n", - "final state: completed\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n", - " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n", - "\n", - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#CoxPH-test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/coxph_test/0.8.0/src/coxph_test.py b/functions/development/coxph_test/0.8.0/src/coxph_test.py deleted file mode 100644 index 83289a2b..00000000 --- a/functions/development/coxph_test/0.8.0/src/coxph_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import warnings - -warnings.simplefilter(action="ignore", category=FutureWarning) - -import os -import pandas as pd -from mlrun.datastore import DataItem -from mlrun.artifacts import get_model -from cloudpickle import load -from mlrun.mlutils.models import eval_class_model - - -def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented") diff --git a/functions/development/coxph_test/0.8.0/src/function.yaml b/functions/development/coxph_test/0.8.0/src/function.yaml deleted file mode 100644 index ca871212..00000000 --- a/functions/development/coxph_test/0.8.0/src/function.yaml +++ /dev/null @@ -1,63 +0,0 @@ -kind: job -metadata: - name: coxph-test - tag: '' - hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab - project: default - labels: - author: Iguazio - framework: survival - categories: - - machine-learning - - model-testing -spec: - command: '' - args: [] - image: mlrun/ml-models - env: [] - default_handler: cox_test - entry_points: - cox_test: - name: cox_test - doc: 'Test one or more classifier models against held-out dataset - - - Using held-out test features, evaluates the peformance of the estimated model - - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - - training/validation cycles' - parameters: - - name: context - doc: the function context - default: '' - - name: models_path - type: DataItem - default: '' - - name: test_set - type: DataItem - doc: test features and labels - default: '' - - name: label_column - type: str - doc: column name for ground truth labels - default: '' - - name: plots_dest - type: str - doc: dir for test plots - default: plots - - name: model_evaluator - doc: 'WIP: specific method to generate eval, passed in as string or available - in this folder' - default: null - outputs: - - default: '' - lineno: 15 - description: Test cox proportional hazards model - build: - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo= - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py - affinity: null -verbose: false diff --git a/functions/development/coxph_test/0.8.0/src/item.yaml b/functions/development/coxph_test/0.8.0/src/item.yaml deleted file mode 100644 index aea772e5..00000000 --- a/functions/development/coxph_test/0.8.0/src/item.yaml +++ /dev/null @@ -1,25 +0,0 @@ -apiVersion: v1 -categories: -- machine-learning -- model-testing -description: Test cox proportional hazards model -doc: '' -example: coxph_test.ipynb -generationDate: 2021-05-19:22-41 -icon: '' -labels: - author: Iguazio - framework: survival -maintainers: [] -marketplaceType: '' -mlrunVersion: 0.8.0 -name: coxph-test -platformVersion: 3.2.0 -spec: - filename: coxph_test.py - handler: cox_test - image: mlrun/ml-models - kind: job - requirements: [] -url: '' -version: 0.8.0 diff --git a/functions/development/coxph_test/0.8.0/static/documentation.html b/functions/development/coxph_test/0.8.0/static/documentation.html deleted file mode 100644 index 9f2fc8a8..00000000 --- a/functions/development/coxph_test/0.8.0/static/documentation.html +++ /dev/null @@ -1,147 +0,0 @@ - - - - - - - -coxph_test package - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

coxph_test package

-
-

Submodules

-
-
-

coxph_test.coxph_test module

-
-
-coxph_test.coxph_test.cox_test(context, models_path: mlrun.datastore.base.DataItem, test_set: mlrun.datastore.base.DataItem, label_column: str, plots_dest: str = 'plots', model_evaluator=None)None[source]
-

Test one or more classifier models against held-out dataset

-

Using held-out test features, evaluates the peformance of the estimated model

-

Can be part of a kubeflow pipeline as a test step that is run post EDA and -training/validation cycles

-
-
Parameters
-
    -
  • context – the function context

  • -
  • model_file – model artifact to be tested

  • -
  • test_set – test features and labels

  • -
  • label_column – column name for ground truth labels

  • -
  • score_method – for multiclass classification

  • -
  • plots_dest – dir for test plots

  • -
  • model_evaluator – WIP: specific method to generate eval, passed in as string -or available in this folder

  • -
-
-
-
-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/0.8.0/static/example.html b/functions/development/coxph_test/0.8.0/static/example.html deleted file mode 100644 index 346c8b29..00000000 --- a/functions/development/coxph_test/0.8.0/static/example.html +++ /dev/null @@ -1,897 +0,0 @@ - - - - - - - -CoxPH test - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

CoxPH test

-

This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer function from the function marketplace repository

-
-

Steps

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Running the function locally

  6. -
  7. Running the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-

Setup function parameters

-
-
-
test_set = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv"
-models_path = "https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl"
-
-
-
-
-
-
-

Importing the function

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-fn = mlrun.import_function("hub://coxph_test")
-fn.apply(mlrun.auto_mount())
-
-fn.spec.build.image="mlrun/ml-models"
-
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-

Running the function locally

-
-
-
coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=True)
-
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
coxph_run.artifact('cox-test-summary').show()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
-
-
-
-
-

Running the function remotely

-
-
-
fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.
-          skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.
-
-coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=False)
-
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-

Back to the top

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/0.8.0/static/function.html b/functions/development/coxph_test/0.8.0/static/function.html deleted file mode 100644 index 9085ccc3..00000000 --- a/functions/development/coxph_test/0.8.0/static/function.html +++ /dev/null @@ -1,85 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: job
-metadata:
-  name: coxph-test
-  tag: ''
-  hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
-  project: default
-  labels:
-    author: Iguazio
-    framework: survival
-  categories:
-  - machine-learning
-  - model-testing
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  env: []
-  default_handler: cox_test
-  entry_points:
-    cox_test:
-      name: cox_test
-      doc: 'Test one or more classifier models against held-out dataset
-
-
-        Using held-out test features, evaluates the peformance of the estimated model
-
-
-        Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
-        training/validation cycles'
-      parameters:
-      - name: context
-        doc: the function context
-        default: ''
-      - name: models_path
-        type: DataItem
-        default: ''
-      - name: test_set
-        type: DataItem
-        doc: test features and labels
-        default: ''
-      - name: label_column
-        type: str
-        doc: column name for ground truth labels
-        default: ''
-      - name: plots_dest
-        type: str
-        doc: dir for test plots
-        default: plots
-      - name: model_evaluator
-        doc: 'WIP: specific method to generate eval, passed in as string or available
-          in this folder'
-        default: null
-      outputs:
-      - default: ''
-      lineno: 15
-  description: Test cox proportional hazards model
-  build:
-    functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.8.0/static/item.html b/functions/development/coxph_test/0.8.0/static/item.html deleted file mode 100644 index b11f5671..00000000 --- a/functions/development/coxph_test/0.8.0/static/item.html +++ /dev/null @@ -1,47 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-05-19:22-41
-icon: ''
-labels:
-  author: Iguazio
-  framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
-  filename: coxph_test.py
-  handler: cox_test
-  image: mlrun/ml-models
-  kind: job
-  requirements: []
-url: ''
-version: 0.8.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.8.0/static/source.html b/functions/development/coxph_test/0.8.0/static/source.html deleted file mode 100644 index 6af29faf..00000000 --- a/functions/development/coxph_test/0.8.0/static/source.html +++ /dev/null @@ -1,83 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
-    context,
-    models_path: DataItem,
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator=None,
-) -> None:
-    """Test one or more classifier models against held-out dataset
-
-    Using held-out test features, evaluates the peformance of the estimated model
-
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and
-    training/validation cycles
-
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-
-    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        if not model_evaluator:
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        context.log_dataset(
-            "cox-test-summary", df=model_obj.summary, index=True, format="csv"
-        )
-        context.logger.info("cox tester not implemented")
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.9.0/src/coxph_test.ipynb b/functions/development/coxph_test/0.9.0/src/coxph_test.ipynb deleted file mode 100644 index 0ee0b29c..00000000 --- a/functions/development/coxph_test/0.9.0/src/coxph_test.ipynb +++ /dev/null @@ -1,969 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CoxPH test**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
\n", - "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
\n", - "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo.
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Running the function locally](#Running-the-function-locally)\n", - "4. [Running the function remotely](#Running-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n", - "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n" - ] - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "fn = mlrun.import_function(\"hub://coxph_test\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "fn.spec.build.image=\"mlrun/ml-models\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function locally**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
\n", - "
" - ], - "text/plain": [ - " covariate coef exp(coef) se(coef) coef lower 95% \\\n", - "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n", - "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n", - "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n", - "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n", - "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n", - "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n", - "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n", - "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n", - "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n", - "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n", - "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n", - "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n", - "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n", - "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n", - "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n", - "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n", - "\n", - " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n", - "0 1.386176 1.040598 3.999528 2.075826 \n", - "1 0.541468 0.300670 1.718528 -0.742374 \n", - "2 0.452732 0.288913 1.572603 -0.912562 \n", - "3 1.594543 0.696424 4.926080 1.235031 \n", - "4 1.343648 0.053965 3.832999 -0.724467 \n", - "5 1.780772 0.036365 5.934435 -0.589872 \n", - "6 1.393448 0.097605 4.028715 -0.491736 \n", - "7 1.711453 0.079128 5.537002 -0.380741 \n", - "8 2.799150 0.168699 16.430675 0.436405 \n", - "9 1.151257 0.636789 3.162165 0.856033 \n", - "10 0.302742 0.631574 1.353566 -0.403154 \n", - "11 -0.792398 0.027760 0.452758 -3.072575 \n", - "12 6798.156493 0.000000 inf -0.005732 \n", - "13 0.339993 0.126080 1.404937 -1.407148 \n", - "14 1.334423 0.658562 3.797805 1.025472 \n", - "15 1.489200 0.359097 4.433547 0.362644 \n", - "\n", - " p -log2(p) \n", - "0 0.037910 4.721274 \n", - "1 0.457861 1.127018 \n", - "2 0.361473 1.468041 \n", - "3 0.216819 2.205436 \n", - "4 0.468779 1.093020 \n", - "5 0.555277 0.848721 \n", - "6 0.622906 0.682914 \n", - "7 0.703396 0.507591 \n", - "8 0.662543 0.593915 \n", - "9 0.391980 1.351150 \n", - "10 0.686835 0.541965 \n", - "11 0.002122 8.880219 \n", - "12 0.995426 0.006614 \n", - "13 0.159383 2.649426 \n", - "14 0.305141 1.712453 \n", - "15 0.716870 0.480216 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "coxph_run.artifact('cox-test-summary').show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n", - "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n", - "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n", - "final state: completed\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n", - " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n", - "\n", - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#CoxPH-test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/coxph_test/0.9.0/src/coxph_test.py b/functions/development/coxph_test/0.9.0/src/coxph_test.py deleted file mode 100644 index 83289a2b..00000000 --- a/functions/development/coxph_test/0.9.0/src/coxph_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import warnings - -warnings.simplefilter(action="ignore", category=FutureWarning) - -import os -import pandas as pd -from mlrun.datastore import DataItem -from mlrun.artifacts import get_model -from cloudpickle import load -from mlrun.mlutils.models import eval_class_model - - -def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented") diff --git a/functions/development/coxph_test/0.9.0/src/function.yaml b/functions/development/coxph_test/0.9.0/src/function.yaml deleted file mode 100644 index e09fb90a..00000000 --- a/functions/development/coxph_test/0.9.0/src/function.yaml +++ /dev/null @@ -1,63 +0,0 @@ -kind: job -metadata: - name: coxph-test - tag: '' - hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab - project: '' - labels: - author: Iguazio - framework: survival - categories: - - machine-learning - - model-testing -spec: - command: '' - args: [] - image: mlrun/ml-models - env: [] - default_handler: cox_test - entry_points: - cox_test: - name: cox_test - doc: 'Test one or more classifier models against held-out dataset - - - Using held-out test features, evaluates the peformance of the estimated model - - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - - training/validation cycles' - parameters: - - name: context - doc: the function context - default: '' - - name: models_path - type: DataItem - default: '' - - name: test_set - type: DataItem - doc: test features and labels - default: '' - - name: label_column - type: str - doc: column name for ground truth labels - default: '' - - name: plots_dest - type: str - doc: dir for test plots - default: plots - - name: model_evaluator - doc: 'WIP: specific method to generate eval, passed in as string or available - in this folder' - default: null - outputs: - - default: '' - lineno: 15 - description: Test cox proportional hazards model - build: - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo= - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py - affinity: null -verbose: false diff --git a/functions/development/coxph_test/0.9.0/src/item.yaml b/functions/development/coxph_test/0.9.0/src/item.yaml deleted file mode 100644 index 71d5ee15..00000000 --- a/functions/development/coxph_test/0.9.0/src/item.yaml +++ /dev/null @@ -1,25 +0,0 @@ -apiVersion: v1 -categories: -- machine-learning -- model-testing -description: Test cox proportional hazards model -doc: '' -example: coxph_test.ipynb -generationDate: 2021-11-18:12-28 -icon: '' -labels: - author: Iguazio - framework: survival -maintainers: [] -marketplaceType: '' -mlrunVersion: 0.8.0 -name: coxph-test -platformVersion: 3.2.0 -spec: - filename: coxph_test.py - handler: cox_test - image: mlrun/ml-models - kind: job - requirements: [] -url: '' -version: 0.9.0 diff --git a/functions/development/coxph_test/0.9.0/static/documentation.html b/functions/development/coxph_test/0.9.0/static/documentation.html deleted file mode 100644 index dac619c8..00000000 --- a/functions/development/coxph_test/0.9.0/static/documentation.html +++ /dev/null @@ -1,125 +0,0 @@ - - - - - - - -coxph_test package - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

coxph_test package

-
-

Submodules

-
-
-

coxph_test.coxph_test module

-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/0.9.0/static/example.html b/functions/development/coxph_test/0.9.0/static/example.html deleted file mode 100644 index 346c8b29..00000000 --- a/functions/development/coxph_test/0.9.0/static/example.html +++ /dev/null @@ -1,897 +0,0 @@ - - - - - - - -CoxPH test - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

CoxPH test

-

This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer function from the function marketplace repository

-
-

Steps

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Running the function locally

  6. -
  7. Running the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-

Setup function parameters

-
-
-
test_set = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv"
-models_path = "https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl"
-
-
-
-
-
-
-

Importing the function

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-fn = mlrun.import_function("hub://coxph_test")
-fn.apply(mlrun.auto_mount())
-
-fn.spec.build.image="mlrun/ml-models"
-
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-

Running the function locally

-
-
-
coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=True)
-
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
coxph_run.artifact('cox-test-summary').show()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
-
-
-
-
-

Running the function remotely

-
-
-
fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.
-          skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.
-
-coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=False)
-
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-

Back to the top

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/0.9.0/static/function.html b/functions/development/coxph_test/0.9.0/static/function.html deleted file mode 100644 index 3bf5e105..00000000 --- a/functions/development/coxph_test/0.9.0/static/function.html +++ /dev/null @@ -1,85 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: job
-metadata:
-  name: coxph-test
-  tag: ''
-  hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
-  project: ''
-  labels:
-    author: Iguazio
-    framework: survival
-  categories:
-  - machine-learning
-  - model-testing
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  env: []
-  default_handler: cox_test
-  entry_points:
-    cox_test:
-      name: cox_test
-      doc: 'Test one or more classifier models against held-out dataset
-
-
-        Using held-out test features, evaluates the peformance of the estimated model
-
-
-        Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
-        training/validation cycles'
-      parameters:
-      - name: context
-        doc: the function context
-        default: ''
-      - name: models_path
-        type: DataItem
-        default: ''
-      - name: test_set
-        type: DataItem
-        doc: test features and labels
-        default: ''
-      - name: label_column
-        type: str
-        doc: column name for ground truth labels
-        default: ''
-      - name: plots_dest
-        type: str
-        doc: dir for test plots
-        default: plots
-      - name: model_evaluator
-        doc: 'WIP: specific method to generate eval, passed in as string or available
-          in this folder'
-        default: null
-      outputs:
-      - default: ''
-      lineno: 15
-  description: Test cox proportional hazards model
-  build:
-    functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.9.0/static/item.html b/functions/development/coxph_test/0.9.0/static/item.html deleted file mode 100644 index 5176e1b7..00000000 --- a/functions/development/coxph_test/0.9.0/static/item.html +++ /dev/null @@ -1,47 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
-  author: Iguazio
-  framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
-  filename: coxph_test.py
-  handler: cox_test
-  image: mlrun/ml-models
-  kind: job
-  requirements: []
-url: ''
-version: 0.9.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/0.9.0/static/source.html b/functions/development/coxph_test/0.9.0/static/source.html deleted file mode 100644 index 6af29faf..00000000 --- a/functions/development/coxph_test/0.9.0/static/source.html +++ /dev/null @@ -1,83 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
-    context,
-    models_path: DataItem,
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator=None,
-) -> None:
-    """Test one or more classifier models against held-out dataset
-
-    Using held-out test features, evaluates the peformance of the estimated model
-
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and
-    training/validation cycles
-
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-
-    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        if not model_evaluator:
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        context.log_dataset(
-            "cox-test-summary", df=model_obj.summary, index=True, format="csv"
-        )
-        context.logger.info("cox tester not implemented")
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/1.0.0/src/coxph_test.ipynb b/functions/development/coxph_test/1.0.0/src/coxph_test.ipynb deleted file mode 100644 index 0ee0b29c..00000000 --- a/functions/development/coxph_test/1.0.0/src/coxph_test.ipynb +++ /dev/null @@ -1,969 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CoxPH test**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
\n", - "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
\n", - "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo.
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Running the function locally](#Running-the-function-locally)\n", - "4. [Running the function remotely](#Running-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n", - "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n" - ] - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "fn = mlrun.import_function(\"hub://coxph_test\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "fn.spec.build.image=\"mlrun/ml-models\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function locally**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
\n", - "
" - ], - "text/plain": [ - " covariate coef exp(coef) se(coef) coef lower 95% \\\n", - "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n", - "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n", - "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n", - "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n", - "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n", - "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n", - "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n", - "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n", - "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n", - "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n", - "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n", - "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n", - "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n", - "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n", - "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n", - "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n", - "\n", - " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n", - "0 1.386176 1.040598 3.999528 2.075826 \n", - "1 0.541468 0.300670 1.718528 -0.742374 \n", - "2 0.452732 0.288913 1.572603 -0.912562 \n", - "3 1.594543 0.696424 4.926080 1.235031 \n", - "4 1.343648 0.053965 3.832999 -0.724467 \n", - "5 1.780772 0.036365 5.934435 -0.589872 \n", - "6 1.393448 0.097605 4.028715 -0.491736 \n", - "7 1.711453 0.079128 5.537002 -0.380741 \n", - "8 2.799150 0.168699 16.430675 0.436405 \n", - "9 1.151257 0.636789 3.162165 0.856033 \n", - "10 0.302742 0.631574 1.353566 -0.403154 \n", - "11 -0.792398 0.027760 0.452758 -3.072575 \n", - "12 6798.156493 0.000000 inf -0.005732 \n", - "13 0.339993 0.126080 1.404937 -1.407148 \n", - "14 1.334423 0.658562 3.797805 1.025472 \n", - "15 1.489200 0.359097 4.433547 0.362644 \n", - "\n", - " p -log2(p) \n", - "0 0.037910 4.721274 \n", - "1 0.457861 1.127018 \n", - "2 0.361473 1.468041 \n", - "3 0.216819 2.205436 \n", - "4 0.468779 1.093020 \n", - "5 0.555277 0.848721 \n", - "6 0.622906 0.682914 \n", - "7 0.703396 0.507591 \n", - "8 0.662543 0.593915 \n", - "9 0.391980 1.351150 \n", - "10 0.686835 0.541965 \n", - "11 0.002122 8.880219 \n", - "12 0.995426 0.006614 \n", - "13 0.159383 2.649426 \n", - "14 0.305141 1.712453 \n", - "15 0.716870 0.480216 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "coxph_run.artifact('cox-test-summary').show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n", - "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n", - "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n", - "final state: completed\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n", - " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n", - "\n", - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#CoxPH-test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/coxph_test/1.0.0/src/coxph_test.py b/functions/development/coxph_test/1.0.0/src/coxph_test.py deleted file mode 100644 index 83289a2b..00000000 --- a/functions/development/coxph_test/1.0.0/src/coxph_test.py +++ /dev/null @@ -1,61 +0,0 @@ -# Generated by nuclio.export.NuclioExporter - -import warnings - -warnings.simplefilter(action="ignore", category=FutureWarning) - -import os -import pandas as pd -from mlrun.datastore import DataItem -from mlrun.artifacts import get_model -from cloudpickle import load -from mlrun.mlutils.models import eval_class_model - - -def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented") diff --git a/functions/development/coxph_test/1.0.0/src/function.yaml b/functions/development/coxph_test/1.0.0/src/function.yaml deleted file mode 100644 index e09fb90a..00000000 --- a/functions/development/coxph_test/1.0.0/src/function.yaml +++ /dev/null @@ -1,63 +0,0 @@ -kind: job -metadata: - name: coxph-test - tag: '' - hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab - project: '' - labels: - author: Iguazio - framework: survival - categories: - - machine-learning - - model-testing -spec: - command: '' - args: [] - image: mlrun/ml-models - env: [] - default_handler: cox_test - entry_points: - cox_test: - name: cox_test - doc: 'Test one or more classifier models against held-out dataset - - - Using held-out test features, evaluates the peformance of the estimated model - - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - - training/validation cycles' - parameters: - - name: context - doc: the function context - default: '' - - name: models_path - type: DataItem - default: '' - - name: test_set - type: DataItem - doc: test features and labels - default: '' - - name: label_column - type: str - doc: column name for ground truth labels - default: '' - - name: plots_dest - type: str - doc: dir for test plots - default: plots - - name: model_evaluator - doc: 'WIP: specific method to generate eval, passed in as string or available - in this folder' - default: null - outputs: - - default: '' - lineno: 15 - description: Test cox proportional hazards model - build: - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo= - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py - affinity: null -verbose: false diff --git a/functions/development/coxph_test/1.0.0/src/item.yaml b/functions/development/coxph_test/1.0.0/src/item.yaml deleted file mode 100644 index b694887d..00000000 --- a/functions/development/coxph_test/1.0.0/src/item.yaml +++ /dev/null @@ -1,25 +0,0 @@ -apiVersion: v1 -categories: -- machine-learning -- model-testing -description: Test cox proportional hazards model -doc: '' -example: coxph_test.ipynb -generationDate: 2021-11-18:12-28 -icon: '' -labels: - author: Iguazio - framework: survival -maintainers: [] -marketplaceType: '' -mlrunVersion: 0.8.0 -name: coxph-test -platformVersion: 3.2.0 -spec: - filename: coxph_test.py - handler: cox_test - image: mlrun/ml-models - kind: job - requirements: [] -url: '' -version: 1.0.0 diff --git a/functions/development/coxph_test/1.0.0/static/documentation.html b/functions/development/coxph_test/1.0.0/static/documentation.html deleted file mode 100644 index 40c31b91..00000000 --- a/functions/development/coxph_test/1.0.0/static/documentation.html +++ /dev/null @@ -1,150 +0,0 @@ - - - - - - - -coxph_test package - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
-
- -
- - - - - - -
- - -
-
-
-
-
-
-

coxph_test package

-
-

Submodules

-
-
-

coxph_test.coxph_test module

-
-
-coxph_test.coxph_test.cox_test(context, models_path: mlrun.datastore.base.DataItem, test_set: mlrun.datastore.base.DataItem, label_column: str, plots_dest: str = 'plots', model_evaluator=None)None[source]
-

Test one or more classifier models against held-out dataset

-

Using held-out test features, evaluates the peformance of the estimated model

-

Can be part of a kubeflow pipeline as a test step that is run post EDA and -training/validation cycles

-
-
Parameters
-
    -
  • context – the function context

  • -
  • model_file – model artifact to be tested

  • -
  • test_set – test features and labels

  • -
  • label_column – column name for ground truth labels

  • -
  • score_method – for multiclass classification

  • -
  • plots_dest – dir for test plots

  • -
  • model_evaluator – WIP: specific method to generate eval, passed in as string -or available in this folder

  • -
-
-
-
-
-
-

Module contents

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/1.0.0/static/example.html b/functions/development/coxph_test/1.0.0/static/example.html deleted file mode 100644 index 59b93a90..00000000 --- a/functions/development/coxph_test/1.0.0/static/example.html +++ /dev/null @@ -1,900 +0,0 @@ - - - - - - - -CoxPH test - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
-
-
-
-

CoxPH test

-

This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer function from the function marketplace repository

-
-

Steps

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Running the function locally

  6. -
  7. Running the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-

Setup function parameters

-
-
-
test_set = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv"
-models_path = "https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl"
-
-
-
-
-
-
-

Importing the function

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-fn = mlrun.import_function("hub://coxph_test")
-fn.apply(mlrun.auto_mount())
-
-fn.spec.build.image="mlrun/ml-models"
-
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-

Running the function locally

-
-
-
coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=True)
-
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
coxph_run.artifact('cox-test-summary').show()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
-
-
-
-
-

Running the function remotely

-
-
-
fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.
-          skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.
-
-coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=False)
-
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-

Back to the top

-
-
-
-
-
-
-
-
-
-

- - © Copyright .
-

-
-
-
-
-
- - - \ No newline at end of file diff --git a/functions/development/coxph_test/1.0.0/static/function.html b/functions/development/coxph_test/1.0.0/static/function.html deleted file mode 100644 index 3bf5e105..00000000 --- a/functions/development/coxph_test/1.0.0/static/function.html +++ /dev/null @@ -1,85 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: job
-metadata:
-  name: coxph-test
-  tag: ''
-  hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
-  project: ''
-  labels:
-    author: Iguazio
-    framework: survival
-  categories:
-  - machine-learning
-  - model-testing
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  env: []
-  default_handler: cox_test
-  entry_points:
-    cox_test:
-      name: cox_test
-      doc: 'Test one or more classifier models against held-out dataset
-
-
-        Using held-out test features, evaluates the peformance of the estimated model
-
-
-        Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
-        training/validation cycles'
-      parameters:
-      - name: context
-        doc: the function context
-        default: ''
-      - name: models_path
-        type: DataItem
-        default: ''
-      - name: test_set
-        type: DataItem
-        doc: test features and labels
-        default: ''
-      - name: label_column
-        type: str
-        doc: column name for ground truth labels
-        default: ''
-      - name: plots_dest
-        type: str
-        doc: dir for test plots
-        default: plots
-      - name: model_evaluator
-        doc: 'WIP: specific method to generate eval, passed in as string or available
-          in this folder'
-        default: null
-      outputs:
-      - default: ''
-      lineno: 15
-  description: Test cox proportional hazards model
-  build:
-    functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/1.0.0/static/item.html b/functions/development/coxph_test/1.0.0/static/item.html deleted file mode 100644 index f507236a..00000000 --- a/functions/development/coxph_test/1.0.0/static/item.html +++ /dev/null @@ -1,47 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
-  author: Iguazio
-  framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
-  filename: coxph_test.py
-  handler: cox_test
-  image: mlrun/ml-models
-  kind: job
-  requirements: []
-url: ''
-version: 1.0.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/1.0.0/static/source.html b/functions/development/coxph_test/1.0.0/static/source.html deleted file mode 100644 index 6af29faf..00000000 --- a/functions/development/coxph_test/1.0.0/static/source.html +++ /dev/null @@ -1,83 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
-    context,
-    models_path: DataItem,
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator=None,
-) -> None:
-    """Test one or more classifier models against held-out dataset
-
-    Using held-out test features, evaluates the peformance of the estimated model
-
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and
-    training/validation cycles
-
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-
-    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        if not model_evaluator:
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        context.log_dataset(
-            "cox-test-summary", df=model_obj.summary, index=True, format="csv"
-        )
-        context.logger.info("cox tester not implemented")
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/1.1.0/src/coxph_test.ipynb b/functions/development/coxph_test/1.1.0/src/coxph_test.ipynb deleted file mode 100644 index 0ee0b29c..00000000 --- a/functions/development/coxph_test/1.1.0/src/coxph_test.ipynb +++ /dev/null @@ -1,969 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CoxPH test**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
\n", - "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
\n", - "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo.
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Running the function locally](#Running-the-function-locally)\n", - "4. [Running the function remotely](#Running-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n", - "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n" - ] - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "fn = mlrun.import_function(\"hub://coxph_test\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "fn.spec.build.image=\"mlrun/ml-models\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function locally**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
\n", - "
" - ], - "text/plain": [ - " covariate coef exp(coef) se(coef) coef lower 95% \\\n", - "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n", - "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n", - "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n", - "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n", - "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n", - "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n", - "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n", - "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n", - "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n", - "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n", - "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n", - "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n", - "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n", - "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n", - "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n", - "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n", - "\n", - " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n", - "0 1.386176 1.040598 3.999528 2.075826 \n", - "1 0.541468 0.300670 1.718528 -0.742374 \n", - "2 0.452732 0.288913 1.572603 -0.912562 \n", - "3 1.594543 0.696424 4.926080 1.235031 \n", - "4 1.343648 0.053965 3.832999 -0.724467 \n", - "5 1.780772 0.036365 5.934435 -0.589872 \n", - "6 1.393448 0.097605 4.028715 -0.491736 \n", - "7 1.711453 0.079128 5.537002 -0.380741 \n", - "8 2.799150 0.168699 16.430675 0.436405 \n", - "9 1.151257 0.636789 3.162165 0.856033 \n", - "10 0.302742 0.631574 1.353566 -0.403154 \n", - "11 -0.792398 0.027760 0.452758 -3.072575 \n", - "12 6798.156493 0.000000 inf -0.005732 \n", - "13 0.339993 0.126080 1.404937 -1.407148 \n", - "14 1.334423 0.658562 3.797805 1.025472 \n", - "15 1.489200 0.359097 4.433547 0.362644 \n", - "\n", - " p -log2(p) \n", - "0 0.037910 4.721274 \n", - "1 0.457861 1.127018 \n", - "2 0.361473 1.468041 \n", - "3 0.216819 2.205436 \n", - "4 0.468779 1.093020 \n", - "5 0.555277 0.848721 \n", - "6 0.622906 0.682914 \n", - "7 0.703396 0.507591 \n", - "8 0.662543 0.593915 \n", - "9 0.391980 1.351150 \n", - "10 0.686835 0.541965 \n", - "11 0.002122 8.880219 \n", - "12 0.995426 0.006614 \n", - "13 0.159383 2.649426 \n", - "14 0.305141 1.712453 \n", - "15 0.716870 0.480216 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "coxph_run.artifact('cox-test-summary').show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n", - "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n", - "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n", - "final state: completed\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n", - " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n", - "\n", - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#CoxPH-test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/coxph_test/1.1.0/src/coxph_test.py b/functions/development/coxph_test/1.1.0/src/coxph_test.py deleted file mode 100644 index f635fbdf..00000000 --- a/functions/development/coxph_test/1.1.0/src/coxph_test.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# Generated by nuclio.export.NuclioExporter - -import warnings - -warnings.simplefilter(action="ignore", category=FutureWarning) - -import os -import pandas as pd -from mlrun.datastore import DataItem -from mlrun.artifacts import get_model -from cloudpickle import load -from mlrun.mlutils.models import eval_class_model - - -def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented") diff --git a/functions/development/coxph_test/1.1.0/src/function.yaml b/functions/development/coxph_test/1.1.0/src/function.yaml deleted file mode 100644 index e09fb90a..00000000 --- a/functions/development/coxph_test/1.1.0/src/function.yaml +++ /dev/null @@ -1,63 +0,0 @@ -kind: job -metadata: - name: coxph-test - tag: '' - hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab - project: '' - labels: - author: Iguazio - framework: survival - categories: - - machine-learning - - model-testing -spec: - command: '' - args: [] - image: mlrun/ml-models - env: [] - default_handler: cox_test - entry_points: - cox_test: - name: cox_test - doc: 'Test one or more classifier models against held-out dataset - - - Using held-out test features, evaluates the peformance of the estimated model - - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - - training/validation cycles' - parameters: - - name: context - doc: the function context - default: '' - - name: models_path - type: DataItem - default: '' - - name: test_set - type: DataItem - doc: test features and labels - default: '' - - name: label_column - type: str - doc: column name for ground truth labels - default: '' - - name: plots_dest - type: str - doc: dir for test plots - default: plots - - name: model_evaluator - doc: 'WIP: specific method to generate eval, passed in as string or available - in this folder' - default: null - outputs: - - default: '' - lineno: 15 - description: Test cox proportional hazards model - build: - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo= - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py - affinity: null -verbose: false diff --git a/functions/development/coxph_test/1.1.0/src/item.yaml b/functions/development/coxph_test/1.1.0/src/item.yaml deleted file mode 100644 index 241e6d56..00000000 --- a/functions/development/coxph_test/1.1.0/src/item.yaml +++ /dev/null @@ -1,26 +0,0 @@ -apiVersion: v1 -categories: -- machine-learning -- model-testing -description: Test cox proportional hazards model -doc: '' -example: coxph_test.ipynb -generationDate: 2022-08-28:17-25 -hidden: false -icon: '' -labels: - author: Iguazio - framework: survival -maintainers: [] -marketplaceType: '' -mlrunVersion: 1.1.0 -name: coxph-test -platformVersion: 3.5.0 -spec: - filename: coxph_test.py - handler: cox_test - image: mlrun/ml-models - kind: job - requirements: [] -url: '' -version: 1.1.0 diff --git a/functions/development/coxph_test/1.1.0/static/coxph_test.html b/functions/development/coxph_test/1.1.0/static/coxph_test.html deleted file mode 100644 index 5843070e..00000000 --- a/functions/development/coxph_test/1.1.0/static/coxph_test.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - -coxph_test.coxph_test - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - -
-
- -
-
-
-
-
- -
-

- -
-
-
-
-
-
-
-

Source code for coxph_test.coxph_test

-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-
[docs]def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented")
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/coxph_test/1.1.0/static/documentation.html b/functions/development/coxph_test/1.1.0/static/documentation.html deleted file mode 100644 index ebc37397..00000000 --- a/functions/development/coxph_test/1.1.0/static/documentation.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - -coxph_test package - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- -
-

coxph_test package

- -
- -
-
-
-
-
-

coxph_test package#

-
-

Submodules#

-
-
-

coxph_test.coxph_test module#

-
-
-coxph_test.coxph_test.cox_test(context, models_path: mlrun.datastore.base.DataItem, test_set: mlrun.datastore.base.DataItem, label_column: str, plots_dest: str = 'plots', model_evaluator=None)None[source]#
-

Test one or more classifier models against held-out dataset

-

Using held-out test features, evaluates the peformance of the estimated model

-

Can be part of a kubeflow pipeline as a test step that is run post EDA and -training/validation cycles

-
-
Parameters
-
    -
  • context – the function context

  • -
  • model_file – model artifact to be tested

  • -
  • test_set – test features and labels

  • -
  • label_column – column name for ground truth labels

  • -
  • score_method – for multiclass classification

  • -
  • plots_dest – dir for test plots

  • -
  • model_evaluator – WIP: specific method to generate eval, passed in as string -or available in this folder

  • -
-
-
-
-
-
-

Module contents#

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/coxph_test/1.1.0/static/example.html b/functions/development/coxph_test/1.1.0/static/example.html deleted file mode 100644 index 402b6f32..00000000 --- a/functions/development/coxph_test/1.1.0/static/example.html +++ /dev/null @@ -1,1024 +0,0 @@ - - - - - - - -CoxPH test - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- - -
-
-
-

CoxPH test#

-

This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer function from the function marketplace repository

-
-

Steps#

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Running the function locally

  6. -
  7. Running the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-

Setup function parameters#

-
-
-
test_set = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv"
-models_path = "https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl"
-
-
-
-
-
-
-

Importing the function#

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-fn = mlrun.import_function("hub://coxph_test")
-fn.apply(mlrun.auto_mount())
-
-fn.spec.build.image="mlrun/ml-models"
-
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-

Running the function locally#

-
-
-
coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=True)
-
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
coxph_run.artifact('cox-test-summary').show()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
-
-
-
-
-

Running the function remotely#

-
-
-
fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.
-          skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.
-
-coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=False)
-
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-

Back to the top

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/coxph_test/1.1.0/static/function.html b/functions/development/coxph_test/1.1.0/static/function.html deleted file mode 100644 index 3bf5e105..00000000 --- a/functions/development/coxph_test/1.1.0/static/function.html +++ /dev/null @@ -1,85 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: job
-metadata:
-  name: coxph-test
-  tag: ''
-  hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
-  project: ''
-  labels:
-    author: Iguazio
-    framework: survival
-  categories:
-  - machine-learning
-  - model-testing
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  env: []
-  default_handler: cox_test
-  entry_points:
-    cox_test:
-      name: cox_test
-      doc: 'Test one or more classifier models against held-out dataset
-
-
-        Using held-out test features, evaluates the peformance of the estimated model
-
-
-        Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
-        training/validation cycles'
-      parameters:
-      - name: context
-        doc: the function context
-        default: ''
-      - name: models_path
-        type: DataItem
-        default: ''
-      - name: test_set
-        type: DataItem
-        doc: test features and labels
-        default: ''
-      - name: label_column
-        type: str
-        doc: column name for ground truth labels
-        default: ''
-      - name: plots_dest
-        type: str
-        doc: dir for test plots
-        default: plots
-      - name: model_evaluator
-        doc: 'WIP: specific method to generate eval, passed in as string or available
-          in this folder'
-        default: null
-      outputs:
-      - default: ''
-      lineno: 15
-  description: Test cox proportional hazards model
-  build:
-    functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/1.1.0/static/item.html b/functions/development/coxph_test/1.1.0/static/item.html deleted file mode 100644 index a5c53b4e..00000000 --- a/functions/development/coxph_test/1.1.0/static/item.html +++ /dev/null @@ -1,48 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
-  author: Iguazio
-  framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: coxph-test
-platformVersion: 3.5.0
-spec:
-  filename: coxph_test.py
-  handler: cox_test
-  image: mlrun/ml-models
-  kind: job
-  requirements: []
-url: ''
-version: 1.1.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/1.1.0/static/source.html b/functions/development/coxph_test/1.1.0/static/source.html deleted file mode 100644 index 7fc415f5..00000000 --- a/functions/development/coxph_test/1.1.0/static/source.html +++ /dev/null @@ -1,97 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
-    context,
-    models_path: DataItem,
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator=None,
-) -> None:
-    """Test one or more classifier models against held-out dataset
-
-    Using held-out test features, evaluates the peformance of the estimated model
-
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and
-    training/validation cycles
-
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-
-    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        if not model_evaluator:
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        context.log_dataset(
-            "cox-test-summary", df=model_obj.summary, index=True, format="csv"
-        )
-        context.logger.info("cox tester not implemented")
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/latest/src/coxph_test.ipynb b/functions/development/coxph_test/latest/src/coxph_test.ipynb deleted file mode 100644 index 0ee0b29c..00000000 --- a/functions/development/coxph_test/latest/src/coxph_test.ipynb +++ /dev/null @@ -1,969 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# **CoxPH test**" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
\n", - "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
\n", - "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo.
\n", - "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Steps**\n", - "1. [Setup function parameters](#Setup-function-parameters)\n", - "2. [Importing the function](#Importing-the-function)\n", - "3. [Running the function locally](#Running-the-function-locally)\n", - "4. [Running the function remotely](#Running-the-function-remotely)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import warnings\n", - "warnings.filterwarnings(\"ignore\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Setup function parameters**" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n", - "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Importing the function**" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n" - ] - } - ], - "source": [ - "import mlrun\n", - "mlrun.set_environment(project='function-marketplace')\n", - "\n", - "fn = mlrun.import_function(\"hub://coxph_test\")\n", - "fn.apply(mlrun.auto_mount())\n", - "\n", - "fn.spec.build.image=\"mlrun/ml-models\"" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function locally**" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
\n", - "
" - ], - "text/plain": [ - " covariate coef exp(coef) se(coef) coef lower 95% \\\n", - "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n", - "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n", - "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n", - "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n", - "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n", - "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n", - "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n", - "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n", - "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n", - "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n", - "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n", - "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n", - "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n", - "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n", - "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n", - "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n", - "\n", - " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n", - "0 1.386176 1.040598 3.999528 2.075826 \n", - "1 0.541468 0.300670 1.718528 -0.742374 \n", - "2 0.452732 0.288913 1.572603 -0.912562 \n", - "3 1.594543 0.696424 4.926080 1.235031 \n", - "4 1.343648 0.053965 3.832999 -0.724467 \n", - "5 1.780772 0.036365 5.934435 -0.589872 \n", - "6 1.393448 0.097605 4.028715 -0.491736 \n", - "7 1.711453 0.079128 5.537002 -0.380741 \n", - "8 2.799150 0.168699 16.430675 0.436405 \n", - "9 1.151257 0.636789 3.162165 0.856033 \n", - "10 0.302742 0.631574 1.353566 -0.403154 \n", - "11 -0.792398 0.027760 0.452758 -3.072575 \n", - "12 6798.156493 0.000000 inf -0.005732 \n", - "13 0.339993 0.126080 1.404937 -1.407148 \n", - "14 1.334423 0.658562 3.797805 1.025472 \n", - "15 1.489200 0.359097 4.433547 0.362644 \n", - "\n", - " p -log2(p) \n", - "0 0.037910 4.721274 \n", - "1 0.457861 1.127018 \n", - "2 0.361473 1.468041 \n", - "3 0.216819 2.205436 \n", - "4 0.468779 1.093020 \n", - "5 0.555277 0.848721 \n", - "6 0.622906 0.682914 \n", - "7 0.703396 0.507591 \n", - "8 0.662543 0.593915 \n", - "9 0.391980 1.351150 \n", - "10 0.686835 0.541965 \n", - "11 0.002122 8.880219 \n", - "12 0.995426 0.006614 \n", - "13 0.159383 2.649426 \n", - "14 0.305141 1.712453 \n", - "15 0.716870 0.480216 " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "coxph_run.artifact('cox-test-summary').show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### **Running the function remotely**" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n", - "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n", - "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n", - "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n", - "final state: completed\n" - ] - }, - { - "data": { - "text/html": [ - "\n", - "
\n", - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
\n", - "
\n", - "
\n", - "
\n", - " Title\n", - " ×\n", - "
\n", - " \n", - "
\n", - "
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "text/html": [ - " > to track results use the .show() or .logs() methods or click here to open in UI" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n" - ] - } - ], - "source": [ - "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n", - " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n", - "\n", - "coxph_run = fn.run(name='tasks_coxph_test',\n", - " params = {\"label_column\" : \"labels\",\n", - " \"plots_dest\" : \"plots/xgb_test\"},\n", - " inputs = {\"test_set\" : test_set,\n", - " \"models_path\" : models_path},\n", - " local=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "[Back to the top](#CoxPH-test)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/functions/development/coxph_test/latest/src/coxph_test.py b/functions/development/coxph_test/latest/src/coxph_test.py deleted file mode 100644 index f635fbdf..00000000 --- a/functions/development/coxph_test/latest/src/coxph_test.py +++ /dev/null @@ -1,75 +0,0 @@ -# Copyright 2019 Iguazio -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# -# Generated by nuclio.export.NuclioExporter - -import warnings - -warnings.simplefilter(action="ignore", category=FutureWarning) - -import os -import pandas as pd -from mlrun.datastore import DataItem -from mlrun.artifacts import get_model -from cloudpickle import load -from mlrun.mlutils.models import eval_class_model - - -def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented") diff --git a/functions/development/coxph_test/latest/src/function.yaml b/functions/development/coxph_test/latest/src/function.yaml deleted file mode 100644 index e09fb90a..00000000 --- a/functions/development/coxph_test/latest/src/function.yaml +++ /dev/null @@ -1,63 +0,0 @@ -kind: job -metadata: - name: coxph-test - tag: '' - hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab - project: '' - labels: - author: Iguazio - framework: survival - categories: - - machine-learning - - model-testing -spec: - command: '' - args: [] - image: mlrun/ml-models - env: [] - default_handler: cox_test - entry_points: - cox_test: - name: cox_test - doc: 'Test one or more classifier models against held-out dataset - - - Using held-out test features, evaluates the peformance of the estimated model - - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - - training/validation cycles' - parameters: - - name: context - doc: the function context - default: '' - - name: models_path - type: DataItem - default: '' - - name: test_set - type: DataItem - doc: test features and labels - default: '' - - name: label_column - type: str - doc: column name for ground truth labels - default: '' - - name: plots_dest - type: str - doc: dir for test plots - default: plots - - name: model_evaluator - doc: 'WIP: specific method to generate eval, passed in as string or available - in this folder' - default: null - outputs: - - default: '' - lineno: 15 - description: Test cox proportional hazards model - build: - functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo= - commands: [] - code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py - affinity: null -verbose: false diff --git a/functions/development/coxph_test/latest/src/item.yaml b/functions/development/coxph_test/latest/src/item.yaml deleted file mode 100644 index 241e6d56..00000000 --- a/functions/development/coxph_test/latest/src/item.yaml +++ /dev/null @@ -1,26 +0,0 @@ -apiVersion: v1 -categories: -- machine-learning -- model-testing -description: Test cox proportional hazards model -doc: '' -example: coxph_test.ipynb -generationDate: 2022-08-28:17-25 -hidden: false -icon: '' -labels: - author: Iguazio - framework: survival -maintainers: [] -marketplaceType: '' -mlrunVersion: 1.1.0 -name: coxph-test -platformVersion: 3.5.0 -spec: - filename: coxph_test.py - handler: cox_test - image: mlrun/ml-models - kind: job - requirements: [] -url: '' -version: 1.1.0 diff --git a/functions/development/coxph_test/latest/static/coxph_test.html b/functions/development/coxph_test/latest/static/coxph_test.html deleted file mode 100644 index 5843070e..00000000 --- a/functions/development/coxph_test/latest/static/coxph_test.html +++ /dev/null @@ -1,215 +0,0 @@ - - - - - - - -coxph_test.coxph_test - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - -
-
- -
-
-
-
-
- -
-

- -
-
-
-
-
-
-
-

Source code for coxph_test.coxph_test

-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-
[docs]def cox_test( - context, - models_path: DataItem, - test_set: DataItem, - label_column: str, - plots_dest: str = "plots", - model_evaluator=None, -) -> None: - """Test one or more classifier models against held-out dataset - - Using held-out test features, evaluates the peformance of the estimated model - - Can be part of a kubeflow pipeline as a test step that is run post EDA and - training/validation cycles - - :param context: the function context - :param model_file: model artifact to be tested - :param test_set: test features and labels - :param label_column: column name for ground truth labels - :param score_method: for multiclass classification - :param plots_dest: dir for test plots - :param model_evaluator: WIP: specific method to generate eval, passed in as string - or available in this folder - """ - xtest = test_set.as_df() - ytest = xtest.pop(label_column) - - model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl") - model_obj = load(open(str(model_file), "rb")) - - try: - if not model_evaluator: - eval_metrics = eval_class_model(context, xtest, ytest, model_obj) - - model_plots = eval_metrics.pop("plots") - model_tables = eval_metrics.pop("tables") - for plot in model_plots: - context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html") - for tbl in model_tables: - context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv") - - context.log_results(eval_metrics) - except: - context.log_dataset( - "cox-test-summary", df=model_obj.summary, index=True, format="csv" - ) - context.logger.info("cox tester not implemented")
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/coxph_test/latest/static/documentation.html b/functions/development/coxph_test/latest/static/documentation.html deleted file mode 100644 index ebc37397..00000000 --- a/functions/development/coxph_test/latest/static/documentation.html +++ /dev/null @@ -1,244 +0,0 @@ - - - - - - - -coxph_test package - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- -
-

coxph_test package

- -
- -
-
-
-
-
-

coxph_test package#

-
-

Submodules#

-
-
-

coxph_test.coxph_test module#

-
-
-coxph_test.coxph_test.cox_test(context, models_path: mlrun.datastore.base.DataItem, test_set: mlrun.datastore.base.DataItem, label_column: str, plots_dest: str = 'plots', model_evaluator=None)None[source]#
-

Test one or more classifier models against held-out dataset

-

Using held-out test features, evaluates the peformance of the estimated model

-

Can be part of a kubeflow pipeline as a test step that is run post EDA and -training/validation cycles

-
-
Parameters
-
    -
  • context – the function context

  • -
  • model_file – model artifact to be tested

  • -
  • test_set – test features and labels

  • -
  • label_column – column name for ground truth labels

  • -
  • score_method – for multiclass classification

  • -
  • plots_dest – dir for test plots

  • -
  • model_evaluator – WIP: specific method to generate eval, passed in as string -or available in this folder

  • -
-
-
-
-
-
-

Module contents#

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/coxph_test/latest/static/example.html b/functions/development/coxph_test/latest/static/example.html deleted file mode 100644 index 402b6f32..00000000 --- a/functions/development/coxph_test/latest/static/example.html +++ /dev/null @@ -1,1024 +0,0 @@ - - - - - - - -CoxPH test - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
-
- - - -
- -
-
-
-
-
-
- - - - -
-
- - -
-
-
- - -
-
-
-

CoxPH test#

-

This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features,
and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer function from the function marketplace repository

-
-

Steps#

-
    -
  1. Setup function parameters

  2. -
  3. Importing the function

  4. -
  5. Running the function locally

  6. -
  7. Running the function remotely

  8. -
-
-
-
import warnings
-warnings.filterwarnings("ignore")
-
-
-
-
-
-
-

Setup function parameters#

-
-
-
test_set = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv"
-models_path = "https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl"
-
-
-
-
-
-
-

Importing the function#

-
-
-
import mlrun
-mlrun.set_environment(project='function-marketplace')
-
-fn = mlrun.import_function("hub://coxph_test")
-fn.apply(mlrun.auto_mount())
-
-fn.spec.build.image="mlrun/ml-models"
-
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-

Running the function locally#

-
-
-
coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=True)
-
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:45completedtasks_coxph_test
v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
coxph_run.artifact('cox-test-summary').show()
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
covariatecoefexp(coef)se(coef)coef lower 95%coef upper 95%exp(coef) lower 95%exp(coef) upper 95%zp-log2(p)
0gender0.7129862.040073e+000.3434710.0397951.3861761.0405983.9995282.0758260.0379104.721274
1senior-0.3301377.188252e-010.444705-1.2017430.5414680.3006701.718528-0.7423740.4578611.127018
2partner-0.3944496.740516e-010.432243-1.2416300.4527320.2889131.572603-0.9125620.3614731.468041
3deps0.6163731.852199e+000.499075-0.3617971.5945430.6964244.9260801.2350310.2168192.205436
4MultipleLines-0.7878854.548059e-011.087536-2.9194171.3436480.0539653.832999-0.7244670.4687791.093020
5OnlineSecurity-0.7666834.645512e-011.299746-3.3141391.7807720.0363655.934435-0.5898720.5552770.848721
6OnlineBackup-0.4666916.270740e-010.949068-2.3268291.3934480.0976054.028715-0.4917360.6229060.682914
7DeviceProtection-0.4126206.619136e-011.083731-2.5366941.7114530.0791285.537002-0.3807410.7033960.507591
8TechSupport0.5097561.664885e+001.168080-1.7796382.7991500.16869916.4306750.4364050.6625430.593915
9PaperlessBilling0.3499701.419025e+000.408827-0.4513171.1512570.6367893.1621650.8560330.3919801.351150
10MonthlyCharges-0.0783999.245958e-010.194463-0.4595390.3027420.6315741.353566-0.4031540.6868350.541965
11Contract_1-2.1882791.121096e-010.712197-3.584159-0.7923980.0277600.452758-3.0725750.0021228.880219
12Contract_2-19.9407672.186930e-093478.684973-6838.0380276798.1564930.000000inf-0.0057320.9954260.006614
13Payment_1-0.8654244.208732e-010.615020-2.0708400.3399930.1260801.404937-1.4071480.1593832.649426
14Payment_20.4583631.581483e+000.446978-0.4176971.3344230.6585623.7978051.0254720.3051411.712453
15Payment_30.2325191.261774e+000.641176-1.0241621.4892000.3590974.4335470.3626440.7168700.480216
-
-
-
-
-

Running the function remotely#

-
-
-
fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.
-          skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.
-
-coxph_run = fn.run(name='tasks_coxph_test',
-                   params = {"label_column"  : "labels",
-                             "plots_dest"    : "plots/xgb_test"},
-                   inputs = {"test_set"      : test_set,
-                             "models_path"   : models_path},
-                   local=False)
-
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
projectuiditerstartstatenamelabelsinputsparametersresultsartifacts
function-marketplace0Oct 17 13:38:56completedtasks_coxph_test
v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
test_set
models_path
label_column=labels
plots_dest=plots/xgb_test
cox-test-summary
-
- -
-

-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI
> 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-

Back to the top

-
-
-
-
-
- -
-
-
-
-
- -
-
-
- - - - \ No newline at end of file diff --git a/functions/development/coxph_test/latest/static/function.html b/functions/development/coxph_test/latest/static/function.html deleted file mode 100644 index 3bf5e105..00000000 --- a/functions/development/coxph_test/latest/static/function.html +++ /dev/null @@ -1,85 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-kind: job
-metadata:
-  name: coxph-test
-  tag: ''
-  hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
-  project: ''
-  labels:
-    author: Iguazio
-    framework: survival
-  categories:
-  - machine-learning
-  - model-testing
-spec:
-  command: ''
-  args: []
-  image: mlrun/ml-models
-  env: []
-  default_handler: cox_test
-  entry_points:
-    cox_test:
-      name: cox_test
-      doc: 'Test one or more classifier models against held-out dataset
-
-
-        Using held-out test features, evaluates the peformance of the estimated model
-
-
-        Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
-        training/validation cycles'
-      parameters:
-      - name: context
-        doc: the function context
-        default: ''
-      - name: models_path
-        type: DataItem
-        default: ''
-      - name: test_set
-        type: DataItem
-        doc: test features and labels
-        default: ''
-      - name: label_column
-        type: str
-        doc: column name for ground truth labels
-        default: ''
-      - name: plots_dest
-        type: str
-        doc: dir for test plots
-        default: plots
-      - name: model_evaluator
-        doc: 'WIP: specific method to generate eval, passed in as string or available
-          in this folder'
-        default: null
-      outputs:
-      - default: ''
-      lineno: 15
-  description: Test cox proportional hazards model
-  build:
-    functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
-    commands: []
-    code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
-  affinity: null
-verbose: false
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/latest/static/item.html b/functions/development/coxph_test/latest/static/item.html deleted file mode 100644 index a5c53b4e..00000000 --- a/functions/development/coxph_test/latest/static/item.html +++ /dev/null @@ -1,48 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
-  author: Iguazio
-  framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: coxph-test
-platformVersion: 3.5.0
-spec:
-  filename: coxph_test.py
-  handler: cox_test
-  image: mlrun/ml-models
-  kind: job
-  requirements: []
-url: ''
-version: 1.1.0
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/coxph_test/latest/static/source.html b/functions/development/coxph_test/latest/static/source.html deleted file mode 100644 index 7fc415f5..00000000 --- a/functions/development/coxph_test/latest/static/source.html +++ /dev/null @@ -1,97 +0,0 @@ - - - - - - - - - - - Source - - - - -
-        
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-#     http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
-    context,
-    models_path: DataItem,
-    test_set: DataItem,
-    label_column: str,
-    plots_dest: str = "plots",
-    model_evaluator=None,
-) -> None:
-    """Test one or more classifier models against held-out dataset
-
-    Using held-out test features, evaluates the peformance of the estimated model
-
-    Can be part of a kubeflow pipeline as a test step that is run post EDA and
-    training/validation cycles
-
-    :param context:         the function context
-    :param model_file:      model artifact to be tested
-    :param test_set:        test features and labels
-    :param label_column:    column name for ground truth labels
-    :param score_method:    for multiclass classification
-    :param plots_dest:      dir for test plots
-    :param model_evaluator: WIP: specific method to generate eval, passed in as string
-                            or available in this folder
-    """
-    xtest = test_set.as_df()
-    ytest = xtest.pop(label_column)
-
-    model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
-    model_obj = load(open(str(model_file), "rb"))
-
-    try:
-        if not model_evaluator:
-            eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
-        model_plots = eval_metrics.pop("plots")
-        model_tables = eval_metrics.pop("tables")
-        for plot in model_plots:
-            context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
-        for tbl in model_tables:
-            context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
-        context.log_results(eval_metrics)
-    except:
-        context.log_dataset(
-            "cox-test-summary", df=model_obj.summary, index=True, format="csv"
-        )
-        context.logger.info("cox tester not implemented")
-
-        
-    
- - \ No newline at end of file diff --git a/functions/development/tags.json b/functions/development/tags.json index e2157e25..968e5617 100644 --- a/functions/development/tags.json +++ b/functions/development/tags.json @@ -1 +1 @@ -{"kind": ["serving", "nuclio:serving", "job"], "categories": ["deep-learning", "model-testing", "data-generation", "model-training", "machine-learning", "huggingface", "utils", "data-analysis", "data-preparation", "data-validation", "NLP", "audio", "genai", "pytorch", "etl", "model-serving", "monitoring"]} \ No newline at end of file +{"categories": ["model-testing", "utils", "genai", "machine-learning", "model-training", "data-analysis", "pytorch", "data-generation", "data-preparation", "huggingface", "audio", "model-serving", "deep-learning", "etl", "monitoring", "NLP", "data-validation"], "kind": ["nuclio:serving", "job", "serving"]} \ No newline at end of file