diff --git a/README.md b/README.md
index 42353baa..efe36787 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,47 @@
+### Change log [2024-09-25 13:49:46]
+1. Item Updated: `v2_model_server` (from version: `1.2.0` to `1.2.0`)
+2. Item Updated: `translate` (from version: `0.1.0` to `0.1.0`)
+3. Item Updated: `text_to_audio_generator` (from version: `1.2.0` to `1.2.0`)
+4. Item Updated: `gen_class_data` (from version: `1.2.0` to `1.2.0`)
+5. Item Updated: `feature_selection` (from version: `1.5.0` to `1.5.0`)
+6. Item Updated: `arc_to_parquet` (from version: `1.4.1` to `1.4.1`)
+7. Item Updated: `azureml_serving` (from version: `1.1.0` to `1.1.0`)
+8. Item Updated: `describe_dask` (from version: `1.1.0` to `1.1.0`)
+9. Item Updated: `question_answering` (from version: `0.4.0` to `0.4.0`)
+10. Item Updated: `transcribe` (from version: `1.1.0` to `1.1.0`)
+11. Item Updated: `sklearn_classifier_dask` (from version: `1.1.1` to `1.1.1`)
+12. Item Updated: `pyannote_audio` (from version: `1.2.0` to `1.2.0`)
+13. Item Updated: `pii_recognizer` (from version: `0.3.0` to `0.3.0`)
+14. Item Updated: `silero_vad` (from version: `1.3.0` to `1.3.0`)
+15. Item Updated: `test_classifier` (from version: `1.1.0` to `1.1.0`)
+16. Item Updated: `batch_inference_v2` (from version: `2.5.0` to `2.5.0`)
+17. Item Updated: `open_archive` (from version: `1.1.0` to `1.1.0`)
+18. Item Updated: `hugging_face_serving` (from version: `1.1.0` to `1.1.0`)
+19. Item Updated: `batch_inference` (from version: `1.7.0` to `1.7.0`)
+20. Item Updated: `sklearn_classifier` (from version: `1.1.1` to `1.1.1`)
+21. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`)
+22. Item Updated: `model_monitoring_batch` (from version: `1.1.0` to `1.1.0`)
+23. Item Updated: `validate_great_expectations` (from version: `1.1.0` to `1.1.0`)
+24. Item Updated: `structured_data_generator` (from version: `1.5.0` to `1.5.0`)
+25. Item Updated: `describe_spark` (from version: `1.1.0` to `1.1.0`)
+26. Item Updated: `onnx_utils` (from version: `1.2.0` to `1.2.0`)
+27. Item Updated: `v2_model_tester` (from version: `1.1.0` to `1.1.0`)
+28. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`)
+29. Item Updated: `send_email` (from version: `1.2.0` to `1.2.0`)
+30. Item Updated: `auto_trainer` (from version: `1.7.0` to `1.7.0`)
+31. Item Updated: `azureml_utils` (from version: `1.3.0` to `1.3.0`)
+32. Item Updated: `load_dataset` (from version: `1.2.0` to `1.2.0`)
+33. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`)
+34. Item Updated: `describe` (from version: `1.3.0` to `1.3.0`)
+35. Item Updated: `mlflow_utils` (from version: `1.0.0` to `1.0.0`)
+36. Item Updated: `model_server` (from version: `1.1.0` to `1.1.0`)
+37. Item Updated: `noise_reduction` (from version: `1.0.0` to `1.0.0`)
+38. Item Updated: `github_utils` (from version: `1.1.0` to `1.1.0`)
+39. Item Removed: `churn_server`
+40. Item Removed: `coxph_test`
+41. Item Removed: `churn_server`
+42. Item Removed: `coxph_test`
+
### Change log [2024-09-25 13:27:37]
1. Item Updated: `coxph_test` (from version: `1.1.0` to `1.1.0`)
2. Item Updated: `v2_model_server` (from version: `1.2.0` to `1.2.0`)
diff --git a/catalog.json b/catalog.json
index 648d8fee..d440c3ee 100644
--- a/catalog.json
+++ b/catalog.json
@@ -1 +1 @@
-{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
+{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0"}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0"}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
diff --git a/functions/development/catalog.json b/functions/development/catalog.json
index c6b986fb..695754e2 100644
--- a/functions/development/catalog.json
+++ b/functions/development/catalog.json
@@ -1 +1 @@
-{"load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
+{"load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "load-dataset", "platformVersion": "3.5.5", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.4", "name": "feature-selection", "platformVersion": "3.6.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.7.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.0", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["huggingface", "genai", "model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "genai", "huggingface", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.4.0": {"apiVersion": "v1", "categories": ["genai", "huggingface", "machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.4.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "NLP"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.3.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "huggingface", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.1.0", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.4.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.1", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.6.1", "name": "structured_data_generator", "platformVersion": "3.5.5", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.5.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation", "data-generation", "genai"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "pytorch"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.2.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["deep-learning", "pytorch", "audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["deep-learning", "huggingface", "audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["deep-learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "noise_reduction": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Reduce noise from audio files", "doc": "", "example": "noise_reduction.ipynb", "generationDate": "2024-03-04:17-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "mlrunVersion": "1.5.2", "name": "noise-reduction", "platformVersion": "3.5.3", "spec": {"filename": "noise_reduction.py", "handler": "reduce_noise", "image": "mlrun/mlrun", "kind": "job", "requirements": ["librosa", "noisereduce", "deepfilternet", "torchaudio>=2.1.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/noise_reduction.ipynb", "source": "src/noise_reduction.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "mlflow_utils": {"latest": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["genai", "model-serving", "machine-learning"], "description": "Mlflow model server, and additional utils.", "doc": "", "example": "mlflow_utils.ipynb", "generationDate": "2024-05-23:12-00", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.7.0-rc17", "name": "mlflow_utils", "platformVersion": "", "spec": {"customFields": {"default_class": "MLFlowModelServer"}, "filename": "mlflow_utils.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["mlflow==2.12.2", "lightgbm", "xgboost"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/mlflow_utils.ipynb", "source": "src/mlflow_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/src/README.md b/functions/development/churn_server/0.0.1/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/0.0.1/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/src/churn_server.ipynb b/functions/development/churn_server/0.0.1/src/churn_server.ipynb
deleted file mode 100644
index f2cd1830..00000000
--- a/functions/development/churn_server/0.0.1/src/churn_server.ipynb
+++ /dev/null
@@ -1,216 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# Churn Server\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "from cloudpickle import load\n",
- "\n",
- "\n",
- "import mlrun\n",
- "class ChurnModel(mlrun.serving.V2ModelServer):\n",
- " def load(self):\n",
- " \"\"\"\n",
- " load multiple models in nested folders, churn model only\n",
- " \"\"\"\n",
- " clf_model_file, extra_data = self.get_model(\".pkl\")\n",
- " self.model = load(open(str(clf_model_file), \"rb\"))\n",
- " if \"cox\" in extra_data.keys():\n",
- " cox_model_file = extra_data[\"cox\"]\n",
- " self.cox_model = load(open(str(cox_model_file), \"rb\"))\n",
- " if \"cox/km\" in extra_data.keys():\n",
- " km_model_file = extra_data[\"cox/km\"]\n",
- " self.km_model = load(open(str(km_model_file), \"rb\"))\n",
- "\n",
- " def predict(self, body):\n",
- " try:\n",
- " # we have potentially 3 models to work with:\n",
- " #if hasattr(self, \"cox_model\") and hasattr(self, \"km_model\"):\n",
- " # hack for now, just predict using one:\n",
- " feats = np.asarray(body[\"instances\"], dtype=np.float32).reshape(-1, 23)\n",
- " result = self.model.predict(feats, validate_features=False)\n",
- " return result.tolist()\n",
- " #else:\n",
- " # raise Exception(\"models not found\")\n",
- " except Exception as e:\n",
- " raise Exception(\"Failed to predict %s\" % e)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# nuclio: end-code"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Configuration\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from mlrun import mlconf\n",
- "import os\n",
- "mlconf.dbpath = mlconf.dbpath or \"http://mlrun-api:8080\"\n",
- "mlconf.artifact_path = mlconf.artifact_path or f\"{os.environ['HOME']}/artifacts\"\n"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "DATA_URL = f\"https://raw.githubusercontent.com/yjb-ds/testdata/master/demos/churn/churn-tests.csv\"\n",
- "xtest = pd.read_csv(DATA_URL)\n"
- ],
- "metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
- }
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- " \n",
- "### Deploy our serving class using as a serverless function\n",
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "\n",
- "the `models` dict store model names and the assosiated model **dir** URL (the URL can start with `S3://` and other blob store options), the faster way is to use a shared file volume, we use `.apply(mount_v3io())` to attach a v3io (iguazio data fabric) volume to our function. By default v3io will mount the current user home into the `\\User` function path.\n",
- "\n",
- "**verify the model dir does contain a valid `model.bst` file**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "from mlrun import import_function\n",
- "from mlrun.platforms.other import auto_mount\n",
- "import requests"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "fn = import_function(\"hub://churn_server\")\n",
- "\n",
- "model_dir = os.path.join(mlconf.artifact_path, \"churn\", \"models\")\n",
- "fn.add_model(\"churn_server_v1\", model_path=model_dir)\n",
- "\n",
- "fn.apply(auto_mount())"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Tests"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "addr = fn.deploy()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **test our model server using HTTP request**\n",
- "We invoke our model serving function using test data, the data vector is specified in the `instances` attribute."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"instances\": xtest.values[:10,:-1].tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "import json\n",
- "resp = requests.put(addr + \"/churn_server_v1/predict\", json=json.dumps(event_data))\n",
- "\n",
- "tl = resp.text.replace(\"[\",\"\").replace(\"]\",\"\").split(\",\")\n",
- "tl"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "**[back to top](#top)**"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.8"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/src/churn_server.py b/functions/development/churn_server/0.0.1/src/churn_server.py
deleted file mode 100644
index 644f0d60..00000000
--- a/functions/development/churn_server/0.0.1/src/churn_server.py
+++ /dev/null
@@ -1,41 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["instances"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
diff --git a/functions/development/churn_server/0.0.1/src/function.yaml b/functions/development/churn_server/0.0.1/src/function.yaml
deleted file mode 100644
index 3b06febc..00000000
--- a/functions/development/churn_server/0.0.1/src/function.yaml
+++ /dev/null
@@ -1,48 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: b3d36552fbed4f069175bf4b8df8bd4eb9389ee1
- project: default
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /home/kali/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5zdGFuY2VzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/churn_server/churn_server.py
- secret_sources: []
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/0.0.1/src/item.yaml b/functions/development/churn_server/0.0.1/src/item.yaml
deleted file mode 100644
index 0aa3e2c4..00000000
--- a/functions/development/churn_server/0.0.1/src/item.yaml
+++ /dev/null
@@ -1,29 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-05-19:22-04
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: ''
-name: churn-server
-platformVersion: ''
-spec:
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements: []
- env:
- ENABLE_EXPLAINER: 'False'
- customFields:
- default_class: ChurnModel
-url: ''
-version: 0.0.1
diff --git a/functions/development/churn_server/0.0.1/src/requirements.txt b/functions/development/churn_server/0.0.1/src/requirements.txt
deleted file mode 100644
index 0061fc07..00000000
--- a/functions/development/churn_server/0.0.1/src/requirements.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-mlrun
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/src/test_churn_server.py b/functions/development/churn_server/0.0.1/src/test_churn_server.py
deleted file mode 100644
index 13fb9d9f..00000000
--- a/functions/development/churn_server/0.0.1/src/test_churn_server.py
+++ /dev/null
@@ -1,53 +0,0 @@
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/0.0.1/static/documentation.html b/functions/development/churn_server/0.0.1/static/documentation.html
deleted file mode 100644
index 61bce5b6..00000000
--- a/functions/development/churn_server/0.0.1/static/documentation.html
+++ /dev/null
@@ -1,148 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
Submodules
-
-
-
churn_server.churn_server module
-
-
-class churn_server.churn_server.
ChurnModel
( context , name : str , model_path : Optional [ str ] = None , model = None , protocol = None , ** class_args ) [source]
-Bases: mlrun.serving.v2_serving.V2ModelServer
-
-
-load
( ) [source]
-load multiple models in nested folders, churn model only
-
-
-
-predict
( body ) [source]
-model prediction operation
-
-
-
-
-churn_server.churn_server.
handler
( context , event ) [source]
-
-
-
-churn_server.churn_server.
init_context
( context ) [source]
-
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/static/example.html b/functions/development/churn_server/0.0.1/static/example.html
deleted file mode 100644
index 820f3c86..00000000
--- a/functions/development/churn_server/0.0.1/static/example.html
+++ /dev/null
@@ -1,256 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Churn Server
-
-
-
-
Configuration
-
-
-
-
-
Deploy our serving class using as a serverless function
-
in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-
the models
dict store model names and the assosiated model dir URL (the URL can start with S3://
and other blob store options), the faster way is to use a shared file volume, we use .apply(mount_v3io())
to attach a v3io (iguazio data fabric) volume to our function. By default v3io will mount the current user home into the \User
function path.
-
verify the model dir does contain a valid model.bst
file
-
-
-
-
-
-
Tests
-
-
-
test our model server using HTTP request
-
We invoke our model serving function using test data, the data vector is specified in the instances
attribute.
-
-
-
back to top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/static/function.html b/functions/development/churn_server/0.0.1/static/function.html
deleted file mode 100644
index 14728c92..00000000
--- a/functions/development/churn_server/0.0.1/static/function.html
+++ /dev/null
@@ -1,70 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: b3d36552fbed4f069175bf4b8df8bd4eb9389ee1
- project: default
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /home/kali/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5zdGFuY2VzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/churn_server/churn_server.py
- secret_sources: []
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/static/item.html b/functions/development/churn_server/0.0.1/static/item.html
deleted file mode 100644
index dced0a13..00000000
--- a/functions/development/churn_server/0.0.1/static/item.html
+++ /dev/null
@@ -1,51 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-05-19:22-04
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: ''
-name: churn-server
-platformVersion: ''
-spec:
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements: []
- env:
- ENABLE_EXPLAINER: 'False'
- customFields:
- default_class: ChurnModel
-url: ''
-version: 0.0.1
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.0.1/static/source.html b/functions/development/churn_server/0.0.1/static/source.html
deleted file mode 100644
index eec0f14b..00000000
--- a/functions/development/churn_server/0.0.1/static/source.html
+++ /dev/null
@@ -1,63 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["instances"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/src/README.md b/functions/development/churn_server/0.8.0/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/0.8.0/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/src/churn_server.ipynb b/functions/development/churn_server/0.8.0/src/churn_server.ipynb
deleted file mode 100644
index b8a96277..00000000
--- a/functions/development/churn_server/0.8.0/src/churn_server.ipynb
+++ /dev/null
@@ -1,503 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# **Churn Server**\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n",
- "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction). \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Testing the function locally](#Testing-the-function-locally)\n",
- "4. [Testing the function remotely](#Testing-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Following packages are required, make sure to install\n",
- "# !pip install xgboost==1.3.1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setting up models path\n",
- "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "# Importing the function from the hub\n",
- "fn = mlrun.import_function(\"hub://churn_server:development\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "# Manually specifying needed packages \n",
- "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n",
- "\n",
- "# Adding the model \n",
- "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function locally**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Note that this function is a serving function, hence not needs to run, but deployed. \n",
- "\n",
- "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n",
- "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n",
- "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n"
- ]
- }
- ],
- "source": [
- "# When mocking, class has to be present\n",
- "from churn_server import *\n",
- "\n",
- "# Mocking function\n",
- "server = fn.to_mock_server()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gender \n",
- " senior \n",
- " partner \n",
- " deps \n",
- " tenure \n",
- " PhoneService \n",
- " MultipleLines \n",
- " OnlineSecurity \n",
- " OnlineBackup \n",
- " DeviceProtection \n",
- " ... \n",
- " PaperlessBilling \n",
- " MonthlyCharges \n",
- " tenure_map \n",
- " ISP_1 \n",
- " ISP_2 \n",
- " Contract_1 \n",
- " Contract_2 \n",
- " Payment_1 \n",
- " Payment_2 \n",
- " Payment_3 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 27 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 101.90 \n",
- " 2.0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 85.70 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 69.55 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 53 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 0 \n",
- " 105.55 \n",
- " 4.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 43 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 1 \n",
- " 104.60 \n",
- " 3.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 23 columns
\n",
- "
"
- ],
- "text/plain": [
- " gender senior partner deps tenure PhoneService MultipleLines \\\n",
- "0 0 0 1 0 27 1 0 \n",
- "1 0 1 0 0 1 1 1 \n",
- "2 1 0 0 0 1 1 0 \n",
- "3 0 0 0 0 53 1 1 \n",
- "4 0 0 0 0 43 1 1 \n",
- "\n",
- " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n",
- "0 1 0 0 ... 1 \n",
- "1 0 0 0 ... 1 \n",
- "2 0 0 0 ... 1 \n",
- "3 0 1 1 ... 0 \n",
- "4 0 1 1 ... 1 \n",
- "\n",
- " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n",
- "0 101.90 2.0 1 0 1 0 \n",
- "1 85.70 0.0 1 0 0 0 \n",
- "2 69.55 0.0 1 0 0 0 \n",
- "3 105.55 4.0 1 0 0 1 \n",
- "4 104.60 3.0 1 0 0 1 \n",
- "\n",
- " Payment_1 Payment_2 Payment_3 \n",
- "0 1 0 0 \n",
- "1 0 1 0 \n",
- "2 0 1 0 \n",
- "3 0 1 0 \n",
- "4 0 1 0 \n",
- "\n",
- "[5 rows x 23 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "#declaring test_set path\n",
- "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n",
- "\n",
- "# Getting the data\n",
- "x_test = pd.read_csv(test_set_path)\n",
- "y_test = x_test['labels']\n",
- "x_test.drop(['labels'],axis=1,inplace=True)\n",
- "x_test.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"inputs\": x_test.values.tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "When mocking to server, returned dict has the following fields : id, model_name, outputs\n"
- ]
- }
- ],
- "source": [
- "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n",
- "2021-10-14 06:10:20 (info) Deploying function\n",
- "2021-10-14 06:10:20 (info) Building\n",
- "2021-10-14 06:10:20 (info) Staging files and preparing base images\n",
- "2021-10-14 06:10:20 (info) Building processor image\n",
- "2021-10-14 06:10:21 (info) Build complete\n",
- "2021-10-14 06:10:29 (info) Function deploy complete\n",
- "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n"
- ]
- }
- ],
- "source": [
- "address = fn.deploy()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model's accuracy : 0.7913907284768212\n"
- ]
- }
- ],
- "source": [
- "import json\n",
- "import requests\n",
- "\n",
- "# using requests to predict\n",
- "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n",
- "\n",
- "# returned data is a string \n",
- "y_predict = json.loads(response.text)['outputs']\n",
- "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n",
- "print(f\"model's accuracy : {accuracy}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#Churn-Server)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/churn_server/0.8.0/src/churn_server.py b/functions/development/churn_server/0.8.0/src/churn_server.py
deleted file mode 100644
index a726c74d..00000000
--- a/functions/development/churn_server/0.8.0/src/churn_server.py
+++ /dev/null
@@ -1,41 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
diff --git a/functions/development/churn_server/0.8.0/src/function.yaml b/functions/development/churn_server/0.8.0/src/function.yaml
deleted file mode 100644
index 27c1ccf1..00000000
--- a/functions/development/churn_server/0.8.0/src/function.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: default
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/0.8.0/src/item.yaml b/functions/development/churn_server/0.8.0/src/item.yaml
deleted file mode 100644
index dac569eb..00000000
--- a/functions/development/churn_server/0.8.0/src/item.yaml
+++ /dev/null
@@ -1,31 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-05-19:22-04
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 0.8.0
diff --git a/functions/development/churn_server/0.8.0/src/requirements.txt b/functions/development/churn_server/0.8.0/src/requirements.txt
deleted file mode 100644
index 0061fc07..00000000
--- a/functions/development/churn_server/0.8.0/src/requirements.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-mlrun
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/src/test_churn_server.py b/functions/development/churn_server/0.8.0/src/test_churn_server.py
deleted file mode 100644
index 13fb9d9f..00000000
--- a/functions/development/churn_server/0.8.0/src/test_churn_server.py
+++ /dev/null
@@ -1,53 +0,0 @@
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/0.8.0/static/documentation.html b/functions/development/churn_server/0.8.0/static/documentation.html
deleted file mode 100644
index 8535a8ba..00000000
--- a/functions/development/churn_server/0.8.0/static/documentation.html
+++ /dev/null
@@ -1,148 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
Submodules
-
-
-
churn_server.churn_server module
-
-
-class churn_server.churn_server.
ChurnModel
( context = None , name : Optional [ str ] = None , model_path : Optional [ str ] = None , model = None , protocol = None , ** kwargs ) [source]
-Bases: mlrun.serving.v2_serving.V2ModelServer
-
-
-load
( ) [source]
-load multiple models in nested folders, churn model only
-
-
-
-predict
( body ) [source]
-model prediction operation
-
-
-
-
-churn_server.churn_server.
handler
( context , event ) [source]
-
-
-
-churn_server.churn_server.
init_context
( context ) [source]
-
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/static/example.html b/functions/development/churn_server/0.8.0/static/example.html
deleted file mode 100644
index db2418e9..00000000
--- a/functions/development/churn_server/0.8.0/static/example.html
+++ /dev/null
@@ -1,484 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Churn Server
-
in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-Deploying the serving function will provide us an http endpoint that can handle requests in real time.
-This function is part of the customer-churn-prediction demo .
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
and xgb_trainer
functions from the function marketplace repository.
-
-
-
Setup function parameters
-
-
-
-
Importing the function
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-
Testing the function locally
-
-Note that this function is a serving function, hence not needs to run, but deployed.
-
-
in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
-
-
-
-
-
-
-gender
-senior
-partner
-deps
-tenure
-PhoneService
-MultipleLines
-OnlineSecurity
-OnlineBackup
-DeviceProtection
-...
-PaperlessBilling
-MonthlyCharges
-tenure_map
-ISP_1
-ISP_2
-Contract_1
-Contract_2
-Payment_1
-Payment_2
-Payment_3
-
-
-
-
-0
-0
-0
-1
-0
-27
-1
-0
-1
-0
-0
-...
-1
-101.90
-2.0
-1
-0
-1
-0
-1
-0
-0
-
-
-1
-0
-1
-0
-0
-1
-1
-1
-0
-0
-0
-...
-1
-85.70
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-2
-1
-0
-0
-0
-1
-1
-0
-0
-0
-0
-...
-1
-69.55
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-3
-0
-0
-0
-0
-53
-1
-1
-0
-1
-1
-...
-0
-105.55
-4.0
-1
-0
-0
-1
-0
-1
-0
-
-
-4
-0
-0
-0
-0
-43
-1
-1
-0
-1
-1
-...
-1
-104.60
-3.0
-1
-0
-0
-1
-0
-1
-0
-
-
-
-
5 rows × 23 columns
-
-
-
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-
Testing the function remotely
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20 (info) Deploying function
-2021-10-14 06:10:20 (info) Building
-2021-10-14 06:10:20 (info) Staging files and preparing base images
-2021-10-14 06:10:20 (info) Building processor image
-2021-10-14 06:10:21 (info) Build complete
-2021-10-14 06:10:29 (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-
Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/static/function.html b/functions/development/churn_server/0.8.0/static/function.html
deleted file mode 100644
index ba5a268b..00000000
--- a/functions/development/churn_server/0.8.0/static/function.html
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: default
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/static/item.html b/functions/development/churn_server/0.8.0/static/item.html
deleted file mode 100644
index df85ce3e..00000000
--- a/functions/development/churn_server/0.8.0/static/item.html
+++ /dev/null
@@ -1,53 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-05-19:22-04
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 0.8.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.8.0/static/source.html b/functions/development/churn_server/0.8.0/static/source.html
deleted file mode 100644
index d7188095..00000000
--- a/functions/development/churn_server/0.8.0/static/source.html
+++ /dev/null
@@ -1,63 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/src/README.md b/functions/development/churn_server/0.9.0/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/0.9.0/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/src/churn_server.ipynb b/functions/development/churn_server/0.9.0/src/churn_server.ipynb
deleted file mode 100644
index b8a96277..00000000
--- a/functions/development/churn_server/0.9.0/src/churn_server.ipynb
+++ /dev/null
@@ -1,503 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# **Churn Server**\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n",
- "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction). \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Testing the function locally](#Testing-the-function-locally)\n",
- "4. [Testing the function remotely](#Testing-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Following packages are required, make sure to install\n",
- "# !pip install xgboost==1.3.1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setting up models path\n",
- "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "# Importing the function from the hub\n",
- "fn = mlrun.import_function(\"hub://churn_server:development\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "# Manually specifying needed packages \n",
- "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n",
- "\n",
- "# Adding the model \n",
- "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function locally**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Note that this function is a serving function, hence not needs to run, but deployed. \n",
- "\n",
- "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n",
- "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n",
- "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n"
- ]
- }
- ],
- "source": [
- "# When mocking, class has to be present\n",
- "from churn_server import *\n",
- "\n",
- "# Mocking function\n",
- "server = fn.to_mock_server()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gender \n",
- " senior \n",
- " partner \n",
- " deps \n",
- " tenure \n",
- " PhoneService \n",
- " MultipleLines \n",
- " OnlineSecurity \n",
- " OnlineBackup \n",
- " DeviceProtection \n",
- " ... \n",
- " PaperlessBilling \n",
- " MonthlyCharges \n",
- " tenure_map \n",
- " ISP_1 \n",
- " ISP_2 \n",
- " Contract_1 \n",
- " Contract_2 \n",
- " Payment_1 \n",
- " Payment_2 \n",
- " Payment_3 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 27 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 101.90 \n",
- " 2.0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 85.70 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 69.55 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 53 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 0 \n",
- " 105.55 \n",
- " 4.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 43 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 1 \n",
- " 104.60 \n",
- " 3.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 23 columns
\n",
- "
"
- ],
- "text/plain": [
- " gender senior partner deps tenure PhoneService MultipleLines \\\n",
- "0 0 0 1 0 27 1 0 \n",
- "1 0 1 0 0 1 1 1 \n",
- "2 1 0 0 0 1 1 0 \n",
- "3 0 0 0 0 53 1 1 \n",
- "4 0 0 0 0 43 1 1 \n",
- "\n",
- " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n",
- "0 1 0 0 ... 1 \n",
- "1 0 0 0 ... 1 \n",
- "2 0 0 0 ... 1 \n",
- "3 0 1 1 ... 0 \n",
- "4 0 1 1 ... 1 \n",
- "\n",
- " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n",
- "0 101.90 2.0 1 0 1 0 \n",
- "1 85.70 0.0 1 0 0 0 \n",
- "2 69.55 0.0 1 0 0 0 \n",
- "3 105.55 4.0 1 0 0 1 \n",
- "4 104.60 3.0 1 0 0 1 \n",
- "\n",
- " Payment_1 Payment_2 Payment_3 \n",
- "0 1 0 0 \n",
- "1 0 1 0 \n",
- "2 0 1 0 \n",
- "3 0 1 0 \n",
- "4 0 1 0 \n",
- "\n",
- "[5 rows x 23 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "#declaring test_set path\n",
- "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n",
- "\n",
- "# Getting the data\n",
- "x_test = pd.read_csv(test_set_path)\n",
- "y_test = x_test['labels']\n",
- "x_test.drop(['labels'],axis=1,inplace=True)\n",
- "x_test.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"inputs\": x_test.values.tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "When mocking to server, returned dict has the following fields : id, model_name, outputs\n"
- ]
- }
- ],
- "source": [
- "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n",
- "2021-10-14 06:10:20 (info) Deploying function\n",
- "2021-10-14 06:10:20 (info) Building\n",
- "2021-10-14 06:10:20 (info) Staging files and preparing base images\n",
- "2021-10-14 06:10:20 (info) Building processor image\n",
- "2021-10-14 06:10:21 (info) Build complete\n",
- "2021-10-14 06:10:29 (info) Function deploy complete\n",
- "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n"
- ]
- }
- ],
- "source": [
- "address = fn.deploy()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model's accuracy : 0.7913907284768212\n"
- ]
- }
- ],
- "source": [
- "import json\n",
- "import requests\n",
- "\n",
- "# using requests to predict\n",
- "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n",
- "\n",
- "# returned data is a string \n",
- "y_predict = json.loads(response.text)['outputs']\n",
- "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n",
- "print(f\"model's accuracy : {accuracy}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#Churn-Server)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/churn_server/0.9.0/src/churn_server.py b/functions/development/churn_server/0.9.0/src/churn_server.py
deleted file mode 100644
index a726c74d..00000000
--- a/functions/development/churn_server/0.9.0/src/churn_server.py
+++ /dev/null
@@ -1,41 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
diff --git a/functions/development/churn_server/0.9.0/src/function.yaml b/functions/development/churn_server/0.9.0/src/function.yaml
deleted file mode 100644
index 7a73c11a..00000000
--- a/functions/development/churn_server/0.9.0/src/function.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/0.9.0/src/item.yaml b/functions/development/churn_server/0.9.0/src/item.yaml
deleted file mode 100644
index 287396bb..00000000
--- a/functions/development/churn_server/0.9.0/src/item.yaml
+++ /dev/null
@@ -1,31 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 0.9.0
diff --git a/functions/development/churn_server/0.9.0/src/requirements.txt b/functions/development/churn_server/0.9.0/src/requirements.txt
deleted file mode 100644
index 0061fc07..00000000
--- a/functions/development/churn_server/0.9.0/src/requirements.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-mlrun
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/src/test_churn_server.py b/functions/development/churn_server/0.9.0/src/test_churn_server.py
deleted file mode 100644
index 13fb9d9f..00000000
--- a/functions/development/churn_server/0.9.0/src/test_churn_server.py
+++ /dev/null
@@ -1,53 +0,0 @@
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/0.9.0/static/documentation.html b/functions/development/churn_server/0.9.0/static/documentation.html
deleted file mode 100644
index 57896b83..00000000
--- a/functions/development/churn_server/0.9.0/static/documentation.html
+++ /dev/null
@@ -1,125 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
Submodules
-
-
-
churn_server.churn_server module
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/static/example.html b/functions/development/churn_server/0.9.0/static/example.html
deleted file mode 100644
index db2418e9..00000000
--- a/functions/development/churn_server/0.9.0/static/example.html
+++ /dev/null
@@ -1,484 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Churn Server
-
in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-Deploying the serving function will provide us an http endpoint that can handle requests in real time.
-This function is part of the customer-churn-prediction demo .
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
and xgb_trainer
functions from the function marketplace repository.
-
-
-
Setup function parameters
-
-
-
-
Importing the function
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-
Testing the function locally
-
-Note that this function is a serving function, hence not needs to run, but deployed.
-
-
in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
-
-
-
-
-
-
-gender
-senior
-partner
-deps
-tenure
-PhoneService
-MultipleLines
-OnlineSecurity
-OnlineBackup
-DeviceProtection
-...
-PaperlessBilling
-MonthlyCharges
-tenure_map
-ISP_1
-ISP_2
-Contract_1
-Contract_2
-Payment_1
-Payment_2
-Payment_3
-
-
-
-
-0
-0
-0
-1
-0
-27
-1
-0
-1
-0
-0
-...
-1
-101.90
-2.0
-1
-0
-1
-0
-1
-0
-0
-
-
-1
-0
-1
-0
-0
-1
-1
-1
-0
-0
-0
-...
-1
-85.70
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-2
-1
-0
-0
-0
-1
-1
-0
-0
-0
-0
-...
-1
-69.55
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-3
-0
-0
-0
-0
-53
-1
-1
-0
-1
-1
-...
-0
-105.55
-4.0
-1
-0
-0
-1
-0
-1
-0
-
-
-4
-0
-0
-0
-0
-43
-1
-1
-0
-1
-1
-...
-1
-104.60
-3.0
-1
-0
-0
-1
-0
-1
-0
-
-
-
-
5 rows × 23 columns
-
-
-
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-
Testing the function remotely
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20 (info) Deploying function
-2021-10-14 06:10:20 (info) Building
-2021-10-14 06:10:20 (info) Staging files and preparing base images
-2021-10-14 06:10:20 (info) Building processor image
-2021-10-14 06:10:21 (info) Build complete
-2021-10-14 06:10:29 (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-
Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/static/function.html b/functions/development/churn_server/0.9.0/static/function.html
deleted file mode 100644
index 171a9472..00000000
--- a/functions/development/churn_server/0.9.0/static/function.html
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/static/item.html b/functions/development/churn_server/0.9.0/static/item.html
deleted file mode 100644
index 1cc9b01d..00000000
--- a/functions/development/churn_server/0.9.0/static/item.html
+++ /dev/null
@@ -1,53 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 0.9.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/0.9.0/static/source.html b/functions/development/churn_server/0.9.0/static/source.html
deleted file mode 100644
index d7188095..00000000
--- a/functions/development/churn_server/0.9.0/static/source.html
+++ /dev/null
@@ -1,63 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/src/README.md b/functions/development/churn_server/1.0.0/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/1.0.0/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/src/churn_server.ipynb b/functions/development/churn_server/1.0.0/src/churn_server.ipynb
deleted file mode 100644
index b8a96277..00000000
--- a/functions/development/churn_server/1.0.0/src/churn_server.ipynb
+++ /dev/null
@@ -1,503 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# **Churn Server**\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n",
- "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction). \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Testing the function locally](#Testing-the-function-locally)\n",
- "4. [Testing the function remotely](#Testing-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Following packages are required, make sure to install\n",
- "# !pip install xgboost==1.3.1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setting up models path\n",
- "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "# Importing the function from the hub\n",
- "fn = mlrun.import_function(\"hub://churn_server:development\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "# Manually specifying needed packages \n",
- "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n",
- "\n",
- "# Adding the model \n",
- "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function locally**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Note that this function is a serving function, hence not needs to run, but deployed. \n",
- "\n",
- "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n",
- "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n",
- "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n"
- ]
- }
- ],
- "source": [
- "# When mocking, class has to be present\n",
- "from churn_server import *\n",
- "\n",
- "# Mocking function\n",
- "server = fn.to_mock_server()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gender \n",
- " senior \n",
- " partner \n",
- " deps \n",
- " tenure \n",
- " PhoneService \n",
- " MultipleLines \n",
- " OnlineSecurity \n",
- " OnlineBackup \n",
- " DeviceProtection \n",
- " ... \n",
- " PaperlessBilling \n",
- " MonthlyCharges \n",
- " tenure_map \n",
- " ISP_1 \n",
- " ISP_2 \n",
- " Contract_1 \n",
- " Contract_2 \n",
- " Payment_1 \n",
- " Payment_2 \n",
- " Payment_3 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 27 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 101.90 \n",
- " 2.0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 85.70 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 69.55 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 53 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 0 \n",
- " 105.55 \n",
- " 4.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 43 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 1 \n",
- " 104.60 \n",
- " 3.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 23 columns
\n",
- "
"
- ],
- "text/plain": [
- " gender senior partner deps tenure PhoneService MultipleLines \\\n",
- "0 0 0 1 0 27 1 0 \n",
- "1 0 1 0 0 1 1 1 \n",
- "2 1 0 0 0 1 1 0 \n",
- "3 0 0 0 0 53 1 1 \n",
- "4 0 0 0 0 43 1 1 \n",
- "\n",
- " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n",
- "0 1 0 0 ... 1 \n",
- "1 0 0 0 ... 1 \n",
- "2 0 0 0 ... 1 \n",
- "3 0 1 1 ... 0 \n",
- "4 0 1 1 ... 1 \n",
- "\n",
- " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n",
- "0 101.90 2.0 1 0 1 0 \n",
- "1 85.70 0.0 1 0 0 0 \n",
- "2 69.55 0.0 1 0 0 0 \n",
- "3 105.55 4.0 1 0 0 1 \n",
- "4 104.60 3.0 1 0 0 1 \n",
- "\n",
- " Payment_1 Payment_2 Payment_3 \n",
- "0 1 0 0 \n",
- "1 0 1 0 \n",
- "2 0 1 0 \n",
- "3 0 1 0 \n",
- "4 0 1 0 \n",
- "\n",
- "[5 rows x 23 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "#declaring test_set path\n",
- "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n",
- "\n",
- "# Getting the data\n",
- "x_test = pd.read_csv(test_set_path)\n",
- "y_test = x_test['labels']\n",
- "x_test.drop(['labels'],axis=1,inplace=True)\n",
- "x_test.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"inputs\": x_test.values.tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "When mocking to server, returned dict has the following fields : id, model_name, outputs\n"
- ]
- }
- ],
- "source": [
- "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n",
- "2021-10-14 06:10:20 (info) Deploying function\n",
- "2021-10-14 06:10:20 (info) Building\n",
- "2021-10-14 06:10:20 (info) Staging files and preparing base images\n",
- "2021-10-14 06:10:20 (info) Building processor image\n",
- "2021-10-14 06:10:21 (info) Build complete\n",
- "2021-10-14 06:10:29 (info) Function deploy complete\n",
- "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n"
- ]
- }
- ],
- "source": [
- "address = fn.deploy()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model's accuracy : 0.7913907284768212\n"
- ]
- }
- ],
- "source": [
- "import json\n",
- "import requests\n",
- "\n",
- "# using requests to predict\n",
- "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n",
- "\n",
- "# returned data is a string \n",
- "y_predict = json.loads(response.text)['outputs']\n",
- "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n",
- "print(f\"model's accuracy : {accuracy}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#Churn-Server)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/churn_server/1.0.0/src/churn_server.py b/functions/development/churn_server/1.0.0/src/churn_server.py
deleted file mode 100644
index a726c74d..00000000
--- a/functions/development/churn_server/1.0.0/src/churn_server.py
+++ /dev/null
@@ -1,41 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
diff --git a/functions/development/churn_server/1.0.0/src/function.yaml b/functions/development/churn_server/1.0.0/src/function.yaml
deleted file mode 100644
index 7a73c11a..00000000
--- a/functions/development/churn_server/1.0.0/src/function.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/1.0.0/src/item.yaml b/functions/development/churn_server/1.0.0/src/item.yaml
deleted file mode 100644
index 99efa751..00000000
--- a/functions/development/churn_server/1.0.0/src/item.yaml
+++ /dev/null
@@ -1,31 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.0.0
diff --git a/functions/development/churn_server/1.0.0/src/requirements.txt b/functions/development/churn_server/1.0.0/src/requirements.txt
deleted file mode 100644
index 0061fc07..00000000
--- a/functions/development/churn_server/1.0.0/src/requirements.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-mlrun
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/src/test_churn_server.py b/functions/development/churn_server/1.0.0/src/test_churn_server.py
deleted file mode 100644
index 13fb9d9f..00000000
--- a/functions/development/churn_server/1.0.0/src/test_churn_server.py
+++ /dev/null
@@ -1,53 +0,0 @@
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/1.0.0/static/documentation.html b/functions/development/churn_server/1.0.0/static/documentation.html
deleted file mode 100644
index e852cdbd..00000000
--- a/functions/development/churn_server/1.0.0/static/documentation.html
+++ /dev/null
@@ -1,151 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
Submodules
-
-
-
churn_server.churn_server module
-
-
-class churn_server.churn_server.
ChurnModel
( context = None , name : Optional [ str ] = None , model_path : Optional [ str ] = None , model = None , protocol = None , input_path : Optional [ str ] = None , result_path : Optional [ str ] = None , ** kwargs ) [source]
-Bases: mlrun.serving.v2_serving.V2ModelServer
-
-
-load
( ) [source]
-load multiple models in nested folders, churn model only
-
-
-
-predict
( body ) [source]
-model prediction operation
-
-
-
-
-churn_server.churn_server.
handler
( context , event ) [source]
-
-
-
-churn_server.churn_server.
init_context
( context ) [source]
-
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/static/example.html b/functions/development/churn_server/1.0.0/static/example.html
deleted file mode 100644
index 98be3699..00000000
--- a/functions/development/churn_server/1.0.0/static/example.html
+++ /dev/null
@@ -1,487 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Churn Server
-
in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-Deploying the serving function will provide us an http endpoint that can handle requests in real time.
-This function is part of the customer-churn-prediction demo .
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
and xgb_trainer
functions from the function marketplace repository.
-
-
Steps
-
-Setup function parameters
-Importing the function
-Testing the function locally
-Testing the function remotely
-
-
-
-
-
-
Setup function parameters
-
-
-
-
Importing the function
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-
Testing the function locally
-
-Note that this function is a serving function, hence not needs to run, but deployed.
-
-
in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
-
-
-
-
-
-
-gender
-senior
-partner
-deps
-tenure
-PhoneService
-MultipleLines
-OnlineSecurity
-OnlineBackup
-DeviceProtection
-...
-PaperlessBilling
-MonthlyCharges
-tenure_map
-ISP_1
-ISP_2
-Contract_1
-Contract_2
-Payment_1
-Payment_2
-Payment_3
-
-
-
-
-0
-0
-0
-1
-0
-27
-1
-0
-1
-0
-0
-...
-1
-101.90
-2.0
-1
-0
-1
-0
-1
-0
-0
-
-
-1
-0
-1
-0
-0
-1
-1
-1
-0
-0
-0
-...
-1
-85.70
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-2
-1
-0
-0
-0
-1
-1
-0
-0
-0
-0
-...
-1
-69.55
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-3
-0
-0
-0
-0
-53
-1
-1
-0
-1
-1
-...
-0
-105.55
-4.0
-1
-0
-0
-1
-0
-1
-0
-
-
-4
-0
-0
-0
-0
-43
-1
-1
-0
-1
-1
-...
-1
-104.60
-3.0
-1
-0
-0
-1
-0
-1
-0
-
-
-
-
5 rows × 23 columns
-
-
-
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-
Testing the function remotely
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20 (info) Deploying function
-2021-10-14 06:10:20 (info) Building
-2021-10-14 06:10:20 (info) Staging files and preparing base images
-2021-10-14 06:10:20 (info) Building processor image
-2021-10-14 06:10:21 (info) Build complete
-2021-10-14 06:10:29 (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-
Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/static/function.html b/functions/development/churn_server/1.0.0/static/function.html
deleted file mode 100644
index 171a9472..00000000
--- a/functions/development/churn_server/1.0.0/static/function.html
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/static/item.html b/functions/development/churn_server/1.0.0/static/item.html
deleted file mode 100644
index f1c9c3d9..00000000
--- a/functions/development/churn_server/1.0.0/static/item.html
+++ /dev/null
@@ -1,53 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: churn-server
-platformVersion: 3.2.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.0.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.0.0/static/source.html b/functions/development/churn_server/1.0.0/static/source.html
deleted file mode 100644
index d7188095..00000000
--- a/functions/development/churn_server/1.0.0/static/source.html
+++ /dev/null
@@ -1,63 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/src/README.md b/functions/development/churn_server/1.1.0/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/1.1.0/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/src/churn_server.ipynb b/functions/development/churn_server/1.1.0/src/churn_server.ipynb
deleted file mode 100644
index b8a96277..00000000
--- a/functions/development/churn_server/1.1.0/src/churn_server.ipynb
+++ /dev/null
@@ -1,503 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# **Churn Server**\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n",
- "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction). \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Testing the function locally](#Testing-the-function-locally)\n",
- "4. [Testing the function remotely](#Testing-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Following packages are required, make sure to install\n",
- "# !pip install xgboost==1.3.1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setting up models path\n",
- "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "# Importing the function from the hub\n",
- "fn = mlrun.import_function(\"hub://churn_server:development\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "# Manually specifying needed packages \n",
- "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n",
- "\n",
- "# Adding the model \n",
- "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function locally**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Note that this function is a serving function, hence not needs to run, but deployed. \n",
- "\n",
- "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n",
- "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n",
- "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n"
- ]
- }
- ],
- "source": [
- "# When mocking, class has to be present\n",
- "from churn_server import *\n",
- "\n",
- "# Mocking function\n",
- "server = fn.to_mock_server()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gender \n",
- " senior \n",
- " partner \n",
- " deps \n",
- " tenure \n",
- " PhoneService \n",
- " MultipleLines \n",
- " OnlineSecurity \n",
- " OnlineBackup \n",
- " DeviceProtection \n",
- " ... \n",
- " PaperlessBilling \n",
- " MonthlyCharges \n",
- " tenure_map \n",
- " ISP_1 \n",
- " ISP_2 \n",
- " Contract_1 \n",
- " Contract_2 \n",
- " Payment_1 \n",
- " Payment_2 \n",
- " Payment_3 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 27 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 101.90 \n",
- " 2.0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 85.70 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 69.55 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 53 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 0 \n",
- " 105.55 \n",
- " 4.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 43 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 1 \n",
- " 104.60 \n",
- " 3.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 23 columns
\n",
- "
"
- ],
- "text/plain": [
- " gender senior partner deps tenure PhoneService MultipleLines \\\n",
- "0 0 0 1 0 27 1 0 \n",
- "1 0 1 0 0 1 1 1 \n",
- "2 1 0 0 0 1 1 0 \n",
- "3 0 0 0 0 53 1 1 \n",
- "4 0 0 0 0 43 1 1 \n",
- "\n",
- " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n",
- "0 1 0 0 ... 1 \n",
- "1 0 0 0 ... 1 \n",
- "2 0 0 0 ... 1 \n",
- "3 0 1 1 ... 0 \n",
- "4 0 1 1 ... 1 \n",
- "\n",
- " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n",
- "0 101.90 2.0 1 0 1 0 \n",
- "1 85.70 0.0 1 0 0 0 \n",
- "2 69.55 0.0 1 0 0 0 \n",
- "3 105.55 4.0 1 0 0 1 \n",
- "4 104.60 3.0 1 0 0 1 \n",
- "\n",
- " Payment_1 Payment_2 Payment_3 \n",
- "0 1 0 0 \n",
- "1 0 1 0 \n",
- "2 0 1 0 \n",
- "3 0 1 0 \n",
- "4 0 1 0 \n",
- "\n",
- "[5 rows x 23 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "#declaring test_set path\n",
- "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n",
- "\n",
- "# Getting the data\n",
- "x_test = pd.read_csv(test_set_path)\n",
- "y_test = x_test['labels']\n",
- "x_test.drop(['labels'],axis=1,inplace=True)\n",
- "x_test.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"inputs\": x_test.values.tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "When mocking to server, returned dict has the following fields : id, model_name, outputs\n"
- ]
- }
- ],
- "source": [
- "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n",
- "2021-10-14 06:10:20 (info) Deploying function\n",
- "2021-10-14 06:10:20 (info) Building\n",
- "2021-10-14 06:10:20 (info) Staging files and preparing base images\n",
- "2021-10-14 06:10:20 (info) Building processor image\n",
- "2021-10-14 06:10:21 (info) Build complete\n",
- "2021-10-14 06:10:29 (info) Function deploy complete\n",
- "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n"
- ]
- }
- ],
- "source": [
- "address = fn.deploy()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model's accuracy : 0.7913907284768212\n"
- ]
- }
- ],
- "source": [
- "import json\n",
- "import requests\n",
- "\n",
- "# using requests to predict\n",
- "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n",
- "\n",
- "# returned data is a string \n",
- "y_predict = json.loads(response.text)['outputs']\n",
- "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n",
- "print(f\"model's accuracy : {accuracy}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#Churn-Server)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/churn_server/1.1.0/src/churn_server.py b/functions/development/churn_server/1.1.0/src/churn_server.py
deleted file mode 100644
index 55f37f28..00000000
--- a/functions/development/churn_server/1.1.0/src/churn_server.py
+++ /dev/null
@@ -1,55 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
diff --git a/functions/development/churn_server/1.1.0/src/function.yaml b/functions/development/churn_server/1.1.0/src/function.yaml
deleted file mode 100644
index 7a73c11a..00000000
--- a/functions/development/churn_server/1.1.0/src/function.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/1.1.0/src/item.yaml b/functions/development/churn_server/1.1.0/src/item.yaml
deleted file mode 100644
index 3a3b4b6b..00000000
--- a/functions/development/churn_server/1.1.0/src/item.yaml
+++ /dev/null
@@ -1,32 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.1.0
diff --git a/functions/development/churn_server/1.1.0/src/requirements.txt b/functions/development/churn_server/1.1.0/src/requirements.txt
deleted file mode 100644
index eb8827c5..00000000
--- a/functions/development/churn_server/1.1.0/src/requirements.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/src/test_churn_server.py b/functions/development/churn_server/1.1.0/src/test_churn_server.py
deleted file mode 100644
index 64d1b849..00000000
--- a/functions/development/churn_server/1.1.0/src/test_churn_server.py
+++ /dev/null
@@ -1,67 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/1.1.0/static/churn_server.html b/functions/development/churn_server/1.1.0/static/churn_server.html
deleted file mode 100644
index 3cdcc727..00000000
--- a/functions/development/churn_server/1.1.0/static/churn_server.html
+++ /dev/null
@@ -1,195 +0,0 @@
-
-
-
-
-
-
-
-churn_server.churn_server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Source code for churn_server.churn_server
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-[docs] class ChurnModel ( mlrun . serving . V2ModelServer ):
-
[docs] def load ( self ):
-
"""
-
load multiple models in nested folders, churn model only
-
"""
-
clf_model_file , extra_data = self . get_model ( ".pkl" )
-
self . model = load ( open ( str ( clf_model_file ), "rb" ))
-
if "cox" in extra_data . keys ():
-
cox_model_file = extra_data [ "cox" ]
-
self . cox_model = load ( open ( str ( cox_model_file ), "rb" ))
-
if "cox/km" in extra_data . keys ():
-
km_model_file = extra_data [ "cox/km" ]
-
self . km_model = load ( open ( str ( km_model_file ), "rb" ))
-
-
[docs] def predict ( self , body ):
-
try :
-
feats = np . asarray ( body [ "inputs" ], dtype = np . float32 ) . reshape ( - 1 , 23 )
-
result = self . model . predict ( feats , validate_features = False )
-
return result . tolist ()
-
except Exception as e :
-
raise Exception ( "Failed to predict %s " % e )
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-[docs] def init_context ( context ):
-
nuclio_init_hook ( context , globals (), "serving_v2" )
-
-
-[docs] def handler ( context , event ):
-
return context . mlrun_handler ( context , event )
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/static/documentation.html b/functions/development/churn_server/1.1.0/static/documentation.html
deleted file mode 100644
index afff1b02..00000000
--- a/functions/development/churn_server/1.1.0/static/documentation.html
+++ /dev/null
@@ -1,245 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
-
-
-
-
-churn_server package
-
-
-churn_server.churn_server module
-
-
-class churn_server.churn_server. ChurnModel ( context = None , name : Optional [ str ] = None , model_path : Optional [ str ] = None , model = None , protocol = None , input_path : Optional [ str ] = None , result_path : Optional [ str ] = None , ** kwargs ) [source]
-Bases: mlrun.serving.v2_serving.V2ModelServer
-
-
-load ( ) [source]
-load multiple models in nested folders, churn model only
-
-
-
-predict ( body ) [source]
-model prediction operation
-
-
-
-
-churn_server.churn_server. handler ( context , event ) [source]
-
-
-
-churn_server.churn_server. init_context ( context ) [source]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/static/example.html b/functions/development/churn_server/1.1.0/static/example.html
deleted file mode 100644
index 0a82f06d..00000000
--- a/functions/development/churn_server/1.1.0/static/example.html
+++ /dev/null
@@ -1,611 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Churn Server
-in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-Deploying the serving function will provide us an http endpoint that can handle requests in real time.
-This function is part of the customer-churn-prediction demo .
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
and xgb_trainer
functions from the function marketplace repository.
-
-Steps
-
-Setup function parameters
-Importing the function
-Testing the function locally
-Testing the function remotely
-
-
-
-
-
-Setup function parameters
-
-
-
-Importing the function
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-Testing the function locally
-
-Note that this function is a serving function, hence not needs to run, but deployed.
-
-in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
-
-
-
-
-
-
-gender
-senior
-partner
-deps
-tenure
-PhoneService
-MultipleLines
-OnlineSecurity
-OnlineBackup
-DeviceProtection
-...
-PaperlessBilling
-MonthlyCharges
-tenure_map
-ISP_1
-ISP_2
-Contract_1
-Contract_2
-Payment_1
-Payment_2
-Payment_3
-
-
-
-
-0
-0
-0
-1
-0
-27
-1
-0
-1
-0
-0
-...
-1
-101.90
-2.0
-1
-0
-1
-0
-1
-0
-0
-
-
-1
-0
-1
-0
-0
-1
-1
-1
-0
-0
-0
-...
-1
-85.70
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-2
-1
-0
-0
-0
-1
-1
-0
-0
-0
-0
-...
-1
-69.55
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-3
-0
-0
-0
-0
-53
-1
-1
-0
-1
-1
-...
-0
-105.55
-4.0
-1
-0
-0
-1
-0
-1
-0
-
-
-4
-0
-0
-0
-0
-43
-1
-1
-0
-1
-1
-...
-1
-104.60
-3.0
-1
-0
-0
-1
-0
-1
-0
-
-
-
-
5 rows × 23 columns
-
-
-
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-Testing the function remotely
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20 (info) Deploying function
-2021-10-14 06:10:20 (info) Building
-2021-10-14 06:10:20 (info) Staging files and preparing base images
-2021-10-14 06:10:20 (info) Building processor image
-2021-10-14 06:10:21 (info) Build complete
-2021-10-14 06:10:29 (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/static/function.html b/functions/development/churn_server/1.1.0/static/function.html
deleted file mode 100644
index 171a9472..00000000
--- a/functions/development/churn_server/1.1.0/static/function.html
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.6
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawoKCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgInNlcnZpbmdfdjIiKQoKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCgpmcm9tIG1scnVuLnJ1bnRpbWVzIGltcG9ydCBudWNsaW9faW5pdF9ob29rCmRlZiBpbml0X2NvbnRleHQoY29udGV4dCk6CiAgICBudWNsaW9faW5pdF9ob29rKGNvbnRleHQsIGdsb2JhbHMoKSwgJ3NlcnZpbmdfdjInKQoKZGVmIGhhbmRsZXIoY29udGV4dCwgZXZlbnQpOgogICAgcmV0dXJuIGNvbnRleHQubWxydW5faGFuZGxlcihjb250ZXh0LCBldmVudCkK
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/static/item.html b/functions/development/churn_server/1.1.0/static/item.html
deleted file mode 100644
index d9e552e3..00000000
--- a/functions/development/churn_server/1.1.0/static/item.html
+++ /dev/null
@@ -1,54 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.1.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.1.0/static/source.html b/functions/development/churn_server/1.1.0/static/source.html
deleted file mode 100644
index 3937ee1b..00000000
--- a/functions/development/churn_server/1.1.0/static/source.html
+++ /dev/null
@@ -1,77 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-from mlrun.runtimes import nuclio_init_hook
-
-
-def init_context(context):
- nuclio_init_hook(context, globals(), "serving_v2")
-
-
-def handler(context, event):
- return context.mlrun_handler(context, event)
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/src/README.md b/functions/development/churn_server/1.2.0/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/1.2.0/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/src/churn_server.ipynb b/functions/development/churn_server/1.2.0/src/churn_server.ipynb
deleted file mode 100644
index b8a96277..00000000
--- a/functions/development/churn_server/1.2.0/src/churn_server.ipynb
+++ /dev/null
@@ -1,503 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# **Churn Server**\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n",
- "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction). \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Testing the function locally](#Testing-the-function-locally)\n",
- "4. [Testing the function remotely](#Testing-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Following packages are required, make sure to install\n",
- "# !pip install xgboost==1.3.1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setting up models path\n",
- "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "# Importing the function from the hub\n",
- "fn = mlrun.import_function(\"hub://churn_server:development\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "# Manually specifying needed packages \n",
- "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n",
- "\n",
- "# Adding the model \n",
- "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function locally**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Note that this function is a serving function, hence not needs to run, but deployed. \n",
- "\n",
- "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n",
- "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n",
- "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n"
- ]
- }
- ],
- "source": [
- "# When mocking, class has to be present\n",
- "from churn_server import *\n",
- "\n",
- "# Mocking function\n",
- "server = fn.to_mock_server()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gender \n",
- " senior \n",
- " partner \n",
- " deps \n",
- " tenure \n",
- " PhoneService \n",
- " MultipleLines \n",
- " OnlineSecurity \n",
- " OnlineBackup \n",
- " DeviceProtection \n",
- " ... \n",
- " PaperlessBilling \n",
- " MonthlyCharges \n",
- " tenure_map \n",
- " ISP_1 \n",
- " ISP_2 \n",
- " Contract_1 \n",
- " Contract_2 \n",
- " Payment_1 \n",
- " Payment_2 \n",
- " Payment_3 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 27 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 101.90 \n",
- " 2.0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 85.70 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 69.55 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 53 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 0 \n",
- " 105.55 \n",
- " 4.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 43 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 1 \n",
- " 104.60 \n",
- " 3.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 23 columns
\n",
- "
"
- ],
- "text/plain": [
- " gender senior partner deps tenure PhoneService MultipleLines \\\n",
- "0 0 0 1 0 27 1 0 \n",
- "1 0 1 0 0 1 1 1 \n",
- "2 1 0 0 0 1 1 0 \n",
- "3 0 0 0 0 53 1 1 \n",
- "4 0 0 0 0 43 1 1 \n",
- "\n",
- " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n",
- "0 1 0 0 ... 1 \n",
- "1 0 0 0 ... 1 \n",
- "2 0 0 0 ... 1 \n",
- "3 0 1 1 ... 0 \n",
- "4 0 1 1 ... 1 \n",
- "\n",
- " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n",
- "0 101.90 2.0 1 0 1 0 \n",
- "1 85.70 0.0 1 0 0 0 \n",
- "2 69.55 0.0 1 0 0 0 \n",
- "3 105.55 4.0 1 0 0 1 \n",
- "4 104.60 3.0 1 0 0 1 \n",
- "\n",
- " Payment_1 Payment_2 Payment_3 \n",
- "0 1 0 0 \n",
- "1 0 1 0 \n",
- "2 0 1 0 \n",
- "3 0 1 0 \n",
- "4 0 1 0 \n",
- "\n",
- "[5 rows x 23 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "#declaring test_set path\n",
- "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n",
- "\n",
- "# Getting the data\n",
- "x_test = pd.read_csv(test_set_path)\n",
- "y_test = x_test['labels']\n",
- "x_test.drop(['labels'],axis=1,inplace=True)\n",
- "x_test.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"inputs\": x_test.values.tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "When mocking to server, returned dict has the following fields : id, model_name, outputs\n"
- ]
- }
- ],
- "source": [
- "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n",
- "2021-10-14 06:10:20 (info) Deploying function\n",
- "2021-10-14 06:10:20 (info) Building\n",
- "2021-10-14 06:10:20 (info) Staging files and preparing base images\n",
- "2021-10-14 06:10:20 (info) Building processor image\n",
- "2021-10-14 06:10:21 (info) Build complete\n",
- "2021-10-14 06:10:29 (info) Function deploy complete\n",
- "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n"
- ]
- }
- ],
- "source": [
- "address = fn.deploy()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model's accuracy : 0.7913907284768212\n"
- ]
- }
- ],
- "source": [
- "import json\n",
- "import requests\n",
- "\n",
- "# using requests to predict\n",
- "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n",
- "\n",
- "# returned data is a string \n",
- "y_predict = json.loads(response.text)['outputs']\n",
- "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n",
- "print(f\"model's accuracy : {accuracy}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#Churn-Server)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/churn_server/1.2.0/src/churn_server.py b/functions/development/churn_server/1.2.0/src/churn_server.py
deleted file mode 100644
index def2850d..00000000
--- a/functions/development/churn_server/1.2.0/src/churn_server.py
+++ /dev/null
@@ -1,45 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
diff --git a/functions/development/churn_server/1.2.0/src/function.yaml b/functions/development/churn_server/1.2.0/src/function.yaml
deleted file mode 100644
index 14f6c8ce..00000000
--- a/functions/development/churn_server/1.2.0/src/function.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.9
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg==
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/1.2.0/src/item.yaml b/functions/development/churn_server/1.2.0/src/item.yaml
deleted file mode 100644
index 09ba9b71..00000000
--- a/functions/development/churn_server/1.2.0/src/item.yaml
+++ /dev/null
@@ -1,32 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.2.0
diff --git a/functions/development/churn_server/1.2.0/src/requirements.txt b/functions/development/churn_server/1.2.0/src/requirements.txt
deleted file mode 100644
index eb8827c5..00000000
--- a/functions/development/churn_server/1.2.0/src/requirements.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/src/test_churn_server.py b/functions/development/churn_server/1.2.0/src/test_churn_server.py
deleted file mode 100644
index 64d1b849..00000000
--- a/functions/development/churn_server/1.2.0/src/test_churn_server.py
+++ /dev/null
@@ -1,67 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/1.2.0/static/churn_server.html b/functions/development/churn_server/1.2.0/static/churn_server.html
deleted file mode 100644
index 51e99534..00000000
--- a/functions/development/churn_server/1.2.0/static/churn_server.html
+++ /dev/null
@@ -1,185 +0,0 @@
-
-
-
-
-
-
-
-churn_server.churn_server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Source code for churn_server.churn_server
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-[docs] class ChurnModel ( mlrun . serving . V2ModelServer ):
-
[docs] def load ( self ):
-
"""
-
load multiple models in nested folders, churn model only
-
"""
-
clf_model_file , extra_data = self . get_model ( ".pkl" )
-
self . model = load ( open ( str ( clf_model_file ), "rb" ))
-
if "cox" in extra_data . keys ():
-
cox_model_file = extra_data [ "cox" ]
-
self . cox_model = load ( open ( str ( cox_model_file ), "rb" ))
-
if "cox/km" in extra_data . keys ():
-
km_model_file = extra_data [ "cox/km" ]
-
self . km_model = load ( open ( str ( km_model_file ), "rb" ))
-
-
[docs] def predict ( self , body ):
-
try :
-
feats = np . asarray ( body [ "inputs" ], dtype = np . float32 ) . reshape ( - 1 , 23 )
-
result = self . model . predict ( feats , validate_features = False )
-
return result . tolist ()
-
except Exception as e :
-
raise Exception ( "Failed to predict %s " % e )
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/static/documentation.html b/functions/development/churn_server/1.2.0/static/documentation.html
deleted file mode 100644
index eef01104..00000000
--- a/functions/development/churn_server/1.2.0/static/documentation.html
+++ /dev/null
@@ -1,237 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
-
-
-
-
-churn_server package
-
-
-churn_server.churn_server module
-
-
-class churn_server.churn_server. ChurnModel ( context = None , name : Optional [ str ] = None , model_path : Optional [ str ] = None , model = None , protocol = None , input_path : Optional [ str ] = None , result_path : Optional [ str ] = None , ** kwargs ) [source]
-Bases: mlrun.serving.v2_serving.V2ModelServer
-
-
-load ( ) [source]
-load multiple models in nested folders, churn model only
-
-
-
-predict ( body ) [source]
-model prediction operation
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/static/example.html b/functions/development/churn_server/1.2.0/static/example.html
deleted file mode 100644
index 0a82f06d..00000000
--- a/functions/development/churn_server/1.2.0/static/example.html
+++ /dev/null
@@ -1,611 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Churn Server
-in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-Deploying the serving function will provide us an http endpoint that can handle requests in real time.
-This function is part of the customer-churn-prediction demo .
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
and xgb_trainer
functions from the function marketplace repository.
-
-Steps
-
-Setup function parameters
-Importing the function
-Testing the function locally
-Testing the function remotely
-
-
-
-
-
-Setup function parameters
-
-
-
-Importing the function
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-Testing the function locally
-
-Note that this function is a serving function, hence not needs to run, but deployed.
-
-in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
-
-
-
-
-
-
-gender
-senior
-partner
-deps
-tenure
-PhoneService
-MultipleLines
-OnlineSecurity
-OnlineBackup
-DeviceProtection
-...
-PaperlessBilling
-MonthlyCharges
-tenure_map
-ISP_1
-ISP_2
-Contract_1
-Contract_2
-Payment_1
-Payment_2
-Payment_3
-
-
-
-
-0
-0
-0
-1
-0
-27
-1
-0
-1
-0
-0
-...
-1
-101.90
-2.0
-1
-0
-1
-0
-1
-0
-0
-
-
-1
-0
-1
-0
-0
-1
-1
-1
-0
-0
-0
-...
-1
-85.70
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-2
-1
-0
-0
-0
-1
-1
-0
-0
-0
-0
-...
-1
-69.55
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-3
-0
-0
-0
-0
-53
-1
-1
-0
-1
-1
-...
-0
-105.55
-4.0
-1
-0
-0
-1
-0
-1
-0
-
-
-4
-0
-0
-0
-0
-43
-1
-1
-0
-1
-1
-...
-1
-104.60
-3.0
-1
-0
-0
-1
-0
-1
-0
-
-
-
-
5 rows × 23 columns
-
-
-
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-Testing the function remotely
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20 (info) Deploying function
-2021-10-14 06:10:20 (info) Building
-2021-10-14 06:10:20 (info) Staging files and preparing base images
-2021-10-14 06:10:20 (info) Building processor image
-2021-10-14 06:10:21 (info) Build complete
-2021-10-14 06:10:29 (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/static/function.html b/functions/development/churn_server/1.2.0/static/function.html
deleted file mode 100644
index 74fb1bd8..00000000
--- a/functions/development/churn_server/1.2.0/static/function.html
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.9
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg==
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/static/item.html b/functions/development/churn_server/1.2.0/static/item.html
deleted file mode 100644
index 0ee13dd2..00000000
--- a/functions/development/churn_server/1.2.0/static/item.html
+++ /dev/null
@@ -1,54 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.2.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/1.2.0/static/source.html b/functions/development/churn_server/1.2.0/static/source.html
deleted file mode 100644
index 00d05b83..00000000
--- a/functions/development/churn_server/1.2.0/static/source.html
+++ /dev/null
@@ -1,67 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/src/README.md b/functions/development/churn_server/latest/src/README.md
deleted file mode 100644
index b6a517a5..00000000
--- a/functions/development/churn_server/latest/src/README.md
+++ /dev/null
@@ -1,15 +0,0 @@
-# churn server
-
-the `churn-server` function was created as part of the **[churn demo](https://github.com/yjb-ds/demo-churn)**. A model server was needed that could combine the static model which answers the binary classification question "is this client churned or not-churned?" and the more dynamic model, which tries to add a time dimension to the prediction by providing an esdtimate of when and with what certainty churn events are likely to occur.
-
-the function `coxph_trainer` will output multiple models within a nested directory structire starting at `models_dest`:
-* the coxph model is stored at `models_dest/cox`
-* the [kaplan-meier](https://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator) model at `models_dest/cox/km`
-
-each one of these pickled models stores all of the meta-data, vector and table estimates, including projections and scenarios
-
-with only slight modification, a more generic version of this server would enable its application in the domains of **[predictive maintenance](https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/may/machine-learning-using-survival-analysis-for-predictive-maintenance)**, **[health](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227332/)**, **finance** and **insurance** to name a few.
-
-**note**
-
-a small file `encode-data.csv` can be find in the root of this function folder, it is used to test the server.
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/src/churn_server.ipynb b/functions/development/churn_server/latest/src/churn_server.ipynb
deleted file mode 100644
index b8a96277..00000000
--- a/functions/development/churn_server/latest/src/churn_server.ipynb
+++ /dev/null
@@ -1,503 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "# **Churn Server**\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "in the following section we create a new model serving function which wraps our class , and specify model and other resources.\n",
- "Deploying the serving function will provide us an http endpoint that can handle requests in real time.\n",
- "This function is part of the [customer-churn-prediction demo](https://github.com/mlrun/demos/tree/master/customer-churn-prediction). \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` and `xgb_trainer` functions from the function marketplace repository."
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Testing the function locally](#Testing-the-function-locally)\n",
- "4. [Testing the function remotely](#Testing-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Following packages are required, make sure to install\n",
- "# !pip install xgboost==1.3.1"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [],
- "source": [
- "# Setting up models path\n",
- "xgb_model_path = 'https://s3.wasabisys.com/iguazio/models/function-marketplace-models/churn_server/xgb_model.pkl'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "# Importing the function from the hub\n",
- "fn = mlrun.import_function(\"hub://churn_server:development\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "# Manually specifying needed packages \n",
- "fn.spec.build.commands = ['pip install lifelines==0.22.8', 'pip install xgboost==1.3.1']\n",
- "\n",
- "# Adding the model \n",
- "fn.add_model(key='xgb_model', model_path=xgb_model_path ,class_name='ChurnModel')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function locally**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "> Note that this function is a serving function, hence not needs to run, but deployed. \n",
- "\n",
- "in order to test locally without deploying to server, mlrun provides mocking api that simulate the action."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded\n",
- "> 2021-10-14 06:10:19,145 [info] Initializing endpoint records\n",
- "> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']\n"
- ]
- }
- ],
- "source": [
- "# When mocking, class has to be present\n",
- "from churn_server import *\n",
- "\n",
- "# Mocking function\n",
- "server = fn.to_mock_server()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " gender \n",
- " senior \n",
- " partner \n",
- " deps \n",
- " tenure \n",
- " PhoneService \n",
- " MultipleLines \n",
- " OnlineSecurity \n",
- " OnlineBackup \n",
- " DeviceProtection \n",
- " ... \n",
- " PaperlessBilling \n",
- " MonthlyCharges \n",
- " tenure_map \n",
- " ISP_1 \n",
- " ISP_2 \n",
- " Contract_1 \n",
- " Contract_2 \n",
- " Payment_1 \n",
- " Payment_2 \n",
- " Payment_3 \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 27 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 101.90 \n",
- " 2.0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " \n",
- " \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 85.70 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 2 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " ... \n",
- " 1 \n",
- " 69.55 \n",
- " 0.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 3 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 53 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 0 \n",
- " 105.55 \n",
- " 4.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- " 4 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 0 \n",
- " 43 \n",
- " 1 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 1 \n",
- " ... \n",
- " 1 \n",
- " 104.60 \n",
- " 3.0 \n",
- " 1 \n",
- " 0 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " 1 \n",
- " 0 \n",
- " \n",
- " \n",
- "
\n",
- "
5 rows × 23 columns
\n",
- "
"
- ],
- "text/plain": [
- " gender senior partner deps tenure PhoneService MultipleLines \\\n",
- "0 0 0 1 0 27 1 0 \n",
- "1 0 1 0 0 1 1 1 \n",
- "2 1 0 0 0 1 1 0 \n",
- "3 0 0 0 0 53 1 1 \n",
- "4 0 0 0 0 43 1 1 \n",
- "\n",
- " OnlineSecurity OnlineBackup DeviceProtection ... PaperlessBilling \\\n",
- "0 1 0 0 ... 1 \n",
- "1 0 0 0 ... 1 \n",
- "2 0 0 0 ... 1 \n",
- "3 0 1 1 ... 0 \n",
- "4 0 1 1 ... 1 \n",
- "\n",
- " MonthlyCharges tenure_map ISP_1 ISP_2 Contract_1 Contract_2 \\\n",
- "0 101.90 2.0 1 0 1 0 \n",
- "1 85.70 0.0 1 0 0 0 \n",
- "2 69.55 0.0 1 0 0 0 \n",
- "3 105.55 4.0 1 0 0 1 \n",
- "4 104.60 3.0 1 0 0 1 \n",
- "\n",
- " Payment_1 Payment_2 Payment_3 \n",
- "0 1 0 0 \n",
- "1 0 1 0 \n",
- "2 0 1 0 \n",
- "3 0 1 0 \n",
- "4 0 1 0 \n",
- "\n",
- "[5 rows x 23 columns]"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pandas as pd\n",
- "\n",
- "#declaring test_set path\n",
- "test_set_path = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/churn_server/test_set.csv\"\n",
- "\n",
- "# Getting the data\n",
- "x_test = pd.read_csv(test_set_path)\n",
- "y_test = x_test['labels']\n",
- "x_test.drop(['labels'],axis=1,inplace=True)\n",
- "x_test.head()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "# KFServing protocol event\n",
- "event_data = {\"inputs\": x_test.values.tolist()}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "response = server.test(path='/v2/models/xgb_model/predict',body=event_data)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "When mocking to server, returned dict has the following fields : id, model_name, outputs\n"
- ]
- }
- ],
- "source": [
- "print(f'When mocking to server, returned dict has the following fields : {\", \".join([x for x in response.keys()])}')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Testing the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-14 06:10:20,163 [info] Starting remote function deploy\n",
- "2021-10-14 06:10:20 (info) Deploying function\n",
- "2021-10-14 06:10:20 (info) Building\n",
- "2021-10-14 06:10:20 (info) Staging files and preparing base images\n",
- "2021-10-14 06:10:20 (info) Building processor image\n",
- "2021-10-14 06:10:21 (info) Build complete\n",
- "2021-10-14 06:10:29 (info) Function deploy complete\n",
- "> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}\n"
- ]
- }
- ],
- "source": [
- "address = fn.deploy()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "model's accuracy : 0.7913907284768212\n"
- ]
- }
- ],
- "source": [
- "import json\n",
- "import requests\n",
- "\n",
- "# using requests to predict\n",
- "response = requests.put(address + \"/v2/models/xgb_model/predict\", json=json.dumps(event_data))\n",
- "\n",
- "# returned data is a string \n",
- "y_predict = json.loads(response.text)['outputs']\n",
- "accuracy = sum(1 for x,y in zip(y_predict,y_test) if x == y) / len(y_test)\n",
- "print(f\"model's accuracy : {accuracy}\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#Churn-Server)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/churn_server/latest/src/churn_server.py b/functions/development/churn_server/latest/src/churn_server.py
deleted file mode 100644
index def2850d..00000000
--- a/functions/development/churn_server/latest/src/churn_server.py
+++ /dev/null
@@ -1,45 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
diff --git a/functions/development/churn_server/latest/src/function.yaml b/functions/development/churn_server/latest/src/function.yaml
deleted file mode 100644
index 14f6c8ce..00000000
--- a/functions/development/churn_server/latest/src/function.yaml
+++ /dev/null
@@ -1,51 +0,0 @@
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.9
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg==
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
diff --git a/functions/development/churn_server/latest/src/item.yaml b/functions/development/churn_server/latest/src/item.yaml
deleted file mode 100644
index 09ba9b71..00000000
--- a/functions/development/churn_server/latest/src/item.yaml
+++ /dev/null
@@ -1,32 +0,0 @@
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.2.0
diff --git a/functions/development/churn_server/latest/src/requirements.txt b/functions/development/churn_server/latest/src/requirements.txt
deleted file mode 100644
index eb8827c5..00000000
--- a/functions/development/churn_server/latest/src/requirements.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-wget
-pygit2
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/src/test_churn_server.py b/functions/development/churn_server/latest/src/test_churn_server.py
deleted file mode 100644
index 64d1b849..00000000
--- a/functions/development/churn_server/latest/src/test_churn_server.py
+++ /dev/null
@@ -1,67 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-import os
-import wget
-from mlrun import import_function
-import os.path
-from os import path
-import mlrun
-from pygit2 import Repository
-
-
-MODEL_PATH = os.path.join(os.path.abspath("./"), "models")
-MODEL = MODEL_PATH + "model.pt"
-
-
-def set_mlrun_hub_url():
- branch = Repository(".").head.shorthand
- hub_url = "https://raw.githubusercontent.com/mlrun/functions/{}/churn_server/function.yaml".format(
- branch
- )
- mlrun.mlconf.hub_url = hub_url
-
-
-def download_pretrained_model(model_path):
- # Run this to download the pre-trained model to your `models` directory
- import os
-
- model_location = None
- saved_models_directory = model_path
- # Create paths
- os.makedirs(saved_models_directory, exist_ok=1)
- model_filepath = os.path.join(
- saved_models_directory, os.path.basename(model_location)
- )
- wget.download(model_location, model_filepath)
-
-
-def test_local_churn_server():
- # set_mlrun_hub_url()
- # model_path = os.path.join(os.path.abspath("./"), "models")
- # model = model_path + "/model.pt"
- # if not path.exists(model):
- # download_pretrained_model(model_path)
- # fn = import_function("hub://churn_server")
- # fn.add_model("mymodel", model_path=model, class_name="ChurnModel")
- # # create an emulator (mock server) from the function configuration)
- # server = fn.to_mock_server()
- #
- # instances = [
- # "I had a pleasure to work with such dedicated team. Looking forward to \
- # cooperate with each and every one of them again."
- # ]
- # result = server.test("/v2/models/mymodel/infer", {"instances": instances})
- # assert result[0] == 2
- print("we need to download churn model")
diff --git a/functions/development/churn_server/latest/static/churn_server.html b/functions/development/churn_server/latest/static/churn_server.html
deleted file mode 100644
index 51e99534..00000000
--- a/functions/development/churn_server/latest/static/churn_server.html
+++ /dev/null
@@ -1,185 +0,0 @@
-
-
-
-
-
-
-
-churn_server.churn_server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Source code for churn_server.churn_server
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-[docs] class ChurnModel ( mlrun . serving . V2ModelServer ):
-
[docs] def load ( self ):
-
"""
-
load multiple models in nested folders, churn model only
-
"""
-
clf_model_file , extra_data = self . get_model ( ".pkl" )
-
self . model = load ( open ( str ( clf_model_file ), "rb" ))
-
if "cox" in extra_data . keys ():
-
cox_model_file = extra_data [ "cox" ]
-
self . cox_model = load ( open ( str ( cox_model_file ), "rb" ))
-
if "cox/km" in extra_data . keys ():
-
km_model_file = extra_data [ "cox/km" ]
-
self . km_model = load ( open ( str ( km_model_file ), "rb" ))
-
-
[docs] def predict ( self , body ):
-
try :
-
feats = np . asarray ( body [ "inputs" ], dtype = np . float32 ) . reshape ( - 1 , 23 )
-
result = self . model . predict ( feats , validate_features = False )
-
return result . tolist ()
-
except Exception as e :
-
raise Exception ( "Failed to predict %s " % e )
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/static/documentation.html b/functions/development/churn_server/latest/static/documentation.html
deleted file mode 100644
index eef01104..00000000
--- a/functions/development/churn_server/latest/static/documentation.html
+++ /dev/null
@@ -1,237 +0,0 @@
-
-
-
-
-
-
-
-churn_server package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
churn_server package
-
-
-
-
-
-
-churn_server package
-
-
-churn_server.churn_server module
-
-
-class churn_server.churn_server. ChurnModel ( context = None , name : Optional [ str ] = None , model_path : Optional [ str ] = None , model = None , protocol = None , input_path : Optional [ str ] = None , result_path : Optional [ str ] = None , ** kwargs ) [source]
-Bases: mlrun.serving.v2_serving.V2ModelServer
-
-
-load ( ) [source]
-load multiple models in nested folders, churn model only
-
-
-
-predict ( body ) [source]
-model prediction operation
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/static/example.html b/functions/development/churn_server/latest/static/example.html
deleted file mode 100644
index 0a82f06d..00000000
--- a/functions/development/churn_server/latest/static/example.html
+++ /dev/null
@@ -1,611 +0,0 @@
-
-
-
-
-
-
-
-Churn Server
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Churn Server
-in the following section we create a new model serving function which wraps our class , and specify model and other resources.
-Deploying the serving function will provide us an http endpoint that can handle requests in real time.
-This function is part of the customer-churn-prediction demo .
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
and xgb_trainer
functions from the function marketplace repository.
-
-Steps
-
-Setup function parameters
-Importing the function
-Testing the function locally
-Testing the function remotely
-
-
-
-
-
-Setup function parameters
-
-
-
-Importing the function
-
-
-
-
> 2021-10-14 06:10:16,104 [info] loaded project function-marketplace from MLRun DB
-
-
-
<mlrun.serving.states.TaskStep at 0x7f8f2306ca90>
-
-
-
-
-
-
-Testing the function locally
-
-Note that this function is a serving function, hence not needs to run, but deployed.
-
-in order to test locally without deploying to server, mlrun provides mocking api that simulate the action.
-
-
-
-
> 2021-10-14 06:10:19,145 [info] model xgb_model was loaded
-> 2021-10-14 06:10:19,145 [info] Initializing endpoint records
-> 2021-10-14 06:10:19,164 [info] Loaded ['xgb_model']
-
-
-
-
-
-
-
-
-
-
-
-
-
-gender
-senior
-partner
-deps
-tenure
-PhoneService
-MultipleLines
-OnlineSecurity
-OnlineBackup
-DeviceProtection
-...
-PaperlessBilling
-MonthlyCharges
-tenure_map
-ISP_1
-ISP_2
-Contract_1
-Contract_2
-Payment_1
-Payment_2
-Payment_3
-
-
-
-
-0
-0
-0
-1
-0
-27
-1
-0
-1
-0
-0
-...
-1
-101.90
-2.0
-1
-0
-1
-0
-1
-0
-0
-
-
-1
-0
-1
-0
-0
-1
-1
-1
-0
-0
-0
-...
-1
-85.70
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-2
-1
-0
-0
-0
-1
-1
-0
-0
-0
-0
-...
-1
-69.55
-0.0
-1
-0
-0
-0
-0
-1
-0
-
-
-3
-0
-0
-0
-0
-53
-1
-1
-0
-1
-1
-...
-0
-105.55
-4.0
-1
-0
-0
-1
-0
-1
-0
-
-
-4
-0
-0
-0
-0
-43
-1
-1
-0
-1
-1
-...
-1
-104.60
-3.0
-1
-0
-0
-1
-0
-1
-0
-
-
-
-
5 rows × 23 columns
-
-
-
-
-
-
-
-
When mocking to server, returned dict has the following fields : id, model_name, outputs
-
-
-
-
-
-
-Testing the function remotely
-
-
-
-
> 2021-10-14 06:10:20,163 [info] Starting remote function deploy
-2021-10-14 06:10:20 (info) Deploying function
-2021-10-14 06:10:20 (info) Building
-2021-10-14 06:10:20 (info) Staging files and preparing base images
-2021-10-14 06:10:20 (info) Building processor image
-2021-10-14 06:10:21 (info) Build complete
-2021-10-14 06:10:29 (info) Function deploy complete
-> 2021-10-14 06:10:30,408 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-function-marketplace-churn-server.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['default-tenant.app.dev39.lab.iguazeng.com:31984']}
-
-
-
-
-
-
-
-
model's accuracy : 0.7913907284768212
-
-
-
-
-Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/static/function.html b/functions/development/churn_server/latest/static/function.html
deleted file mode 100644
index 74fb1bd8..00000000
--- a/functions/development/churn_server/latest/static/function.html
+++ /dev/null
@@ -1,73 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: serving
-metadata:
- name: churn-server
- tag: ''
- hash: 805b4583ab8fa8df90c71d97eef54bbccf8729e8
- project: ''
- labels:
- author: Iguazio
- framework: churn
- categories:
- - model-serving
- - machine-learning
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- description: churn classification and predictor
- min_replicas: 1
- max_replicas: 4
- env:
- - name: ENABLE_EXPLAINER
- value: 'False'
- base_spec:
- apiVersion: nuclio.io/v1
- kind: Function
- metadata:
- name: churn-server
- labels: {}
- annotations:
- nuclio.io/generated_by: function generated from /User/functions/churn_server/churn_server.py
- spec:
- runtime: python:3.9
- handler: churn_server:handler
- env: []
- volumes: []
- build:
- commands: []
- noBaseImagesPull: true
- functionSourceCode: IyBDb3B5cmlnaHQgMjAxOSBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCiMKIyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IG51bXB5IGFzIG5wCmZyb20gY2xvdWRwaWNrbGUgaW1wb3J0IGxvYWQKCgppbXBvcnQgbWxydW4KCgpjbGFzcyBDaHVybk1vZGVsKG1scnVuLnNlcnZpbmcuVjJNb2RlbFNlcnZlcik6CiAgICBkZWYgbG9hZChzZWxmKToKICAgICAgICAiIiIKICAgICAgICBsb2FkIG11bHRpcGxlIG1vZGVscyBpbiBuZXN0ZWQgZm9sZGVycywgY2h1cm4gbW9kZWwgb25seQogICAgICAgICIiIgogICAgICAgIGNsZl9tb2RlbF9maWxlLCBleHRyYV9kYXRhID0gc2VsZi5nZXRfbW9kZWwoIi5wa2wiKQogICAgICAgIHNlbGYubW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNsZl9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgaWYgImNveCIgaW4gZXh0cmFfZGF0YS5rZXlzKCk6CiAgICAgICAgICAgIGNveF9tb2RlbF9maWxlID0gZXh0cmFfZGF0YVsiY294Il0KICAgICAgICAgICAgc2VsZi5jb3hfbW9kZWwgPSBsb2FkKG9wZW4oc3RyKGNveF9tb2RlbF9maWxlKSwgInJiIikpCiAgICAgICAgICAgIGlmICJjb3gva20iIGluIGV4dHJhX2RhdGEua2V5cygpOgogICAgICAgICAgICAgICAga21fbW9kZWxfZmlsZSA9IGV4dHJhX2RhdGFbImNveC9rbSJdCiAgICAgICAgICAgICAgICBzZWxmLmttX21vZGVsID0gbG9hZChvcGVuKHN0cihrbV9tb2RlbF9maWxlKSwgInJiIikpCgogICAgZGVmIHByZWRpY3Qoc2VsZiwgYm9keSk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBmZWF0cyA9IG5wLmFzYXJyYXkoYm9keVsiaW5wdXRzIl0sIGR0eXBlPW5wLmZsb2F0MzIpLnJlc2hhcGUoLTEsIDIzKQogICAgICAgICAgICByZXN1bHQgPSBzZWxmLm1vZGVsLnByZWRpY3QoZmVhdHMsIHZhbGlkYXRlX2ZlYXR1cmVzPUZhbHNlKQogICAgICAgICAgICByZXR1cm4gcmVzdWx0LnRvbGlzdCgpCiAgICAgICAgZXhjZXB0IEV4Y2VwdGlvbiBhcyBlOgogICAgICAgICAgICByYWlzZSBFeGNlcHRpb24oIkZhaWxlZCB0byBwcmVkaWN0ICVzIiAlIGUpCgoKZnJvbSBtbHJ1bi5ydW50aW1lcyBpbXBvcnQgbnVjbGlvX2luaXRfaG9vawpkZWYgaW5pdF9jb250ZXh0KGNvbnRleHQpOgogICAgbnVjbGlvX2luaXRfaG9vayhjb250ZXh0LCBnbG9iYWxzKCksICdzZXJ2aW5nX3YyJykKCmRlZiBoYW5kbGVyKGNvbnRleHQsIGV2ZW50KToKICAgIHJldHVybiBjb250ZXh0Lm1scnVuX2hhbmRsZXIoY29udGV4dCwgZXZlbnQpCg==
- source: ''
- function_kind: serving_v2
- default_class: ChurnModel
- build:
- commands:
- - python -m pip install xgboost==1.3.1 lifelines==0.22.8
- code_origin: https://github.com/daniels290813/functions.git#34d1b0d7e26924d931c2df2869425d01df21a23c:/User/functions/churn_server/churn_server.py
- origin_filename: /User/functions/churn_server/churn_server.py
- secret_sources: []
- disable_auto_mount: false
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/static/item.html b/functions/development/churn_server/latest/static/item.html
deleted file mode 100644
index 0ee13dd2..00000000
--- a/functions/development/churn_server/latest/static/item.html
+++ /dev/null
@@ -1,54 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- model-serving
-- machine-learning
-description: churn classification and predictor
-doc: ''
-example: churn_server.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: churn
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: churn-server
-platformVersion: 3.5.0
-spec:
- customFields:
- default_class: ChurnModel
- env:
- ENABLE_EXPLAINER: 'False'
- filename: churn_server.py
- handler: handler
- image: mlrun/ml-models
- kind: serving
- requirements:
- - xgboost==1.3.1
- - lifelines==0.22.8
-url: ''
-version: 1.2.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/churn_server/latest/static/source.html b/functions/development/churn_server/latest/static/source.html
deleted file mode 100644
index 00d05b83..00000000
--- a/functions/development/churn_server/latest/static/source.html
+++ /dev/null
@@ -1,67 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import numpy as np
-from cloudpickle import load
-
-
-import mlrun
-
-
-class ChurnModel(mlrun.serving.V2ModelServer):
- def load(self):
- """
- load multiple models in nested folders, churn model only
- """
- clf_model_file, extra_data = self.get_model(".pkl")
- self.model = load(open(str(clf_model_file), "rb"))
- if "cox" in extra_data.keys():
- cox_model_file = extra_data["cox"]
- self.cox_model = load(open(str(cox_model_file), "rb"))
- if "cox/km" in extra_data.keys():
- km_model_file = extra_data["cox/km"]
- self.km_model = load(open(str(km_model_file), "rb"))
-
- def predict(self, body):
- try:
- feats = np.asarray(body["inputs"], dtype=np.float32).reshape(-1, 23)
- result = self.model.predict(feats, validate_features=False)
- return result.tolist()
- except Exception as e:
- raise Exception("Failed to predict %s" % e)
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.0.1/src/coxph_test.ipynb b/functions/development/coxph_test/0.0.1/src/coxph_test.ipynb
deleted file mode 100644
index 42e28bf9..00000000
--- a/functions/development/coxph_test/0.0.1/src/coxph_test.ipynb
+++ /dev/null
@@ -1,440 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# CoxPH tests"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [],
- "source": [
- "# nuclio: ignore\n",
- "import nuclio"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.simplefilter(action=\"ignore\", category=FutureWarning)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [],
- "source": [
- "import os\n",
- "import pandas as pd\n",
- "from mlrun.datastore import DataItem\n",
- "from mlrun.artifacts import get_model\n",
- "from cloudpickle import load\n",
- "from mlrun.mlutils.models import eval_class_model\n",
- "\n",
- "def cox_test(\n",
- " context,\n",
- " models_path: DataItem, \n",
- " test_set: DataItem,\n",
- " label_column: str,\n",
- " plots_dest: str = \"plots\",\n",
- " model_evaluator = None\n",
- ") -> None:\n",
- " \"\"\"Test one or more classifier models against held-out dataset\n",
- " \n",
- " Using held-out test features, evaluates the peformance of the estimated model\n",
- " \n",
- " Can be part of a kubeflow pipeline as a test step that is run post EDA and \n",
- " training/validation cycles\n",
- " \n",
- " :param context: the function context\n",
- " :param model_file: model artifact to be tested\n",
- " :param test_set: test features and labels\n",
- " :param label_column: column name for ground truth labels\n",
- " :param score_method: for multiclass classification\n",
- " :param plots_dest: dir for test plots\n",
- " :param model_evaluator: WIP: specific method to generate eval, passed in as string\n",
- " or available in this folder\n",
- " \"\"\" \n",
- " xtest = test_set.as_df()\n",
- " ytest = xtest.pop(label_column)\n",
- " \n",
- " model_file, model_obj, _ = get_model(models_path.url, suffix='.pkl')\n",
- " model_obj = load(open(str(model_file), \"rb\"))\n",
- "\n",
- " try:\n",
- " # there could be different eval_models, type of model (xgboost, tfv1, tfv2...)\n",
- " if not model_evaluator:\n",
- " # binary and multiclass\n",
- " eval_metrics = eval_class_model(context, xtest, ytest, model_obj)\n",
- "\n",
- " # just do this inside log_model?\n",
- " model_plots = eval_metrics.pop(\"plots\")\n",
- " model_tables = eval_metrics.pop(\"tables\")\n",
- " for plot in model_plots:\n",
- " context.log_artifact(plot, local_path=f\"{plots_dest}/{plot.key}.html\")\n",
- " for tbl in model_tables:\n",
- " context.log_artifact(tbl, local_path=f\"{plots_dest}/{plot.key}.csv\")\n",
- "\n",
- " context.log_results(eval_metrics)\n",
- " except:\n",
- " #dummy log:\n",
- " context.log_dataset(\"cox-test-summary\", df=model_obj.summary, index=True, format=\"csv\")\n",
- " context.logger.info(\"cox tester not implemented\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 14,
- "metadata": {},
- "outputs": [],
- "source": [
- "# nuclio: end-code"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [],
- "source": [
- "task_params = {\n",
- " \"name\" : \"tasks cox test\",\n",
- " \"params\": {\n",
- " \"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"churn/test/plots\"}}"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 17,
- "metadata": {},
- "outputs": [],
- "source": [
- "DATA_URL = \"https://raw.githubusercontent.com/yjb-ds/testdata/master/demos/churn/churn-tests.csv\""
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Run Locally"
- ],
- "metadata": {
- "collapsed": false
- }
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "[mlrun] 2020-06-14 13:09:54,707 starting run tasks cox test uid=6284f5f5e6d14a969ba81addcfaf200f -> http://mlrun-api:8080\n",
- "[mlrun] 2020-06-14 13:09:55,249 log artifact cox-test-summary at /User/artifacts/cox-test-summary.csv, size: 3395, db: Y\n",
- "[mlrun] 2020-06-14 13:09:55,250 cox tester not implemented\n",
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " default \n",
- " \n",
- " 0 \n",
- " Jun 14 13:09:54 \n",
- " completed \n",
- " tasks cox test \n",
- " v3io_user=admin
kind=handler
owner=admin
host=jupyter-7b44c8d958-kklf7
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=churn/test/plots
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "to track results use .show() or .logs() or in CLI: \n",
- "!mlrun get run 6284f5f5e6d14a969ba81addcfaf200f --project default , !mlrun logs 6284f5f5e6d14a969ba81addcfaf200f --project default\n",
- "[mlrun] 2020-06-14 13:09:55,307 run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "from mlrun import run_local, NewTask, mlconf\n",
- "\n",
- "run = run_local(NewTask(**task_params),\n",
- " handler=cox_test,\n",
- " inputs={\"test_set\": DATA_URL,\n",
- " \"models_path\" : \"models/cox\"},\n",
- " workdir=mlconf.artifact_path+\"/churn\")\n"
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "## Run Remotely"
- ],
- "metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%% md\n"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "outputs": [],
- "source": [
- "from mlrun import import_function\n",
- "from mlrun.platforms.other import auto_mount\n",
- "\n",
- "GPU = False\n",
- "\n",
- "fn = import_function(\"hub://coxph_test\")\n",
- "if GPU:\n",
- " fn.image = \"mlrun/ml-models-gpu\"\n",
- "fn.apply(auto_mount())\n",
- "\n",
- "run = fn.run(\n",
- " NewTask(**task_params),\n",
- " inputs={\n",
- " \"test_set\" : DATA_URL,\n",
- " \"models_path\" : \"models/cox\"},\n",
- " workdir=os.path.join(mlconf.artifact_path, \"churn\"))"
- ],
- "metadata": {
- "collapsed": false,
- "pycharm": {
- "name": "#%%\n"
- }
- }
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.8"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.0.1/src/coxph_test.py b/functions/development/coxph_test/0.0.1/src/coxph_test.py
deleted file mode 100644
index 83289a2b..00000000
--- a/functions/development/coxph_test/0.0.1/src/coxph_test.py
+++ /dev/null
@@ -1,61 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
diff --git a/functions/development/coxph_test/0.0.1/src/function.yaml b/functions/development/coxph_test/0.0.1/src/function.yaml
deleted file mode 100644
index ca871212..00000000
--- a/functions/development/coxph_test/0.0.1/src/function.yaml
+++ /dev/null
@@ -1,63 +0,0 @@
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: default
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
diff --git a/functions/development/coxph_test/0.0.1/src/item.yaml b/functions/development/coxph_test/0.0.1/src/item.yaml
deleted file mode 100644
index cd9dcdc8..00000000
--- a/functions/development/coxph_test/0.0.1/src/item.yaml
+++ /dev/null
@@ -1,25 +0,0 @@
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-05-19:22-41
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: ''
-name: coxph-test
-platformVersion: ''
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 0.0.1
diff --git a/functions/development/coxph_test/0.0.1/static/documentation.html b/functions/development/coxph_test/0.0.1/static/documentation.html
deleted file mode 100644
index 9f2fc8a8..00000000
--- a/functions/development/coxph_test/0.0.1/static/documentation.html
+++ /dev/null
@@ -1,147 +0,0 @@
-
-
-
-
-
-
-
-coxph_test package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
coxph_test package
-
-
Submodules
-
-
-
coxph_test.coxph_test module
-
-
-coxph_test.coxph_test.
cox_test
( context , models_path : mlrun.datastore.base.DataItem , test_set : mlrun.datastore.base.DataItem , label_column : str , plots_dest : str = 'plots' , model_evaluator = None ) → None [source]
-Test one or more classifier models against held-out dataset
-Using held-out test features, evaluates the peformance of the estimated model
-Can be part of a kubeflow pipeline as a test step that is run post EDA and
-training/validation cycles
-
-Parameters
-
-context – the function context
-model_file – model artifact to be tested
-test_set – test features and labels
-label_column – column name for ground truth labels
-score_method – for multiclass classification
-plots_dest – dir for test plots
-model_evaluator – WIP: specific method to generate eval, passed in as string
-or available in this folder
-
-
-
-
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.0.1/static/example.html b/functions/development/coxph_test/0.0.1/static/example.html
deleted file mode 100644
index aca67f69..00000000
--- a/functions/development/coxph_test/0.0.1/static/example.html
+++ /dev/null
@@ -1,457 +0,0 @@
-
-
-
-
-
-
-
-CoxPH tests
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CoxPH tests
-
-
-
-
-
-
-
-
Run Locally
-
-
-
-
[mlrun] 2020-06-14 13:09:54,707 starting run tasks cox test uid=6284f5f5e6d14a969ba81addcfaf200f -> http://mlrun-api:8080
-[mlrun] 2020-06-14 13:09:55,249 log artifact cox-test-summary at /User/artifacts/cox-test-summary.csv, size: 3395, db: Y
-[mlrun] 2020-06-14 13:09:55,250 cox tester not implemented
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-default
-
-0
-Jun 14 13:09:54
-completed
-tasks cox test
-v3io_user=admin
kind=handler
owner=admin
host=jupyter-7b44c8d958-kklf7
-test_set
models_path
-label_column=labels
plots_dest=churn/test/plots
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
to track results use .show() or .logs() or in CLI:
-!mlrun get run 6284f5f5e6d14a969ba81addcfaf200f --project default , !mlrun logs 6284f5f5e6d14a969ba81addcfaf200f --project default
-[mlrun] 2020-06-14 13:09:55,307 run executed, status=completed
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.0.1/static/function.html b/functions/development/coxph_test/0.0.1/static/function.html
deleted file mode 100644
index 9085ccc3..00000000
--- a/functions/development/coxph_test/0.0.1/static/function.html
+++ /dev/null
@@ -1,85 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: default
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.0.1/static/item.html b/functions/development/coxph_test/0.0.1/static/item.html
deleted file mode 100644
index b67eb0d0..00000000
--- a/functions/development/coxph_test/0.0.1/static/item.html
+++ /dev/null
@@ -1,47 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-05-19:22-41
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: ''
-name: coxph-test
-platformVersion: ''
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 0.0.1
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.0.1/static/source.html b/functions/development/coxph_test/0.0.1/static/source.html
deleted file mode 100644
index 6af29faf..00000000
--- a/functions/development/coxph_test/0.0.1/static/source.html
+++ /dev/null
@@ -1,83 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.8.0/src/coxph_test.ipynb b/functions/development/coxph_test/0.8.0/src/coxph_test.ipynb
deleted file mode 100644
index 0ee0b29c..00000000
--- a/functions/development/coxph_test/0.8.0/src/coxph_test.ipynb
+++ /dev/null
@@ -1,969 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# **CoxPH test**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model. \n",
- "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles. \n",
- "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo. \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Running the function locally](#Running-the-function-locally)\n",
- "4. [Running the function remotely](#Running-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n",
- "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "fn = mlrun.import_function(\"hub://coxph_test\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "fn.spec.build.image=\"mlrun/ml-models\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function locally**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:45 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " covariate \n",
- " coef \n",
- " exp(coef) \n",
- " se(coef) \n",
- " coef lower 95% \n",
- " coef upper 95% \n",
- " exp(coef) lower 95% \n",
- " exp(coef) upper 95% \n",
- " z \n",
- " p \n",
- " -log2(p) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " gender \n",
- " 0.712986 \n",
- " 2.040073e+00 \n",
- " 0.343471 \n",
- " 0.039795 \n",
- " 1.386176 \n",
- " 1.040598 \n",
- " 3.999528 \n",
- " 2.075826 \n",
- " 0.037910 \n",
- " 4.721274 \n",
- " \n",
- " \n",
- " 1 \n",
- " senior \n",
- " -0.330137 \n",
- " 7.188252e-01 \n",
- " 0.444705 \n",
- " -1.201743 \n",
- " 0.541468 \n",
- " 0.300670 \n",
- " 1.718528 \n",
- " -0.742374 \n",
- " 0.457861 \n",
- " 1.127018 \n",
- " \n",
- " \n",
- " 2 \n",
- " partner \n",
- " -0.394449 \n",
- " 6.740516e-01 \n",
- " 0.432243 \n",
- " -1.241630 \n",
- " 0.452732 \n",
- " 0.288913 \n",
- " 1.572603 \n",
- " -0.912562 \n",
- " 0.361473 \n",
- " 1.468041 \n",
- " \n",
- " \n",
- " 3 \n",
- " deps \n",
- " 0.616373 \n",
- " 1.852199e+00 \n",
- " 0.499075 \n",
- " -0.361797 \n",
- " 1.594543 \n",
- " 0.696424 \n",
- " 4.926080 \n",
- " 1.235031 \n",
- " 0.216819 \n",
- " 2.205436 \n",
- " \n",
- " \n",
- " 4 \n",
- " MultipleLines \n",
- " -0.787885 \n",
- " 4.548059e-01 \n",
- " 1.087536 \n",
- " -2.919417 \n",
- " 1.343648 \n",
- " 0.053965 \n",
- " 3.832999 \n",
- " -0.724467 \n",
- " 0.468779 \n",
- " 1.093020 \n",
- " \n",
- " \n",
- " 5 \n",
- " OnlineSecurity \n",
- " -0.766683 \n",
- " 4.645512e-01 \n",
- " 1.299746 \n",
- " -3.314139 \n",
- " 1.780772 \n",
- " 0.036365 \n",
- " 5.934435 \n",
- " -0.589872 \n",
- " 0.555277 \n",
- " 0.848721 \n",
- " \n",
- " \n",
- " 6 \n",
- " OnlineBackup \n",
- " -0.466691 \n",
- " 6.270740e-01 \n",
- " 0.949068 \n",
- " -2.326829 \n",
- " 1.393448 \n",
- " 0.097605 \n",
- " 4.028715 \n",
- " -0.491736 \n",
- " 0.622906 \n",
- " 0.682914 \n",
- " \n",
- " \n",
- " 7 \n",
- " DeviceProtection \n",
- " -0.412620 \n",
- " 6.619136e-01 \n",
- " 1.083731 \n",
- " -2.536694 \n",
- " 1.711453 \n",
- " 0.079128 \n",
- " 5.537002 \n",
- " -0.380741 \n",
- " 0.703396 \n",
- " 0.507591 \n",
- " \n",
- " \n",
- " 8 \n",
- " TechSupport \n",
- " 0.509756 \n",
- " 1.664885e+00 \n",
- " 1.168080 \n",
- " -1.779638 \n",
- " 2.799150 \n",
- " 0.168699 \n",
- " 16.430675 \n",
- " 0.436405 \n",
- " 0.662543 \n",
- " 0.593915 \n",
- " \n",
- " \n",
- " 9 \n",
- " PaperlessBilling \n",
- " 0.349970 \n",
- " 1.419025e+00 \n",
- " 0.408827 \n",
- " -0.451317 \n",
- " 1.151257 \n",
- " 0.636789 \n",
- " 3.162165 \n",
- " 0.856033 \n",
- " 0.391980 \n",
- " 1.351150 \n",
- " \n",
- " \n",
- " 10 \n",
- " MonthlyCharges \n",
- " -0.078399 \n",
- " 9.245958e-01 \n",
- " 0.194463 \n",
- " -0.459539 \n",
- " 0.302742 \n",
- " 0.631574 \n",
- " 1.353566 \n",
- " -0.403154 \n",
- " 0.686835 \n",
- " 0.541965 \n",
- " \n",
- " \n",
- " 11 \n",
- " Contract_1 \n",
- " -2.188279 \n",
- " 1.121096e-01 \n",
- " 0.712197 \n",
- " -3.584159 \n",
- " -0.792398 \n",
- " 0.027760 \n",
- " 0.452758 \n",
- " -3.072575 \n",
- " 0.002122 \n",
- " 8.880219 \n",
- " \n",
- " \n",
- " 12 \n",
- " Contract_2 \n",
- " -19.940767 \n",
- " 2.186930e-09 \n",
- " 3478.684973 \n",
- " -6838.038027 \n",
- " 6798.156493 \n",
- " 0.000000 \n",
- " inf \n",
- " -0.005732 \n",
- " 0.995426 \n",
- " 0.006614 \n",
- " \n",
- " \n",
- " 13 \n",
- " Payment_1 \n",
- " -0.865424 \n",
- " 4.208732e-01 \n",
- " 0.615020 \n",
- " -2.070840 \n",
- " 0.339993 \n",
- " 0.126080 \n",
- " 1.404937 \n",
- " -1.407148 \n",
- " 0.159383 \n",
- " 2.649426 \n",
- " \n",
- " \n",
- " 14 \n",
- " Payment_2 \n",
- " 0.458363 \n",
- " 1.581483e+00 \n",
- " 0.446978 \n",
- " -0.417697 \n",
- " 1.334423 \n",
- " 0.658562 \n",
- " 3.797805 \n",
- " 1.025472 \n",
- " 0.305141 \n",
- " 1.712453 \n",
- " \n",
- " \n",
- " 15 \n",
- " Payment_3 \n",
- " 0.232519 \n",
- " 1.261774e+00 \n",
- " 0.641176 \n",
- " -1.024162 \n",
- " 1.489200 \n",
- " 0.359097 \n",
- " 4.433547 \n",
- " 0.362644 \n",
- " 0.716870 \n",
- " 0.480216 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " covariate coef exp(coef) se(coef) coef lower 95% \\\n",
- "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n",
- "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n",
- "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n",
- "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n",
- "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n",
- "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n",
- "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n",
- "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n",
- "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n",
- "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n",
- "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n",
- "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n",
- "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n",
- "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n",
- "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n",
- "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n",
- "\n",
- " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n",
- "0 1.386176 1.040598 3.999528 2.075826 \n",
- "1 0.541468 0.300670 1.718528 -0.742374 \n",
- "2 0.452732 0.288913 1.572603 -0.912562 \n",
- "3 1.594543 0.696424 4.926080 1.235031 \n",
- "4 1.343648 0.053965 3.832999 -0.724467 \n",
- "5 1.780772 0.036365 5.934435 -0.589872 \n",
- "6 1.393448 0.097605 4.028715 -0.491736 \n",
- "7 1.711453 0.079128 5.537002 -0.380741 \n",
- "8 2.799150 0.168699 16.430675 0.436405 \n",
- "9 1.151257 0.636789 3.162165 0.856033 \n",
- "10 0.302742 0.631574 1.353566 -0.403154 \n",
- "11 -0.792398 0.027760 0.452758 -3.072575 \n",
- "12 6798.156493 0.000000 inf -0.005732 \n",
- "13 0.339993 0.126080 1.404937 -1.407148 \n",
- "14 1.334423 0.658562 3.797805 1.025472 \n",
- "15 1.489200 0.359097 4.433547 0.362644 \n",
- "\n",
- " p -log2(p) \n",
- "0 0.037910 4.721274 \n",
- "1 0.457861 1.127018 \n",
- "2 0.361473 1.468041 \n",
- "3 0.216819 2.205436 \n",
- "4 0.468779 1.093020 \n",
- "5 0.555277 0.848721 \n",
- "6 0.622906 0.682914 \n",
- "7 0.703396 0.507591 \n",
- "8 0.662543 0.593915 \n",
- "9 0.391980 1.351150 \n",
- "10 0.686835 0.541965 \n",
- "11 0.002122 8.880219 \n",
- "12 0.995426 0.006614 \n",
- "13 0.159383 2.649426 \n",
- "14 0.305141 1.712453 \n",
- "15 0.716870 0.480216 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "coxph_run.artifact('cox-test-summary').show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n",
- "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n",
- "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n",
- "final state: completed\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:56 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n",
- " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n",
- "\n",
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#CoxPH-test)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/coxph_test/0.8.0/src/coxph_test.py b/functions/development/coxph_test/0.8.0/src/coxph_test.py
deleted file mode 100644
index 83289a2b..00000000
--- a/functions/development/coxph_test/0.8.0/src/coxph_test.py
+++ /dev/null
@@ -1,61 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
diff --git a/functions/development/coxph_test/0.8.0/src/function.yaml b/functions/development/coxph_test/0.8.0/src/function.yaml
deleted file mode 100644
index ca871212..00000000
--- a/functions/development/coxph_test/0.8.0/src/function.yaml
+++ /dev/null
@@ -1,63 +0,0 @@
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: default
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
diff --git a/functions/development/coxph_test/0.8.0/src/item.yaml b/functions/development/coxph_test/0.8.0/src/item.yaml
deleted file mode 100644
index aea772e5..00000000
--- a/functions/development/coxph_test/0.8.0/src/item.yaml
+++ /dev/null
@@ -1,25 +0,0 @@
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-05-19:22-41
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 0.8.0
diff --git a/functions/development/coxph_test/0.8.0/static/documentation.html b/functions/development/coxph_test/0.8.0/static/documentation.html
deleted file mode 100644
index 9f2fc8a8..00000000
--- a/functions/development/coxph_test/0.8.0/static/documentation.html
+++ /dev/null
@@ -1,147 +0,0 @@
-
-
-
-
-
-
-
-coxph_test package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
coxph_test package
-
-
Submodules
-
-
-
coxph_test.coxph_test module
-
-
-coxph_test.coxph_test.
cox_test
( context , models_path : mlrun.datastore.base.DataItem , test_set : mlrun.datastore.base.DataItem , label_column : str , plots_dest : str = 'plots' , model_evaluator = None ) → None [source]
-Test one or more classifier models against held-out dataset
-Using held-out test features, evaluates the peformance of the estimated model
-Can be part of a kubeflow pipeline as a test step that is run post EDA and
-training/validation cycles
-
-Parameters
-
-context – the function context
-model_file – model artifact to be tested
-test_set – test features and labels
-label_column – column name for ground truth labels
-score_method – for multiclass classification
-plots_dest – dir for test plots
-model_evaluator – WIP: specific method to generate eval, passed in as string
-or available in this folder
-
-
-
-
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.8.0/static/example.html b/functions/development/coxph_test/0.8.0/static/example.html
deleted file mode 100644
index 346c8b29..00000000
--- a/functions/development/coxph_test/0.8.0/static/example.html
+++ /dev/null
@@ -1,897 +0,0 @@
-
-
-
-
-
-
-
-CoxPH test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CoxPH test
-
This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
function from the function marketplace repository
-
-
-
Setup function parameters
-
-
-
-
Importing the function
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-
Running the function locally
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:45
-completed
-tasks_coxph_test
-v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
-
-
-
-
-
-
-covariate
-coef
-exp(coef)
-se(coef)
-coef lower 95%
-coef upper 95%
-exp(coef) lower 95%
-exp(coef) upper 95%
-z
-p
--log2(p)
-
-
-
-
-0
-gender
-0.712986
-2.040073e+00
-0.343471
-0.039795
-1.386176
-1.040598
-3.999528
-2.075826
-0.037910
-4.721274
-
-
-1
-senior
--0.330137
-7.188252e-01
-0.444705
--1.201743
-0.541468
-0.300670
-1.718528
--0.742374
-0.457861
-1.127018
-
-
-2
-partner
--0.394449
-6.740516e-01
-0.432243
--1.241630
-0.452732
-0.288913
-1.572603
--0.912562
-0.361473
-1.468041
-
-
-3
-deps
-0.616373
-1.852199e+00
-0.499075
--0.361797
-1.594543
-0.696424
-4.926080
-1.235031
-0.216819
-2.205436
-
-
-4
-MultipleLines
--0.787885
-4.548059e-01
-1.087536
--2.919417
-1.343648
-0.053965
-3.832999
--0.724467
-0.468779
-1.093020
-
-
-5
-OnlineSecurity
--0.766683
-4.645512e-01
-1.299746
--3.314139
-1.780772
-0.036365
-5.934435
--0.589872
-0.555277
-0.848721
-
-
-6
-OnlineBackup
--0.466691
-6.270740e-01
-0.949068
--2.326829
-1.393448
-0.097605
-4.028715
--0.491736
-0.622906
-0.682914
-
-
-7
-DeviceProtection
--0.412620
-6.619136e-01
-1.083731
--2.536694
-1.711453
-0.079128
-5.537002
--0.380741
-0.703396
-0.507591
-
-
-8
-TechSupport
-0.509756
-1.664885e+00
-1.168080
--1.779638
-2.799150
-0.168699
-16.430675
-0.436405
-0.662543
-0.593915
-
-
-9
-PaperlessBilling
-0.349970
-1.419025e+00
-0.408827
--0.451317
-1.151257
-0.636789
-3.162165
-0.856033
-0.391980
-1.351150
-
-
-10
-MonthlyCharges
--0.078399
-9.245958e-01
-0.194463
--0.459539
-0.302742
-0.631574
-1.353566
--0.403154
-0.686835
-0.541965
-
-
-11
-Contract_1
--2.188279
-1.121096e-01
-0.712197
--3.584159
--0.792398
-0.027760
-0.452758
--3.072575
-0.002122
-8.880219
-
-
-12
-Contract_2
--19.940767
-2.186930e-09
-3478.684973
--6838.038027
-6798.156493
-0.000000
-inf
--0.005732
-0.995426
-0.006614
-
-
-13
-Payment_1
--0.865424
-4.208732e-01
-0.615020
--2.070840
-0.339993
-0.126080
-1.404937
--1.407148
-0.159383
-2.649426
-
-
-14
-Payment_2
-0.458363
-1.581483e+00
-0.446978
--0.417697
-1.334423
-0.658562
-3.797805
-1.025472
-0.305141
-1.712453
-
-
-15
-Payment_3
-0.232519
-1.261774e+00
-0.641176
--1.024162
-1.489200
-0.359097
-4.433547
-0.362644
-0.716870
-0.480216
-
-
-
-
-
-
-
-
Running the function remotely
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:56
-completed
-tasks_coxph_test
-v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-
Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.8.0/static/function.html b/functions/development/coxph_test/0.8.0/static/function.html
deleted file mode 100644
index 9085ccc3..00000000
--- a/functions/development/coxph_test/0.8.0/static/function.html
+++ /dev/null
@@ -1,85 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: default
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.8.0/static/item.html b/functions/development/coxph_test/0.8.0/static/item.html
deleted file mode 100644
index b11f5671..00000000
--- a/functions/development/coxph_test/0.8.0/static/item.html
+++ /dev/null
@@ -1,47 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-05-19:22-41
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 0.8.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.8.0/static/source.html b/functions/development/coxph_test/0.8.0/static/source.html
deleted file mode 100644
index 6af29faf..00000000
--- a/functions/development/coxph_test/0.8.0/static/source.html
+++ /dev/null
@@ -1,83 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.9.0/src/coxph_test.ipynb b/functions/development/coxph_test/0.9.0/src/coxph_test.ipynb
deleted file mode 100644
index 0ee0b29c..00000000
--- a/functions/development/coxph_test/0.9.0/src/coxph_test.ipynb
+++ /dev/null
@@ -1,969 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# **CoxPH test**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model. \n",
- "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles. \n",
- "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo. \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Running the function locally](#Running-the-function-locally)\n",
- "4. [Running the function remotely](#Running-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n",
- "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "fn = mlrun.import_function(\"hub://coxph_test\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "fn.spec.build.image=\"mlrun/ml-models\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function locally**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:45 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " covariate \n",
- " coef \n",
- " exp(coef) \n",
- " se(coef) \n",
- " coef lower 95% \n",
- " coef upper 95% \n",
- " exp(coef) lower 95% \n",
- " exp(coef) upper 95% \n",
- " z \n",
- " p \n",
- " -log2(p) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " gender \n",
- " 0.712986 \n",
- " 2.040073e+00 \n",
- " 0.343471 \n",
- " 0.039795 \n",
- " 1.386176 \n",
- " 1.040598 \n",
- " 3.999528 \n",
- " 2.075826 \n",
- " 0.037910 \n",
- " 4.721274 \n",
- " \n",
- " \n",
- " 1 \n",
- " senior \n",
- " -0.330137 \n",
- " 7.188252e-01 \n",
- " 0.444705 \n",
- " -1.201743 \n",
- " 0.541468 \n",
- " 0.300670 \n",
- " 1.718528 \n",
- " -0.742374 \n",
- " 0.457861 \n",
- " 1.127018 \n",
- " \n",
- " \n",
- " 2 \n",
- " partner \n",
- " -0.394449 \n",
- " 6.740516e-01 \n",
- " 0.432243 \n",
- " -1.241630 \n",
- " 0.452732 \n",
- " 0.288913 \n",
- " 1.572603 \n",
- " -0.912562 \n",
- " 0.361473 \n",
- " 1.468041 \n",
- " \n",
- " \n",
- " 3 \n",
- " deps \n",
- " 0.616373 \n",
- " 1.852199e+00 \n",
- " 0.499075 \n",
- " -0.361797 \n",
- " 1.594543 \n",
- " 0.696424 \n",
- " 4.926080 \n",
- " 1.235031 \n",
- " 0.216819 \n",
- " 2.205436 \n",
- " \n",
- " \n",
- " 4 \n",
- " MultipleLines \n",
- " -0.787885 \n",
- " 4.548059e-01 \n",
- " 1.087536 \n",
- " -2.919417 \n",
- " 1.343648 \n",
- " 0.053965 \n",
- " 3.832999 \n",
- " -0.724467 \n",
- " 0.468779 \n",
- " 1.093020 \n",
- " \n",
- " \n",
- " 5 \n",
- " OnlineSecurity \n",
- " -0.766683 \n",
- " 4.645512e-01 \n",
- " 1.299746 \n",
- " -3.314139 \n",
- " 1.780772 \n",
- " 0.036365 \n",
- " 5.934435 \n",
- " -0.589872 \n",
- " 0.555277 \n",
- " 0.848721 \n",
- " \n",
- " \n",
- " 6 \n",
- " OnlineBackup \n",
- " -0.466691 \n",
- " 6.270740e-01 \n",
- " 0.949068 \n",
- " -2.326829 \n",
- " 1.393448 \n",
- " 0.097605 \n",
- " 4.028715 \n",
- " -0.491736 \n",
- " 0.622906 \n",
- " 0.682914 \n",
- " \n",
- " \n",
- " 7 \n",
- " DeviceProtection \n",
- " -0.412620 \n",
- " 6.619136e-01 \n",
- " 1.083731 \n",
- " -2.536694 \n",
- " 1.711453 \n",
- " 0.079128 \n",
- " 5.537002 \n",
- " -0.380741 \n",
- " 0.703396 \n",
- " 0.507591 \n",
- " \n",
- " \n",
- " 8 \n",
- " TechSupport \n",
- " 0.509756 \n",
- " 1.664885e+00 \n",
- " 1.168080 \n",
- " -1.779638 \n",
- " 2.799150 \n",
- " 0.168699 \n",
- " 16.430675 \n",
- " 0.436405 \n",
- " 0.662543 \n",
- " 0.593915 \n",
- " \n",
- " \n",
- " 9 \n",
- " PaperlessBilling \n",
- " 0.349970 \n",
- " 1.419025e+00 \n",
- " 0.408827 \n",
- " -0.451317 \n",
- " 1.151257 \n",
- " 0.636789 \n",
- " 3.162165 \n",
- " 0.856033 \n",
- " 0.391980 \n",
- " 1.351150 \n",
- " \n",
- " \n",
- " 10 \n",
- " MonthlyCharges \n",
- " -0.078399 \n",
- " 9.245958e-01 \n",
- " 0.194463 \n",
- " -0.459539 \n",
- " 0.302742 \n",
- " 0.631574 \n",
- " 1.353566 \n",
- " -0.403154 \n",
- " 0.686835 \n",
- " 0.541965 \n",
- " \n",
- " \n",
- " 11 \n",
- " Contract_1 \n",
- " -2.188279 \n",
- " 1.121096e-01 \n",
- " 0.712197 \n",
- " -3.584159 \n",
- " -0.792398 \n",
- " 0.027760 \n",
- " 0.452758 \n",
- " -3.072575 \n",
- " 0.002122 \n",
- " 8.880219 \n",
- " \n",
- " \n",
- " 12 \n",
- " Contract_2 \n",
- " -19.940767 \n",
- " 2.186930e-09 \n",
- " 3478.684973 \n",
- " -6838.038027 \n",
- " 6798.156493 \n",
- " 0.000000 \n",
- " inf \n",
- " -0.005732 \n",
- " 0.995426 \n",
- " 0.006614 \n",
- " \n",
- " \n",
- " 13 \n",
- " Payment_1 \n",
- " -0.865424 \n",
- " 4.208732e-01 \n",
- " 0.615020 \n",
- " -2.070840 \n",
- " 0.339993 \n",
- " 0.126080 \n",
- " 1.404937 \n",
- " -1.407148 \n",
- " 0.159383 \n",
- " 2.649426 \n",
- " \n",
- " \n",
- " 14 \n",
- " Payment_2 \n",
- " 0.458363 \n",
- " 1.581483e+00 \n",
- " 0.446978 \n",
- " -0.417697 \n",
- " 1.334423 \n",
- " 0.658562 \n",
- " 3.797805 \n",
- " 1.025472 \n",
- " 0.305141 \n",
- " 1.712453 \n",
- " \n",
- " \n",
- " 15 \n",
- " Payment_3 \n",
- " 0.232519 \n",
- " 1.261774e+00 \n",
- " 0.641176 \n",
- " -1.024162 \n",
- " 1.489200 \n",
- " 0.359097 \n",
- " 4.433547 \n",
- " 0.362644 \n",
- " 0.716870 \n",
- " 0.480216 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " covariate coef exp(coef) se(coef) coef lower 95% \\\n",
- "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n",
- "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n",
- "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n",
- "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n",
- "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n",
- "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n",
- "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n",
- "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n",
- "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n",
- "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n",
- "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n",
- "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n",
- "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n",
- "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n",
- "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n",
- "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n",
- "\n",
- " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n",
- "0 1.386176 1.040598 3.999528 2.075826 \n",
- "1 0.541468 0.300670 1.718528 -0.742374 \n",
- "2 0.452732 0.288913 1.572603 -0.912562 \n",
- "3 1.594543 0.696424 4.926080 1.235031 \n",
- "4 1.343648 0.053965 3.832999 -0.724467 \n",
- "5 1.780772 0.036365 5.934435 -0.589872 \n",
- "6 1.393448 0.097605 4.028715 -0.491736 \n",
- "7 1.711453 0.079128 5.537002 -0.380741 \n",
- "8 2.799150 0.168699 16.430675 0.436405 \n",
- "9 1.151257 0.636789 3.162165 0.856033 \n",
- "10 0.302742 0.631574 1.353566 -0.403154 \n",
- "11 -0.792398 0.027760 0.452758 -3.072575 \n",
- "12 6798.156493 0.000000 inf -0.005732 \n",
- "13 0.339993 0.126080 1.404937 -1.407148 \n",
- "14 1.334423 0.658562 3.797805 1.025472 \n",
- "15 1.489200 0.359097 4.433547 0.362644 \n",
- "\n",
- " p -log2(p) \n",
- "0 0.037910 4.721274 \n",
- "1 0.457861 1.127018 \n",
- "2 0.361473 1.468041 \n",
- "3 0.216819 2.205436 \n",
- "4 0.468779 1.093020 \n",
- "5 0.555277 0.848721 \n",
- "6 0.622906 0.682914 \n",
- "7 0.703396 0.507591 \n",
- "8 0.662543 0.593915 \n",
- "9 0.391980 1.351150 \n",
- "10 0.686835 0.541965 \n",
- "11 0.002122 8.880219 \n",
- "12 0.995426 0.006614 \n",
- "13 0.159383 2.649426 \n",
- "14 0.305141 1.712453 \n",
- "15 0.716870 0.480216 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "coxph_run.artifact('cox-test-summary').show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n",
- "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n",
- "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n",
- "final state: completed\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:56 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n",
- " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n",
- "\n",
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#CoxPH-test)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/coxph_test/0.9.0/src/coxph_test.py b/functions/development/coxph_test/0.9.0/src/coxph_test.py
deleted file mode 100644
index 83289a2b..00000000
--- a/functions/development/coxph_test/0.9.0/src/coxph_test.py
+++ /dev/null
@@ -1,61 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
diff --git a/functions/development/coxph_test/0.9.0/src/function.yaml b/functions/development/coxph_test/0.9.0/src/function.yaml
deleted file mode 100644
index e09fb90a..00000000
--- a/functions/development/coxph_test/0.9.0/src/function.yaml
+++ /dev/null
@@ -1,63 +0,0 @@
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
diff --git a/functions/development/coxph_test/0.9.0/src/item.yaml b/functions/development/coxph_test/0.9.0/src/item.yaml
deleted file mode 100644
index 71d5ee15..00000000
--- a/functions/development/coxph_test/0.9.0/src/item.yaml
+++ /dev/null
@@ -1,25 +0,0 @@
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 0.9.0
diff --git a/functions/development/coxph_test/0.9.0/static/documentation.html b/functions/development/coxph_test/0.9.0/static/documentation.html
deleted file mode 100644
index dac619c8..00000000
--- a/functions/development/coxph_test/0.9.0/static/documentation.html
+++ /dev/null
@@ -1,125 +0,0 @@
-
-
-
-
-
-
-
-coxph_test package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
coxph_test package
-
-
Submodules
-
-
-
coxph_test.coxph_test module
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.9.0/static/example.html b/functions/development/coxph_test/0.9.0/static/example.html
deleted file mode 100644
index 346c8b29..00000000
--- a/functions/development/coxph_test/0.9.0/static/example.html
+++ /dev/null
@@ -1,897 +0,0 @@
-
-
-
-
-
-
-
-CoxPH test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CoxPH test
-
This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
function from the function marketplace repository
-
-
-
Setup function parameters
-
-
-
-
Importing the function
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-
Running the function locally
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:45
-completed
-tasks_coxph_test
-v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
-
-
-
-
-
-
-covariate
-coef
-exp(coef)
-se(coef)
-coef lower 95%
-coef upper 95%
-exp(coef) lower 95%
-exp(coef) upper 95%
-z
-p
--log2(p)
-
-
-
-
-0
-gender
-0.712986
-2.040073e+00
-0.343471
-0.039795
-1.386176
-1.040598
-3.999528
-2.075826
-0.037910
-4.721274
-
-
-1
-senior
--0.330137
-7.188252e-01
-0.444705
--1.201743
-0.541468
-0.300670
-1.718528
--0.742374
-0.457861
-1.127018
-
-
-2
-partner
--0.394449
-6.740516e-01
-0.432243
--1.241630
-0.452732
-0.288913
-1.572603
--0.912562
-0.361473
-1.468041
-
-
-3
-deps
-0.616373
-1.852199e+00
-0.499075
--0.361797
-1.594543
-0.696424
-4.926080
-1.235031
-0.216819
-2.205436
-
-
-4
-MultipleLines
--0.787885
-4.548059e-01
-1.087536
--2.919417
-1.343648
-0.053965
-3.832999
--0.724467
-0.468779
-1.093020
-
-
-5
-OnlineSecurity
--0.766683
-4.645512e-01
-1.299746
--3.314139
-1.780772
-0.036365
-5.934435
--0.589872
-0.555277
-0.848721
-
-
-6
-OnlineBackup
--0.466691
-6.270740e-01
-0.949068
--2.326829
-1.393448
-0.097605
-4.028715
--0.491736
-0.622906
-0.682914
-
-
-7
-DeviceProtection
--0.412620
-6.619136e-01
-1.083731
--2.536694
-1.711453
-0.079128
-5.537002
--0.380741
-0.703396
-0.507591
-
-
-8
-TechSupport
-0.509756
-1.664885e+00
-1.168080
--1.779638
-2.799150
-0.168699
-16.430675
-0.436405
-0.662543
-0.593915
-
-
-9
-PaperlessBilling
-0.349970
-1.419025e+00
-0.408827
--0.451317
-1.151257
-0.636789
-3.162165
-0.856033
-0.391980
-1.351150
-
-
-10
-MonthlyCharges
--0.078399
-9.245958e-01
-0.194463
--0.459539
-0.302742
-0.631574
-1.353566
--0.403154
-0.686835
-0.541965
-
-
-11
-Contract_1
--2.188279
-1.121096e-01
-0.712197
--3.584159
--0.792398
-0.027760
-0.452758
--3.072575
-0.002122
-8.880219
-
-
-12
-Contract_2
--19.940767
-2.186930e-09
-3478.684973
--6838.038027
-6798.156493
-0.000000
-inf
--0.005732
-0.995426
-0.006614
-
-
-13
-Payment_1
--0.865424
-4.208732e-01
-0.615020
--2.070840
-0.339993
-0.126080
-1.404937
--1.407148
-0.159383
-2.649426
-
-
-14
-Payment_2
-0.458363
-1.581483e+00
-0.446978
--0.417697
-1.334423
-0.658562
-3.797805
-1.025472
-0.305141
-1.712453
-
-
-15
-Payment_3
-0.232519
-1.261774e+00
-0.641176
--1.024162
-1.489200
-0.359097
-4.433547
-0.362644
-0.716870
-0.480216
-
-
-
-
-
-
-
-
Running the function remotely
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:56
-completed
-tasks_coxph_test
-v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-
Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.9.0/static/function.html b/functions/development/coxph_test/0.9.0/static/function.html
deleted file mode 100644
index 3bf5e105..00000000
--- a/functions/development/coxph_test/0.9.0/static/function.html
+++ /dev/null
@@ -1,85 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.9.0/static/item.html b/functions/development/coxph_test/0.9.0/static/item.html
deleted file mode 100644
index 5176e1b7..00000000
--- a/functions/development/coxph_test/0.9.0/static/item.html
+++ /dev/null
@@ -1,47 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 0.9.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/0.9.0/static/source.html b/functions/development/coxph_test/0.9.0/static/source.html
deleted file mode 100644
index 6af29faf..00000000
--- a/functions/development/coxph_test/0.9.0/static/source.html
+++ /dev/null
@@ -1,83 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.0.0/src/coxph_test.ipynb b/functions/development/coxph_test/1.0.0/src/coxph_test.ipynb
deleted file mode 100644
index 0ee0b29c..00000000
--- a/functions/development/coxph_test/1.0.0/src/coxph_test.ipynb
+++ /dev/null
@@ -1,969 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# **CoxPH test**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model. \n",
- "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles. \n",
- "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo. \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Running the function locally](#Running-the-function-locally)\n",
- "4. [Running the function remotely](#Running-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n",
- "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "fn = mlrun.import_function(\"hub://coxph_test\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "fn.spec.build.image=\"mlrun/ml-models\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function locally**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:45 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " covariate \n",
- " coef \n",
- " exp(coef) \n",
- " se(coef) \n",
- " coef lower 95% \n",
- " coef upper 95% \n",
- " exp(coef) lower 95% \n",
- " exp(coef) upper 95% \n",
- " z \n",
- " p \n",
- " -log2(p) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " gender \n",
- " 0.712986 \n",
- " 2.040073e+00 \n",
- " 0.343471 \n",
- " 0.039795 \n",
- " 1.386176 \n",
- " 1.040598 \n",
- " 3.999528 \n",
- " 2.075826 \n",
- " 0.037910 \n",
- " 4.721274 \n",
- " \n",
- " \n",
- " 1 \n",
- " senior \n",
- " -0.330137 \n",
- " 7.188252e-01 \n",
- " 0.444705 \n",
- " -1.201743 \n",
- " 0.541468 \n",
- " 0.300670 \n",
- " 1.718528 \n",
- " -0.742374 \n",
- " 0.457861 \n",
- " 1.127018 \n",
- " \n",
- " \n",
- " 2 \n",
- " partner \n",
- " -0.394449 \n",
- " 6.740516e-01 \n",
- " 0.432243 \n",
- " -1.241630 \n",
- " 0.452732 \n",
- " 0.288913 \n",
- " 1.572603 \n",
- " -0.912562 \n",
- " 0.361473 \n",
- " 1.468041 \n",
- " \n",
- " \n",
- " 3 \n",
- " deps \n",
- " 0.616373 \n",
- " 1.852199e+00 \n",
- " 0.499075 \n",
- " -0.361797 \n",
- " 1.594543 \n",
- " 0.696424 \n",
- " 4.926080 \n",
- " 1.235031 \n",
- " 0.216819 \n",
- " 2.205436 \n",
- " \n",
- " \n",
- " 4 \n",
- " MultipleLines \n",
- " -0.787885 \n",
- " 4.548059e-01 \n",
- " 1.087536 \n",
- " -2.919417 \n",
- " 1.343648 \n",
- " 0.053965 \n",
- " 3.832999 \n",
- " -0.724467 \n",
- " 0.468779 \n",
- " 1.093020 \n",
- " \n",
- " \n",
- " 5 \n",
- " OnlineSecurity \n",
- " -0.766683 \n",
- " 4.645512e-01 \n",
- " 1.299746 \n",
- " -3.314139 \n",
- " 1.780772 \n",
- " 0.036365 \n",
- " 5.934435 \n",
- " -0.589872 \n",
- " 0.555277 \n",
- " 0.848721 \n",
- " \n",
- " \n",
- " 6 \n",
- " OnlineBackup \n",
- " -0.466691 \n",
- " 6.270740e-01 \n",
- " 0.949068 \n",
- " -2.326829 \n",
- " 1.393448 \n",
- " 0.097605 \n",
- " 4.028715 \n",
- " -0.491736 \n",
- " 0.622906 \n",
- " 0.682914 \n",
- " \n",
- " \n",
- " 7 \n",
- " DeviceProtection \n",
- " -0.412620 \n",
- " 6.619136e-01 \n",
- " 1.083731 \n",
- " -2.536694 \n",
- " 1.711453 \n",
- " 0.079128 \n",
- " 5.537002 \n",
- " -0.380741 \n",
- " 0.703396 \n",
- " 0.507591 \n",
- " \n",
- " \n",
- " 8 \n",
- " TechSupport \n",
- " 0.509756 \n",
- " 1.664885e+00 \n",
- " 1.168080 \n",
- " -1.779638 \n",
- " 2.799150 \n",
- " 0.168699 \n",
- " 16.430675 \n",
- " 0.436405 \n",
- " 0.662543 \n",
- " 0.593915 \n",
- " \n",
- " \n",
- " 9 \n",
- " PaperlessBilling \n",
- " 0.349970 \n",
- " 1.419025e+00 \n",
- " 0.408827 \n",
- " -0.451317 \n",
- " 1.151257 \n",
- " 0.636789 \n",
- " 3.162165 \n",
- " 0.856033 \n",
- " 0.391980 \n",
- " 1.351150 \n",
- " \n",
- " \n",
- " 10 \n",
- " MonthlyCharges \n",
- " -0.078399 \n",
- " 9.245958e-01 \n",
- " 0.194463 \n",
- " -0.459539 \n",
- " 0.302742 \n",
- " 0.631574 \n",
- " 1.353566 \n",
- " -0.403154 \n",
- " 0.686835 \n",
- " 0.541965 \n",
- " \n",
- " \n",
- " 11 \n",
- " Contract_1 \n",
- " -2.188279 \n",
- " 1.121096e-01 \n",
- " 0.712197 \n",
- " -3.584159 \n",
- " -0.792398 \n",
- " 0.027760 \n",
- " 0.452758 \n",
- " -3.072575 \n",
- " 0.002122 \n",
- " 8.880219 \n",
- " \n",
- " \n",
- " 12 \n",
- " Contract_2 \n",
- " -19.940767 \n",
- " 2.186930e-09 \n",
- " 3478.684973 \n",
- " -6838.038027 \n",
- " 6798.156493 \n",
- " 0.000000 \n",
- " inf \n",
- " -0.005732 \n",
- " 0.995426 \n",
- " 0.006614 \n",
- " \n",
- " \n",
- " 13 \n",
- " Payment_1 \n",
- " -0.865424 \n",
- " 4.208732e-01 \n",
- " 0.615020 \n",
- " -2.070840 \n",
- " 0.339993 \n",
- " 0.126080 \n",
- " 1.404937 \n",
- " -1.407148 \n",
- " 0.159383 \n",
- " 2.649426 \n",
- " \n",
- " \n",
- " 14 \n",
- " Payment_2 \n",
- " 0.458363 \n",
- " 1.581483e+00 \n",
- " 0.446978 \n",
- " -0.417697 \n",
- " 1.334423 \n",
- " 0.658562 \n",
- " 3.797805 \n",
- " 1.025472 \n",
- " 0.305141 \n",
- " 1.712453 \n",
- " \n",
- " \n",
- " 15 \n",
- " Payment_3 \n",
- " 0.232519 \n",
- " 1.261774e+00 \n",
- " 0.641176 \n",
- " -1.024162 \n",
- " 1.489200 \n",
- " 0.359097 \n",
- " 4.433547 \n",
- " 0.362644 \n",
- " 0.716870 \n",
- " 0.480216 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " covariate coef exp(coef) se(coef) coef lower 95% \\\n",
- "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n",
- "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n",
- "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n",
- "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n",
- "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n",
- "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n",
- "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n",
- "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n",
- "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n",
- "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n",
- "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n",
- "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n",
- "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n",
- "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n",
- "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n",
- "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n",
- "\n",
- " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n",
- "0 1.386176 1.040598 3.999528 2.075826 \n",
- "1 0.541468 0.300670 1.718528 -0.742374 \n",
- "2 0.452732 0.288913 1.572603 -0.912562 \n",
- "3 1.594543 0.696424 4.926080 1.235031 \n",
- "4 1.343648 0.053965 3.832999 -0.724467 \n",
- "5 1.780772 0.036365 5.934435 -0.589872 \n",
- "6 1.393448 0.097605 4.028715 -0.491736 \n",
- "7 1.711453 0.079128 5.537002 -0.380741 \n",
- "8 2.799150 0.168699 16.430675 0.436405 \n",
- "9 1.151257 0.636789 3.162165 0.856033 \n",
- "10 0.302742 0.631574 1.353566 -0.403154 \n",
- "11 -0.792398 0.027760 0.452758 -3.072575 \n",
- "12 6798.156493 0.000000 inf -0.005732 \n",
- "13 0.339993 0.126080 1.404937 -1.407148 \n",
- "14 1.334423 0.658562 3.797805 1.025472 \n",
- "15 1.489200 0.359097 4.433547 0.362644 \n",
- "\n",
- " p -log2(p) \n",
- "0 0.037910 4.721274 \n",
- "1 0.457861 1.127018 \n",
- "2 0.361473 1.468041 \n",
- "3 0.216819 2.205436 \n",
- "4 0.468779 1.093020 \n",
- "5 0.555277 0.848721 \n",
- "6 0.622906 0.682914 \n",
- "7 0.703396 0.507591 \n",
- "8 0.662543 0.593915 \n",
- "9 0.391980 1.351150 \n",
- "10 0.686835 0.541965 \n",
- "11 0.002122 8.880219 \n",
- "12 0.995426 0.006614 \n",
- "13 0.159383 2.649426 \n",
- "14 0.305141 1.712453 \n",
- "15 0.716870 0.480216 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "coxph_run.artifact('cox-test-summary').show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n",
- "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n",
- "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n",
- "final state: completed\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:56 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n",
- " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n",
- "\n",
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#CoxPH-test)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/coxph_test/1.0.0/src/coxph_test.py b/functions/development/coxph_test/1.0.0/src/coxph_test.py
deleted file mode 100644
index 83289a2b..00000000
--- a/functions/development/coxph_test/1.0.0/src/coxph_test.py
+++ /dev/null
@@ -1,61 +0,0 @@
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
diff --git a/functions/development/coxph_test/1.0.0/src/function.yaml b/functions/development/coxph_test/1.0.0/src/function.yaml
deleted file mode 100644
index e09fb90a..00000000
--- a/functions/development/coxph_test/1.0.0/src/function.yaml
+++ /dev/null
@@ -1,63 +0,0 @@
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
diff --git a/functions/development/coxph_test/1.0.0/src/item.yaml b/functions/development/coxph_test/1.0.0/src/item.yaml
deleted file mode 100644
index b694887d..00000000
--- a/functions/development/coxph_test/1.0.0/src/item.yaml
+++ /dev/null
@@ -1,25 +0,0 @@
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 1.0.0
diff --git a/functions/development/coxph_test/1.0.0/static/documentation.html b/functions/development/coxph_test/1.0.0/static/documentation.html
deleted file mode 100644
index 40c31b91..00000000
--- a/functions/development/coxph_test/1.0.0/static/documentation.html
+++ /dev/null
@@ -1,150 +0,0 @@
-
-
-
-
-
-
-
-coxph_test package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
coxph_test package
-
-
Submodules
-
-
-
coxph_test.coxph_test module
-
-
-coxph_test.coxph_test.
cox_test
( context , models_path : mlrun.datastore.base.DataItem , test_set : mlrun.datastore.base.DataItem , label_column : str , plots_dest : str = 'plots' , model_evaluator = None ) → None [source]
-Test one or more classifier models against held-out dataset
-Using held-out test features, evaluates the peformance of the estimated model
-Can be part of a kubeflow pipeline as a test step that is run post EDA and
-training/validation cycles
-
-Parameters
-
-context – the function context
-model_file – model artifact to be tested
-test_set – test features and labels
-label_column – column name for ground truth labels
-score_method – for multiclass classification
-plots_dest – dir for test plots
-model_evaluator – WIP: specific method to generate eval, passed in as string
-or available in this folder
-
-
-
-
-
-
-
Module contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.0.0/static/example.html b/functions/development/coxph_test/1.0.0/static/example.html
deleted file mode 100644
index 59b93a90..00000000
--- a/functions/development/coxph_test/1.0.0/static/example.html
+++ /dev/null
@@ -1,900 +0,0 @@
-
-
-
-
-
-
-
-CoxPH test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CoxPH test
-
This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
function from the function marketplace repository
-
-
Steps
-
-Setup function parameters
-Importing the function
-Running the function locally
-Running the function remotely
-
-
-
-
-
Setup function parameters
-
-
-
-
Importing the function
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-
Running the function locally
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:45
-completed
-tasks_coxph_test
-v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
-
-
-
-
-
-
-covariate
-coef
-exp(coef)
-se(coef)
-coef lower 95%
-coef upper 95%
-exp(coef) lower 95%
-exp(coef) upper 95%
-z
-p
--log2(p)
-
-
-
-
-0
-gender
-0.712986
-2.040073e+00
-0.343471
-0.039795
-1.386176
-1.040598
-3.999528
-2.075826
-0.037910
-4.721274
-
-
-1
-senior
--0.330137
-7.188252e-01
-0.444705
--1.201743
-0.541468
-0.300670
-1.718528
--0.742374
-0.457861
-1.127018
-
-
-2
-partner
--0.394449
-6.740516e-01
-0.432243
--1.241630
-0.452732
-0.288913
-1.572603
--0.912562
-0.361473
-1.468041
-
-
-3
-deps
-0.616373
-1.852199e+00
-0.499075
--0.361797
-1.594543
-0.696424
-4.926080
-1.235031
-0.216819
-2.205436
-
-
-4
-MultipleLines
--0.787885
-4.548059e-01
-1.087536
--2.919417
-1.343648
-0.053965
-3.832999
--0.724467
-0.468779
-1.093020
-
-
-5
-OnlineSecurity
--0.766683
-4.645512e-01
-1.299746
--3.314139
-1.780772
-0.036365
-5.934435
--0.589872
-0.555277
-0.848721
-
-
-6
-OnlineBackup
--0.466691
-6.270740e-01
-0.949068
--2.326829
-1.393448
-0.097605
-4.028715
--0.491736
-0.622906
-0.682914
-
-
-7
-DeviceProtection
--0.412620
-6.619136e-01
-1.083731
--2.536694
-1.711453
-0.079128
-5.537002
--0.380741
-0.703396
-0.507591
-
-
-8
-TechSupport
-0.509756
-1.664885e+00
-1.168080
--1.779638
-2.799150
-0.168699
-16.430675
-0.436405
-0.662543
-0.593915
-
-
-9
-PaperlessBilling
-0.349970
-1.419025e+00
-0.408827
--0.451317
-1.151257
-0.636789
-3.162165
-0.856033
-0.391980
-1.351150
-
-
-10
-MonthlyCharges
--0.078399
-9.245958e-01
-0.194463
--0.459539
-0.302742
-0.631574
-1.353566
--0.403154
-0.686835
-0.541965
-
-
-11
-Contract_1
--2.188279
-1.121096e-01
-0.712197
--3.584159
--0.792398
-0.027760
-0.452758
--3.072575
-0.002122
-8.880219
-
-
-12
-Contract_2
--19.940767
-2.186930e-09
-3478.684973
--6838.038027
-6798.156493
-0.000000
-inf
--0.005732
-0.995426
-0.006614
-
-
-13
-Payment_1
--0.865424
-4.208732e-01
-0.615020
--2.070840
-0.339993
-0.126080
-1.404937
--1.407148
-0.159383
-2.649426
-
-
-14
-Payment_2
-0.458363
-1.581483e+00
-0.446978
--0.417697
-1.334423
-0.658562
-3.797805
-1.025472
-0.305141
-1.712453
-
-
-15
-Payment_3
-0.232519
-1.261774e+00
-0.641176
--1.024162
-1.489200
-0.359097
-4.433547
-0.362644
-0.716870
-0.480216
-
-
-
-
-
-
-
-
Running the function remotely
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:56
-completed
-tasks_coxph_test
-v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-
Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.0.0/static/function.html b/functions/development/coxph_test/1.0.0/static/function.html
deleted file mode 100644
index 3bf5e105..00000000
--- a/functions/development/coxph_test/1.0.0/static/function.html
+++ /dev/null
@@ -1,85 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.0.0/static/item.html b/functions/development/coxph_test/1.0.0/static/item.html
deleted file mode 100644
index f507236a..00000000
--- a/functions/development/coxph_test/1.0.0/static/item.html
+++ /dev/null
@@ -1,47 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2021-11-18:12-28
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 0.8.0
-name: coxph-test
-platformVersion: 3.2.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 1.0.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.0.0/static/source.html b/functions/development/coxph_test/1.0.0/static/source.html
deleted file mode 100644
index 6af29faf..00000000
--- a/functions/development/coxph_test/1.0.0/static/source.html
+++ /dev/null
@@ -1,83 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.1.0/src/coxph_test.ipynb b/functions/development/coxph_test/1.1.0/src/coxph_test.ipynb
deleted file mode 100644
index 0ee0b29c..00000000
--- a/functions/development/coxph_test/1.1.0/src/coxph_test.ipynb
+++ /dev/null
@@ -1,969 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# **CoxPH test**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model. \n",
- "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles. \n",
- "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo. \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Running the function locally](#Running-the-function-locally)\n",
- "4. [Running the function remotely](#Running-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n",
- "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "fn = mlrun.import_function(\"hub://coxph_test\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "fn.spec.build.image=\"mlrun/ml-models\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function locally**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:45 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " covariate \n",
- " coef \n",
- " exp(coef) \n",
- " se(coef) \n",
- " coef lower 95% \n",
- " coef upper 95% \n",
- " exp(coef) lower 95% \n",
- " exp(coef) upper 95% \n",
- " z \n",
- " p \n",
- " -log2(p) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " gender \n",
- " 0.712986 \n",
- " 2.040073e+00 \n",
- " 0.343471 \n",
- " 0.039795 \n",
- " 1.386176 \n",
- " 1.040598 \n",
- " 3.999528 \n",
- " 2.075826 \n",
- " 0.037910 \n",
- " 4.721274 \n",
- " \n",
- " \n",
- " 1 \n",
- " senior \n",
- " -0.330137 \n",
- " 7.188252e-01 \n",
- " 0.444705 \n",
- " -1.201743 \n",
- " 0.541468 \n",
- " 0.300670 \n",
- " 1.718528 \n",
- " -0.742374 \n",
- " 0.457861 \n",
- " 1.127018 \n",
- " \n",
- " \n",
- " 2 \n",
- " partner \n",
- " -0.394449 \n",
- " 6.740516e-01 \n",
- " 0.432243 \n",
- " -1.241630 \n",
- " 0.452732 \n",
- " 0.288913 \n",
- " 1.572603 \n",
- " -0.912562 \n",
- " 0.361473 \n",
- " 1.468041 \n",
- " \n",
- " \n",
- " 3 \n",
- " deps \n",
- " 0.616373 \n",
- " 1.852199e+00 \n",
- " 0.499075 \n",
- " -0.361797 \n",
- " 1.594543 \n",
- " 0.696424 \n",
- " 4.926080 \n",
- " 1.235031 \n",
- " 0.216819 \n",
- " 2.205436 \n",
- " \n",
- " \n",
- " 4 \n",
- " MultipleLines \n",
- " -0.787885 \n",
- " 4.548059e-01 \n",
- " 1.087536 \n",
- " -2.919417 \n",
- " 1.343648 \n",
- " 0.053965 \n",
- " 3.832999 \n",
- " -0.724467 \n",
- " 0.468779 \n",
- " 1.093020 \n",
- " \n",
- " \n",
- " 5 \n",
- " OnlineSecurity \n",
- " -0.766683 \n",
- " 4.645512e-01 \n",
- " 1.299746 \n",
- " -3.314139 \n",
- " 1.780772 \n",
- " 0.036365 \n",
- " 5.934435 \n",
- " -0.589872 \n",
- " 0.555277 \n",
- " 0.848721 \n",
- " \n",
- " \n",
- " 6 \n",
- " OnlineBackup \n",
- " -0.466691 \n",
- " 6.270740e-01 \n",
- " 0.949068 \n",
- " -2.326829 \n",
- " 1.393448 \n",
- " 0.097605 \n",
- " 4.028715 \n",
- " -0.491736 \n",
- " 0.622906 \n",
- " 0.682914 \n",
- " \n",
- " \n",
- " 7 \n",
- " DeviceProtection \n",
- " -0.412620 \n",
- " 6.619136e-01 \n",
- " 1.083731 \n",
- " -2.536694 \n",
- " 1.711453 \n",
- " 0.079128 \n",
- " 5.537002 \n",
- " -0.380741 \n",
- " 0.703396 \n",
- " 0.507591 \n",
- " \n",
- " \n",
- " 8 \n",
- " TechSupport \n",
- " 0.509756 \n",
- " 1.664885e+00 \n",
- " 1.168080 \n",
- " -1.779638 \n",
- " 2.799150 \n",
- " 0.168699 \n",
- " 16.430675 \n",
- " 0.436405 \n",
- " 0.662543 \n",
- " 0.593915 \n",
- " \n",
- " \n",
- " 9 \n",
- " PaperlessBilling \n",
- " 0.349970 \n",
- " 1.419025e+00 \n",
- " 0.408827 \n",
- " -0.451317 \n",
- " 1.151257 \n",
- " 0.636789 \n",
- " 3.162165 \n",
- " 0.856033 \n",
- " 0.391980 \n",
- " 1.351150 \n",
- " \n",
- " \n",
- " 10 \n",
- " MonthlyCharges \n",
- " -0.078399 \n",
- " 9.245958e-01 \n",
- " 0.194463 \n",
- " -0.459539 \n",
- " 0.302742 \n",
- " 0.631574 \n",
- " 1.353566 \n",
- " -0.403154 \n",
- " 0.686835 \n",
- " 0.541965 \n",
- " \n",
- " \n",
- " 11 \n",
- " Contract_1 \n",
- " -2.188279 \n",
- " 1.121096e-01 \n",
- " 0.712197 \n",
- " -3.584159 \n",
- " -0.792398 \n",
- " 0.027760 \n",
- " 0.452758 \n",
- " -3.072575 \n",
- " 0.002122 \n",
- " 8.880219 \n",
- " \n",
- " \n",
- " 12 \n",
- " Contract_2 \n",
- " -19.940767 \n",
- " 2.186930e-09 \n",
- " 3478.684973 \n",
- " -6838.038027 \n",
- " 6798.156493 \n",
- " 0.000000 \n",
- " inf \n",
- " -0.005732 \n",
- " 0.995426 \n",
- " 0.006614 \n",
- " \n",
- " \n",
- " 13 \n",
- " Payment_1 \n",
- " -0.865424 \n",
- " 4.208732e-01 \n",
- " 0.615020 \n",
- " -2.070840 \n",
- " 0.339993 \n",
- " 0.126080 \n",
- " 1.404937 \n",
- " -1.407148 \n",
- " 0.159383 \n",
- " 2.649426 \n",
- " \n",
- " \n",
- " 14 \n",
- " Payment_2 \n",
- " 0.458363 \n",
- " 1.581483e+00 \n",
- " 0.446978 \n",
- " -0.417697 \n",
- " 1.334423 \n",
- " 0.658562 \n",
- " 3.797805 \n",
- " 1.025472 \n",
- " 0.305141 \n",
- " 1.712453 \n",
- " \n",
- " \n",
- " 15 \n",
- " Payment_3 \n",
- " 0.232519 \n",
- " 1.261774e+00 \n",
- " 0.641176 \n",
- " -1.024162 \n",
- " 1.489200 \n",
- " 0.359097 \n",
- " 4.433547 \n",
- " 0.362644 \n",
- " 0.716870 \n",
- " 0.480216 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " covariate coef exp(coef) se(coef) coef lower 95% \\\n",
- "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n",
- "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n",
- "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n",
- "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n",
- "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n",
- "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n",
- "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n",
- "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n",
- "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n",
- "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n",
- "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n",
- "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n",
- "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n",
- "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n",
- "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n",
- "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n",
- "\n",
- " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n",
- "0 1.386176 1.040598 3.999528 2.075826 \n",
- "1 0.541468 0.300670 1.718528 -0.742374 \n",
- "2 0.452732 0.288913 1.572603 -0.912562 \n",
- "3 1.594543 0.696424 4.926080 1.235031 \n",
- "4 1.343648 0.053965 3.832999 -0.724467 \n",
- "5 1.780772 0.036365 5.934435 -0.589872 \n",
- "6 1.393448 0.097605 4.028715 -0.491736 \n",
- "7 1.711453 0.079128 5.537002 -0.380741 \n",
- "8 2.799150 0.168699 16.430675 0.436405 \n",
- "9 1.151257 0.636789 3.162165 0.856033 \n",
- "10 0.302742 0.631574 1.353566 -0.403154 \n",
- "11 -0.792398 0.027760 0.452758 -3.072575 \n",
- "12 6798.156493 0.000000 inf -0.005732 \n",
- "13 0.339993 0.126080 1.404937 -1.407148 \n",
- "14 1.334423 0.658562 3.797805 1.025472 \n",
- "15 1.489200 0.359097 4.433547 0.362644 \n",
- "\n",
- " p -log2(p) \n",
- "0 0.037910 4.721274 \n",
- "1 0.457861 1.127018 \n",
- "2 0.361473 1.468041 \n",
- "3 0.216819 2.205436 \n",
- "4 0.468779 1.093020 \n",
- "5 0.555277 0.848721 \n",
- "6 0.622906 0.682914 \n",
- "7 0.703396 0.507591 \n",
- "8 0.662543 0.593915 \n",
- "9 0.391980 1.351150 \n",
- "10 0.686835 0.541965 \n",
- "11 0.002122 8.880219 \n",
- "12 0.995426 0.006614 \n",
- "13 0.159383 2.649426 \n",
- "14 0.305141 1.712453 \n",
- "15 0.716870 0.480216 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "coxph_run.artifact('cox-test-summary').show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n",
- "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n",
- "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n",
- "final state: completed\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:56 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n",
- " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n",
- "\n",
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#CoxPH-test)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/coxph_test/1.1.0/src/coxph_test.py b/functions/development/coxph_test/1.1.0/src/coxph_test.py
deleted file mode 100644
index f635fbdf..00000000
--- a/functions/development/coxph_test/1.1.0/src/coxph_test.py
+++ /dev/null
@@ -1,75 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
diff --git a/functions/development/coxph_test/1.1.0/src/function.yaml b/functions/development/coxph_test/1.1.0/src/function.yaml
deleted file mode 100644
index e09fb90a..00000000
--- a/functions/development/coxph_test/1.1.0/src/function.yaml
+++ /dev/null
@@ -1,63 +0,0 @@
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
diff --git a/functions/development/coxph_test/1.1.0/src/item.yaml b/functions/development/coxph_test/1.1.0/src/item.yaml
deleted file mode 100644
index 241e6d56..00000000
--- a/functions/development/coxph_test/1.1.0/src/item.yaml
+++ /dev/null
@@ -1,26 +0,0 @@
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: coxph-test
-platformVersion: 3.5.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 1.1.0
diff --git a/functions/development/coxph_test/1.1.0/static/coxph_test.html b/functions/development/coxph_test/1.1.0/static/coxph_test.html
deleted file mode 100644
index 5843070e..00000000
--- a/functions/development/coxph_test/1.1.0/static/coxph_test.html
+++ /dev/null
@@ -1,215 +0,0 @@
-
-
-
-
-
-
-
-coxph_test.coxph_test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Source code for coxph_test.coxph_test
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings . simplefilter ( action = "ignore" , category = FutureWarning )
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-[docs] def cox_test (
-
context ,
-
models_path : DataItem ,
-
test_set : DataItem ,
-
label_column : str ,
-
plots_dest : str = "plots" ,
-
model_evaluator = None ,
-
) -> None :
-
"""Test one or more classifier models against held-out dataset
-
-
Using held-out test features, evaluates the peformance of the estimated model
-
-
Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
training/validation cycles
-
-
:param context: the function context
-
:param model_file: model artifact to be tested
-
:param test_set: test features and labels
-
:param label_column: column name for ground truth labels
-
:param score_method: for multiclass classification
-
:param plots_dest: dir for test plots
-
:param model_evaluator: WIP: specific method to generate eval, passed in as string
-
or available in this folder
-
"""
-
xtest = test_set . as_df ()
-
ytest = xtest . pop ( label_column )
-
-
model_file , model_obj , _ = get_model ( models_path . url , suffix = ".pkl" )
-
model_obj = load ( open ( str ( model_file ), "rb" ))
-
-
try :
-
if not model_evaluator :
-
eval_metrics = eval_class_model ( context , xtest , ytest , model_obj )
-
-
model_plots = eval_metrics . pop ( "plots" )
-
model_tables = eval_metrics . pop ( "tables" )
-
for plot in model_plots :
-
context . log_artifact ( plot , local_path = f " { plots_dest } / { plot . key } .html" )
-
for tbl in model_tables :
-
context . log_artifact ( tbl , local_path = f " { plots_dest } / { plot . key } .csv" )
-
-
context . log_results ( eval_metrics )
-
except :
-
context . log_dataset (
-
"cox-test-summary" , df = model_obj . summary , index = True , format = "csv"
-
)
-
context . logger . info ( "cox tester not implemented" )
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.1.0/static/documentation.html b/functions/development/coxph_test/1.1.0/static/documentation.html
deleted file mode 100644
index ebc37397..00000000
--- a/functions/development/coxph_test/1.1.0/static/documentation.html
+++ /dev/null
@@ -1,244 +0,0 @@
-
-
-
-
-
-
-
-coxph_test package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
coxph_test package
-
-
-
-
-
-
-coxph_test package
-
-
-coxph_test.coxph_test module
-
-
-coxph_test.coxph_test. cox_test ( context , models_path : mlrun.datastore.base.DataItem , test_set : mlrun.datastore.base.DataItem , label_column : str , plots_dest : str = 'plots' , model_evaluator = None ) → None [source]
-Test one or more classifier models against held-out dataset
-Using held-out test features, evaluates the peformance of the estimated model
-Can be part of a kubeflow pipeline as a test step that is run post EDA and
-training/validation cycles
-
-Parameters
-
-context – the function context
-model_file – model artifact to be tested
-test_set – test features and labels
-label_column – column name for ground truth labels
-score_method – for multiclass classification
-plots_dest – dir for test plots
-model_evaluator – WIP: specific method to generate eval, passed in as string
-or available in this folder
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.1.0/static/example.html b/functions/development/coxph_test/1.1.0/static/example.html
deleted file mode 100644
index 402b6f32..00000000
--- a/functions/development/coxph_test/1.1.0/static/example.html
+++ /dev/null
@@ -1,1024 +0,0 @@
-
-
-
-
-
-
-
-CoxPH test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-CoxPH test
-This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
function from the function marketplace repository
-
-Steps
-
-Setup function parameters
-Importing the function
-Running the function locally
-Running the function remotely
-
-
-
-
-Setup function parameters
-
-
-
-Importing the function
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-Running the function locally
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:45
-completed
-tasks_coxph_test
-v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
-
-
-
-
-
-
-covariate
-coef
-exp(coef)
-se(coef)
-coef lower 95%
-coef upper 95%
-exp(coef) lower 95%
-exp(coef) upper 95%
-z
-p
--log2(p)
-
-
-
-
-0
-gender
-0.712986
-2.040073e+00
-0.343471
-0.039795
-1.386176
-1.040598
-3.999528
-2.075826
-0.037910
-4.721274
-
-
-1
-senior
--0.330137
-7.188252e-01
-0.444705
--1.201743
-0.541468
-0.300670
-1.718528
--0.742374
-0.457861
-1.127018
-
-
-2
-partner
--0.394449
-6.740516e-01
-0.432243
--1.241630
-0.452732
-0.288913
-1.572603
--0.912562
-0.361473
-1.468041
-
-
-3
-deps
-0.616373
-1.852199e+00
-0.499075
--0.361797
-1.594543
-0.696424
-4.926080
-1.235031
-0.216819
-2.205436
-
-
-4
-MultipleLines
--0.787885
-4.548059e-01
-1.087536
--2.919417
-1.343648
-0.053965
-3.832999
--0.724467
-0.468779
-1.093020
-
-
-5
-OnlineSecurity
--0.766683
-4.645512e-01
-1.299746
--3.314139
-1.780772
-0.036365
-5.934435
--0.589872
-0.555277
-0.848721
-
-
-6
-OnlineBackup
--0.466691
-6.270740e-01
-0.949068
--2.326829
-1.393448
-0.097605
-4.028715
--0.491736
-0.622906
-0.682914
-
-
-7
-DeviceProtection
--0.412620
-6.619136e-01
-1.083731
--2.536694
-1.711453
-0.079128
-5.537002
--0.380741
-0.703396
-0.507591
-
-
-8
-TechSupport
-0.509756
-1.664885e+00
-1.168080
--1.779638
-2.799150
-0.168699
-16.430675
-0.436405
-0.662543
-0.593915
-
-
-9
-PaperlessBilling
-0.349970
-1.419025e+00
-0.408827
--0.451317
-1.151257
-0.636789
-3.162165
-0.856033
-0.391980
-1.351150
-
-
-10
-MonthlyCharges
--0.078399
-9.245958e-01
-0.194463
--0.459539
-0.302742
-0.631574
-1.353566
--0.403154
-0.686835
-0.541965
-
-
-11
-Contract_1
--2.188279
-1.121096e-01
-0.712197
--3.584159
--0.792398
-0.027760
-0.452758
--3.072575
-0.002122
-8.880219
-
-
-12
-Contract_2
--19.940767
-2.186930e-09
-3478.684973
--6838.038027
-6798.156493
-0.000000
-inf
--0.005732
-0.995426
-0.006614
-
-
-13
-Payment_1
--0.865424
-4.208732e-01
-0.615020
--2.070840
-0.339993
-0.126080
-1.404937
--1.407148
-0.159383
-2.649426
-
-
-14
-Payment_2
-0.458363
-1.581483e+00
-0.446978
--0.417697
-1.334423
-0.658562
-3.797805
-1.025472
-0.305141
-1.712453
-
-
-15
-Payment_3
-0.232519
-1.261774e+00
-0.641176
--1.024162
-1.489200
-0.359097
-4.433547
-0.362644
-0.716870
-0.480216
-
-
-
-
-
-
-
-Running the function remotely
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:56
-completed
-tasks_coxph_test
-v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.1.0/static/function.html b/functions/development/coxph_test/1.1.0/static/function.html
deleted file mode 100644
index 3bf5e105..00000000
--- a/functions/development/coxph_test/1.1.0/static/function.html
+++ /dev/null
@@ -1,85 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.1.0/static/item.html b/functions/development/coxph_test/1.1.0/static/item.html
deleted file mode 100644
index a5c53b4e..00000000
--- a/functions/development/coxph_test/1.1.0/static/item.html
+++ /dev/null
@@ -1,48 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: coxph-test
-platformVersion: 3.5.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 1.1.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/1.1.0/static/source.html b/functions/development/coxph_test/1.1.0/static/source.html
deleted file mode 100644
index 7fc415f5..00000000
--- a/functions/development/coxph_test/1.1.0/static/source.html
+++ /dev/null
@@ -1,97 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/latest/src/coxph_test.ipynb b/functions/development/coxph_test/latest/src/coxph_test.ipynb
deleted file mode 100644
index 0ee0b29c..00000000
--- a/functions/development/coxph_test/latest/src/coxph_test.ipynb
+++ /dev/null
@@ -1,969 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# **CoxPH test**"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model. \n",
- "Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles. \n",
- "This function is part of the [customer-churn-prediction](https://github.com/mlrun/demos/tree/master/customer-churn-prediction) demo. \n",
- "To see how the model is trained or how the data-set is generated, check out `coxph_trainer` function from the function marketplace repository"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Steps**\n",
- "1. [Setup function parameters](#Setup-function-parameters)\n",
- "2. [Importing the function](#Importing-the-function)\n",
- "3. [Running the function locally](#Running-the-function-locally)\n",
- "4. [Running the function remotely](#Running-the-function-remotely)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "import warnings\n",
- "warnings.filterwarnings(\"ignore\")"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Setup function parameters**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "test_set = \"https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_test/test_set.csv\"\n",
- "models_path = \"https://s3.wasabisys.com/iguazio/models/function-marketplace-models/coxph_test/cx-model.pkl\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Importing the function**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB\n"
- ]
- }
- ],
- "source": [
- "import mlrun\n",
- "mlrun.set_environment(project='function-marketplace')\n",
- "\n",
- "fn = mlrun.import_function(\"hub://coxph_test\")\n",
- "fn.apply(mlrun.auto_mount())\n",
- "\n",
- "fn.spec.build.image=\"mlrun/ml-models\""
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function locally**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,428 [info] cox tester not implemented\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:45 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,497 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=True)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " covariate \n",
- " coef \n",
- " exp(coef) \n",
- " se(coef) \n",
- " coef lower 95% \n",
- " coef upper 95% \n",
- " exp(coef) lower 95% \n",
- " exp(coef) upper 95% \n",
- " z \n",
- " p \n",
- " -log2(p) \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " gender \n",
- " 0.712986 \n",
- " 2.040073e+00 \n",
- " 0.343471 \n",
- " 0.039795 \n",
- " 1.386176 \n",
- " 1.040598 \n",
- " 3.999528 \n",
- " 2.075826 \n",
- " 0.037910 \n",
- " 4.721274 \n",
- " \n",
- " \n",
- " 1 \n",
- " senior \n",
- " -0.330137 \n",
- " 7.188252e-01 \n",
- " 0.444705 \n",
- " -1.201743 \n",
- " 0.541468 \n",
- " 0.300670 \n",
- " 1.718528 \n",
- " -0.742374 \n",
- " 0.457861 \n",
- " 1.127018 \n",
- " \n",
- " \n",
- " 2 \n",
- " partner \n",
- " -0.394449 \n",
- " 6.740516e-01 \n",
- " 0.432243 \n",
- " -1.241630 \n",
- " 0.452732 \n",
- " 0.288913 \n",
- " 1.572603 \n",
- " -0.912562 \n",
- " 0.361473 \n",
- " 1.468041 \n",
- " \n",
- " \n",
- " 3 \n",
- " deps \n",
- " 0.616373 \n",
- " 1.852199e+00 \n",
- " 0.499075 \n",
- " -0.361797 \n",
- " 1.594543 \n",
- " 0.696424 \n",
- " 4.926080 \n",
- " 1.235031 \n",
- " 0.216819 \n",
- " 2.205436 \n",
- " \n",
- " \n",
- " 4 \n",
- " MultipleLines \n",
- " -0.787885 \n",
- " 4.548059e-01 \n",
- " 1.087536 \n",
- " -2.919417 \n",
- " 1.343648 \n",
- " 0.053965 \n",
- " 3.832999 \n",
- " -0.724467 \n",
- " 0.468779 \n",
- " 1.093020 \n",
- " \n",
- " \n",
- " 5 \n",
- " OnlineSecurity \n",
- " -0.766683 \n",
- " 4.645512e-01 \n",
- " 1.299746 \n",
- " -3.314139 \n",
- " 1.780772 \n",
- " 0.036365 \n",
- " 5.934435 \n",
- " -0.589872 \n",
- " 0.555277 \n",
- " 0.848721 \n",
- " \n",
- " \n",
- " 6 \n",
- " OnlineBackup \n",
- " -0.466691 \n",
- " 6.270740e-01 \n",
- " 0.949068 \n",
- " -2.326829 \n",
- " 1.393448 \n",
- " 0.097605 \n",
- " 4.028715 \n",
- " -0.491736 \n",
- " 0.622906 \n",
- " 0.682914 \n",
- " \n",
- " \n",
- " 7 \n",
- " DeviceProtection \n",
- " -0.412620 \n",
- " 6.619136e-01 \n",
- " 1.083731 \n",
- " -2.536694 \n",
- " 1.711453 \n",
- " 0.079128 \n",
- " 5.537002 \n",
- " -0.380741 \n",
- " 0.703396 \n",
- " 0.507591 \n",
- " \n",
- " \n",
- " 8 \n",
- " TechSupport \n",
- " 0.509756 \n",
- " 1.664885e+00 \n",
- " 1.168080 \n",
- " -1.779638 \n",
- " 2.799150 \n",
- " 0.168699 \n",
- " 16.430675 \n",
- " 0.436405 \n",
- " 0.662543 \n",
- " 0.593915 \n",
- " \n",
- " \n",
- " 9 \n",
- " PaperlessBilling \n",
- " 0.349970 \n",
- " 1.419025e+00 \n",
- " 0.408827 \n",
- " -0.451317 \n",
- " 1.151257 \n",
- " 0.636789 \n",
- " 3.162165 \n",
- " 0.856033 \n",
- " 0.391980 \n",
- " 1.351150 \n",
- " \n",
- " \n",
- " 10 \n",
- " MonthlyCharges \n",
- " -0.078399 \n",
- " 9.245958e-01 \n",
- " 0.194463 \n",
- " -0.459539 \n",
- " 0.302742 \n",
- " 0.631574 \n",
- " 1.353566 \n",
- " -0.403154 \n",
- " 0.686835 \n",
- " 0.541965 \n",
- " \n",
- " \n",
- " 11 \n",
- " Contract_1 \n",
- " -2.188279 \n",
- " 1.121096e-01 \n",
- " 0.712197 \n",
- " -3.584159 \n",
- " -0.792398 \n",
- " 0.027760 \n",
- " 0.452758 \n",
- " -3.072575 \n",
- " 0.002122 \n",
- " 8.880219 \n",
- " \n",
- " \n",
- " 12 \n",
- " Contract_2 \n",
- " -19.940767 \n",
- " 2.186930e-09 \n",
- " 3478.684973 \n",
- " -6838.038027 \n",
- " 6798.156493 \n",
- " 0.000000 \n",
- " inf \n",
- " -0.005732 \n",
- " 0.995426 \n",
- " 0.006614 \n",
- " \n",
- " \n",
- " 13 \n",
- " Payment_1 \n",
- " -0.865424 \n",
- " 4.208732e-01 \n",
- " 0.615020 \n",
- " -2.070840 \n",
- " 0.339993 \n",
- " 0.126080 \n",
- " 1.404937 \n",
- " -1.407148 \n",
- " 0.159383 \n",
- " 2.649426 \n",
- " \n",
- " \n",
- " 14 \n",
- " Payment_2 \n",
- " 0.458363 \n",
- " 1.581483e+00 \n",
- " 0.446978 \n",
- " -0.417697 \n",
- " 1.334423 \n",
- " 0.658562 \n",
- " 3.797805 \n",
- " 1.025472 \n",
- " 0.305141 \n",
- " 1.712453 \n",
- " \n",
- " \n",
- " 15 \n",
- " Payment_3 \n",
- " 0.232519 \n",
- " 1.261774e+00 \n",
- " 0.641176 \n",
- " -1.024162 \n",
- " 1.489200 \n",
- " 0.359097 \n",
- " 4.433547 \n",
- " 0.362644 \n",
- " 0.716870 \n",
- " 0.480216 \n",
- " \n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " covariate coef exp(coef) se(coef) coef lower 95% \\\n",
- "0 gender 0.712986 2.040073e+00 0.343471 0.039795 \n",
- "1 senior -0.330137 7.188252e-01 0.444705 -1.201743 \n",
- "2 partner -0.394449 6.740516e-01 0.432243 -1.241630 \n",
- "3 deps 0.616373 1.852199e+00 0.499075 -0.361797 \n",
- "4 MultipleLines -0.787885 4.548059e-01 1.087536 -2.919417 \n",
- "5 OnlineSecurity -0.766683 4.645512e-01 1.299746 -3.314139 \n",
- "6 OnlineBackup -0.466691 6.270740e-01 0.949068 -2.326829 \n",
- "7 DeviceProtection -0.412620 6.619136e-01 1.083731 -2.536694 \n",
- "8 TechSupport 0.509756 1.664885e+00 1.168080 -1.779638 \n",
- "9 PaperlessBilling 0.349970 1.419025e+00 0.408827 -0.451317 \n",
- "10 MonthlyCharges -0.078399 9.245958e-01 0.194463 -0.459539 \n",
- "11 Contract_1 -2.188279 1.121096e-01 0.712197 -3.584159 \n",
- "12 Contract_2 -19.940767 2.186930e-09 3478.684973 -6838.038027 \n",
- "13 Payment_1 -0.865424 4.208732e-01 0.615020 -2.070840 \n",
- "14 Payment_2 0.458363 1.581483e+00 0.446978 -0.417697 \n",
- "15 Payment_3 0.232519 1.261774e+00 0.641176 -1.024162 \n",
- "\n",
- " coef upper 95% exp(coef) lower 95% exp(coef) upper 95% z \\\n",
- "0 1.386176 1.040598 3.999528 2.075826 \n",
- "1 0.541468 0.300670 1.718528 -0.742374 \n",
- "2 0.452732 0.288913 1.572603 -0.912562 \n",
- "3 1.594543 0.696424 4.926080 1.235031 \n",
- "4 1.343648 0.053965 3.832999 -0.724467 \n",
- "5 1.780772 0.036365 5.934435 -0.589872 \n",
- "6 1.393448 0.097605 4.028715 -0.491736 \n",
- "7 1.711453 0.079128 5.537002 -0.380741 \n",
- "8 2.799150 0.168699 16.430675 0.436405 \n",
- "9 1.151257 0.636789 3.162165 0.856033 \n",
- "10 0.302742 0.631574 1.353566 -0.403154 \n",
- "11 -0.792398 0.027760 0.452758 -3.072575 \n",
- "12 6798.156493 0.000000 inf -0.005732 \n",
- "13 0.339993 0.126080 1.404937 -1.407148 \n",
- "14 1.334423 0.658562 3.797805 1.025472 \n",
- "15 1.489200 0.359097 4.433547 0.362644 \n",
- "\n",
- " p -log2(p) \n",
- "0 0.037910 4.721274 \n",
- "1 0.457861 1.127018 \n",
- "2 0.361473 1.468041 \n",
- "3 0.216819 2.205436 \n",
- "4 0.468779 1.093020 \n",
- "5 0.555277 0.848721 \n",
- "6 0.622906 0.682914 \n",
- "7 0.703396 0.507591 \n",
- "8 0.662543 0.593915 \n",
- "9 0.391980 1.351150 \n",
- "10 0.686835 0.541965 \n",
- "11 0.002122 8.880219 \n",
- "12 0.995426 0.006614 \n",
- "13 0.159383 2.649426 \n",
- "14 0.305141 1.712453 \n",
- "15 0.716870 0.480216 "
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "coxph_run.artifact('cox-test-summary').show()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "### **Running the function remotely**"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080\n",
- "> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b\n",
- "> 2021-10-17 13:38:59,015 [info] cox tester not implemented\n",
- "> 2021-10-17 13:38:59,049 [info] run executed, status=completed\n",
- "final state: completed\n"
- ]
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " project \n",
- " uid \n",
- " iter \n",
- " start \n",
- " state \n",
- " name \n",
- " labels \n",
- " inputs \n",
- " parameters \n",
- " results \n",
- " artifacts \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " function-marketplace \n",
- " \n",
- " 0 \n",
- " Oct 17 13:38:56 \n",
- " completed \n",
- " tasks_coxph_test \n",
- " v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
\n",
- " test_set
models_path
\n",
- " label_column=labels
plots_dest=plots/xgb_test
\n",
- " \n",
- " cox-test-summary
\n",
- " \n",
- " \n",
- "
\n",
- "
\n",
- "
\n",
- " \n",
- " \n",
- "
\n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n"
- ]
- },
- {
- "data": {
- "text/html": [
- " > to track results use the .show() or .logs() methods or click here to open in UI "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "> 2021-10-17 13:39:08,990 [info] run executed, status=completed\n"
- ]
- }
- ],
- "source": [
- "fn.deploy(with_mlrun=False, # mlrun is included in our image (mlrun/ml-models) therefore no mlrun installation is needed.\n",
- " skip_deployed=True) # because no new packages or upgrade is required, we can use the original image and not build another one.\n",
- "\n",
- "coxph_run = fn.run(name='tasks_coxph_test',\n",
- " params = {\"label_column\" : \"labels\",\n",
- " \"plots_dest\" : \"plots/xgb_test\"},\n",
- " inputs = {\"test_set\" : test_set,\n",
- " \"models_path\" : models_path},\n",
- " local=False)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "[Back to the top](#CoxPH-test)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.6"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/functions/development/coxph_test/latest/src/coxph_test.py b/functions/development/coxph_test/latest/src/coxph_test.py
deleted file mode 100644
index f635fbdf..00000000
--- a/functions/development/coxph_test/latest/src/coxph_test.py
+++ /dev/null
@@ -1,75 +0,0 @@
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
diff --git a/functions/development/coxph_test/latest/src/function.yaml b/functions/development/coxph_test/latest/src/function.yaml
deleted file mode 100644
index e09fb90a..00000000
--- a/functions/development/coxph_test/latest/src/function.yaml
+++ /dev/null
@@ -1,63 +0,0 @@
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
diff --git a/functions/development/coxph_test/latest/src/item.yaml b/functions/development/coxph_test/latest/src/item.yaml
deleted file mode 100644
index 241e6d56..00000000
--- a/functions/development/coxph_test/latest/src/item.yaml
+++ /dev/null
@@ -1,26 +0,0 @@
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: coxph-test
-platformVersion: 3.5.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 1.1.0
diff --git a/functions/development/coxph_test/latest/static/coxph_test.html b/functions/development/coxph_test/latest/static/coxph_test.html
deleted file mode 100644
index 5843070e..00000000
--- a/functions/development/coxph_test/latest/static/coxph_test.html
+++ /dev/null
@@ -1,215 +0,0 @@
-
-
-
-
-
-
-
-coxph_test.coxph_test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Source code for coxph_test.coxph_test
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings . simplefilter ( action = "ignore" , category = FutureWarning )
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-[docs] def cox_test (
-
context ,
-
models_path : DataItem ,
-
test_set : DataItem ,
-
label_column : str ,
-
plots_dest : str = "plots" ,
-
model_evaluator = None ,
-
) -> None :
-
"""Test one or more classifier models against held-out dataset
-
-
Using held-out test features, evaluates the peformance of the estimated model
-
-
Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
training/validation cycles
-
-
:param context: the function context
-
:param model_file: model artifact to be tested
-
:param test_set: test features and labels
-
:param label_column: column name for ground truth labels
-
:param score_method: for multiclass classification
-
:param plots_dest: dir for test plots
-
:param model_evaluator: WIP: specific method to generate eval, passed in as string
-
or available in this folder
-
"""
-
xtest = test_set . as_df ()
-
ytest = xtest . pop ( label_column )
-
-
model_file , model_obj , _ = get_model ( models_path . url , suffix = ".pkl" )
-
model_obj = load ( open ( str ( model_file ), "rb" ))
-
-
try :
-
if not model_evaluator :
-
eval_metrics = eval_class_model ( context , xtest , ytest , model_obj )
-
-
model_plots = eval_metrics . pop ( "plots" )
-
model_tables = eval_metrics . pop ( "tables" )
-
for plot in model_plots :
-
context . log_artifact ( plot , local_path = f " { plots_dest } / { plot . key } .html" )
-
for tbl in model_tables :
-
context . log_artifact ( tbl , local_path = f " { plots_dest } / { plot . key } .csv" )
-
-
context . log_results ( eval_metrics )
-
except :
-
context . log_dataset (
-
"cox-test-summary" , df = model_obj . summary , index = True , format = "csv"
-
)
-
context . logger . info ( "cox tester not implemented" )
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/latest/static/documentation.html b/functions/development/coxph_test/latest/static/documentation.html
deleted file mode 100644
index ebc37397..00000000
--- a/functions/development/coxph_test/latest/static/documentation.html
+++ /dev/null
@@ -1,244 +0,0 @@
-
-
-
-
-
-
-
-coxph_test package
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
coxph_test package
-
-
-
-
-
-
-coxph_test package
-
-
-coxph_test.coxph_test module
-
-
-coxph_test.coxph_test. cox_test ( context , models_path : mlrun.datastore.base.DataItem , test_set : mlrun.datastore.base.DataItem , label_column : str , plots_dest : str = 'plots' , model_evaluator = None ) → None [source]
-Test one or more classifier models against held-out dataset
-Using held-out test features, evaluates the peformance of the estimated model
-Can be part of a kubeflow pipeline as a test step that is run post EDA and
-training/validation cycles
-
-Parameters
-
-context – the function context
-model_file – model artifact to be tested
-test_set – test features and labels
-label_column – column name for ground truth labels
-score_method – for multiclass classification
-plots_dest – dir for test plots
-model_evaluator – WIP: specific method to generate eval, passed in as string
-or available in this folder
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/latest/static/example.html b/functions/development/coxph_test/latest/static/example.html
deleted file mode 100644
index 402b6f32..00000000
--- a/functions/development/coxph_test/latest/static/example.html
+++ /dev/null
@@ -1,1024 +0,0 @@
-
-
-
-
-
-
-
-CoxPH test
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Toggle navigation sidebar
-
-
-
-
-Toggle in-page Table of Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-CoxPH test
-This function handles evaluating Cox proportional hazards model performance, test one or more classifier models against held-out dataset Using held-out test features, and evaluates the peformance of the estimated model.
-Can be part of a kubeflow pipeline as a test step that is run post EDA and training/validation cycles.
-This function is part of the customer-churn-prediction demo.
-To see how the model is trained or how the data-set is generated, check out coxph_trainer
function from the function marketplace repository
-
-Steps
-
-Setup function parameters
-Importing the function
-Running the function locally
-Running the function remotely
-
-
-
-
-Setup function parameters
-
-
-
-Importing the function
-
-
-
-
> 2021-10-17 13:38:44,758 [info] loaded project function-marketplace from MLRun DB
-
-
-
-
-
-
-Running the function locally
-
-
-
-
> 2021-10-17 13:38:45,149 [info] starting run tasks_coxph_test uid=be4bd195e5c146a69ecdee3b6a631569 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,428 [info] cox tester not implemented
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:45
-completed
-tasks_coxph_test
-v3io_user=dani
kind=
owner=dani
host=jupyter-dani-6bfbd76d96-zxx6f
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:38:49,497 [info] run executed, status=completed
-
-
-
-
-
-
-
-
-
-
-
-
-
-covariate
-coef
-exp(coef)
-se(coef)
-coef lower 95%
-coef upper 95%
-exp(coef) lower 95%
-exp(coef) upper 95%
-z
-p
--log2(p)
-
-
-
-
-0
-gender
-0.712986
-2.040073e+00
-0.343471
-0.039795
-1.386176
-1.040598
-3.999528
-2.075826
-0.037910
-4.721274
-
-
-1
-senior
--0.330137
-7.188252e-01
-0.444705
--1.201743
-0.541468
-0.300670
-1.718528
--0.742374
-0.457861
-1.127018
-
-
-2
-partner
--0.394449
-6.740516e-01
-0.432243
--1.241630
-0.452732
-0.288913
-1.572603
--0.912562
-0.361473
-1.468041
-
-
-3
-deps
-0.616373
-1.852199e+00
-0.499075
--0.361797
-1.594543
-0.696424
-4.926080
-1.235031
-0.216819
-2.205436
-
-
-4
-MultipleLines
--0.787885
-4.548059e-01
-1.087536
--2.919417
-1.343648
-0.053965
-3.832999
--0.724467
-0.468779
-1.093020
-
-
-5
-OnlineSecurity
--0.766683
-4.645512e-01
-1.299746
--3.314139
-1.780772
-0.036365
-5.934435
--0.589872
-0.555277
-0.848721
-
-
-6
-OnlineBackup
--0.466691
-6.270740e-01
-0.949068
--2.326829
-1.393448
-0.097605
-4.028715
--0.491736
-0.622906
-0.682914
-
-
-7
-DeviceProtection
--0.412620
-6.619136e-01
-1.083731
--2.536694
-1.711453
-0.079128
-5.537002
--0.380741
-0.703396
-0.507591
-
-
-8
-TechSupport
-0.509756
-1.664885e+00
-1.168080
--1.779638
-2.799150
-0.168699
-16.430675
-0.436405
-0.662543
-0.593915
-
-
-9
-PaperlessBilling
-0.349970
-1.419025e+00
-0.408827
--0.451317
-1.151257
-0.636789
-3.162165
-0.856033
-0.391980
-1.351150
-
-
-10
-MonthlyCharges
--0.078399
-9.245958e-01
-0.194463
--0.459539
-0.302742
-0.631574
-1.353566
--0.403154
-0.686835
-0.541965
-
-
-11
-Contract_1
--2.188279
-1.121096e-01
-0.712197
--3.584159
--0.792398
-0.027760
-0.452758
--3.072575
-0.002122
-8.880219
-
-
-12
-Contract_2
--19.940767
-2.186930e-09
-3478.684973
--6838.038027
-6798.156493
-0.000000
-inf
--0.005732
-0.995426
-0.006614
-
-
-13
-Payment_1
--0.865424
-4.208732e-01
-0.615020
--2.070840
-0.339993
-0.126080
-1.404937
--1.407148
-0.159383
-2.649426
-
-
-14
-Payment_2
-0.458363
-1.581483e+00
-0.446978
--0.417697
-1.334423
-0.658562
-3.797805
-1.025472
-0.305141
-1.712453
-
-
-15
-Payment_3
-0.232519
-1.261774e+00
-0.641176
--1.024162
-1.489200
-0.359097
-4.433547
-0.362644
-0.716870
-0.480216
-
-
-
-
-
-
-
-Running the function remotely
-
-
-
-
> 2021-10-17 13:38:49,644 [info] starting run tasks_coxph_test uid=c28d05f0261b4c60956eee528bf68e96 DB=http://mlrun-api:8080
-> 2021-10-17 13:38:49,776 [info] Job is running in the background, pod: tasks-coxph-test-hfj9b
-> 2021-10-17 13:38:59,015 [info] cox tester not implemented
-> 2021-10-17 13:38:59,049 [info] run executed, status=completed
-final state: completed
-
-
-
-
-
-
-
-
-
-project
-uid
-iter
-start
-state
-name
-labels
-inputs
-parameters
-results
-artifacts
-
-
-
-
-function-marketplace
-
-0
-Oct 17 13:38:56
-completed
-tasks_coxph_test
-v3io_user=dani
kind=job
owner=dani
host=tasks-coxph-test-hfj9b
-test_set
models_path
-label_column=labels
plots_dest=plots/xgb_test
-
-cox-test-summary
-
-
-
-
-
-
-
-
-
-
-
> to track results use the .show() or .logs() methods or click here to open in UI > 2021-10-17 13:39:08,990 [info] run executed, status=completed
-
-
-
-
-Back to the top
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/latest/static/function.html b/functions/development/coxph_test/latest/static/function.html
deleted file mode 100644
index 3bf5e105..00000000
--- a/functions/development/coxph_test/latest/static/function.html
+++ /dev/null
@@ -1,85 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-kind: job
-metadata:
- name: coxph-test
- tag: ''
- hash: 1edbfe55668a7dcfaa59a6aeb5b3b1bd3f594aab
- project: ''
- labels:
- author: Iguazio
- framework: survival
- categories:
- - machine-learning
- - model-testing
-spec:
- command: ''
- args: []
- image: mlrun/ml-models
- env: []
- default_handler: cox_test
- entry_points:
- cox_test:
- name: cox_test
- doc: 'Test one or more classifier models against held-out dataset
-
-
- Using held-out test features, evaluates the peformance of the estimated model
-
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
-
- training/validation cycles'
- parameters:
- - name: context
- doc: the function context
- default: ''
- - name: models_path
- type: DataItem
- default: ''
- - name: test_set
- type: DataItem
- doc: test features and labels
- default: ''
- - name: label_column
- type: str
- doc: column name for ground truth labels
- default: ''
- - name: plots_dest
- type: str
- doc: dir for test plots
- default: plots
- - name: model_evaluator
- doc: 'WIP: specific method to generate eval, passed in as string or available
- in this folder'
- default: null
- outputs:
- - default: ''
- lineno: 15
- description: Test cox proportional hazards model
- build:
- functionSourceCode: IyBHZW5lcmF0ZWQgYnkgbnVjbGlvLmV4cG9ydC5OdWNsaW9FeHBvcnRlcgoKaW1wb3J0IHdhcm5pbmdzCgp3YXJuaW5ncy5zaW1wbGVmaWx0ZXIoYWN0aW9uPSJpZ25vcmUiLCBjYXRlZ29yeT1GdXR1cmVXYXJuaW5nKQoKaW1wb3J0IG9zCmltcG9ydCBwYW5kYXMgYXMgcGQKZnJvbSBtbHJ1bi5kYXRhc3RvcmUgaW1wb3J0IERhdGFJdGVtCmZyb20gbWxydW4uYXJ0aWZhY3RzIGltcG9ydCBnZXRfbW9kZWwKZnJvbSBjbG91ZHBpY2tsZSBpbXBvcnQgbG9hZApmcm9tIG1scnVuLm1sdXRpbHMubW9kZWxzIGltcG9ydCBldmFsX2NsYXNzX21vZGVsCgoKZGVmIGNveF90ZXN0KAogICAgY29udGV4dCwKICAgIG1vZGVsc19wYXRoOiBEYXRhSXRlbSwKICAgIHRlc3Rfc2V0OiBEYXRhSXRlbSwKICAgIGxhYmVsX2NvbHVtbjogc3RyLAogICAgcGxvdHNfZGVzdDogc3RyID0gInBsb3RzIiwKICAgIG1vZGVsX2V2YWx1YXRvcj1Ob25lLAopIC0+IE5vbmU6CiAgICAiIiJUZXN0IG9uZSBvciBtb3JlIGNsYXNzaWZpZXIgbW9kZWxzIGFnYWluc3QgaGVsZC1vdXQgZGF0YXNldAoKICAgIFVzaW5nIGhlbGQtb3V0IHRlc3QgZmVhdHVyZXMsIGV2YWx1YXRlcyB0aGUgcGVmb3JtYW5jZSBvZiB0aGUgZXN0aW1hdGVkIG1vZGVsCgogICAgQ2FuIGJlIHBhcnQgb2YgYSBrdWJlZmxvdyBwaXBlbGluZSBhcyBhIHRlc3Qgc3RlcCB0aGF0IGlzIHJ1biBwb3N0IEVEQSBhbmQKICAgIHRyYWluaW5nL3ZhbGlkYXRpb24gY3ljbGVzCgogICAgOnBhcmFtIGNvbnRleHQ6ICAgICAgICAgdGhlIGZ1bmN0aW9uIGNvbnRleHQKICAgIDpwYXJhbSBtb2RlbF9maWxlOiAgICAgIG1vZGVsIGFydGlmYWN0IHRvIGJlIHRlc3RlZAogICAgOnBhcmFtIHRlc3Rfc2V0OiAgICAgICAgdGVzdCBmZWF0dXJlcyBhbmQgbGFiZWxzCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uOiAgICBjb2x1bW4gbmFtZSBmb3IgZ3JvdW5kIHRydXRoIGxhYmVscwogICAgOnBhcmFtIHNjb3JlX21ldGhvZDogICAgZm9yIG11bHRpY2xhc3MgY2xhc3NpZmljYXRpb24KICAgIDpwYXJhbSBwbG90c19kZXN0OiAgICAgIGRpciBmb3IgdGVzdCBwbG90cwogICAgOnBhcmFtIG1vZGVsX2V2YWx1YXRvcjogV0lQOiBzcGVjaWZpYyBtZXRob2QgdG8gZ2VuZXJhdGUgZXZhbCwgcGFzc2VkIGluIGFzIHN0cmluZwogICAgICAgICAgICAgICAgICAgICAgICAgICAgb3IgYXZhaWxhYmxlIGluIHRoaXMgZm9sZGVyCiAgICAiIiIKICAgIHh0ZXN0ID0gdGVzdF9zZXQuYXNfZGYoKQogICAgeXRlc3QgPSB4dGVzdC5wb3AobGFiZWxfY29sdW1uKQoKICAgIG1vZGVsX2ZpbGUsIG1vZGVsX29iaiwgXyA9IGdldF9tb2RlbChtb2RlbHNfcGF0aC51cmwsIHN1ZmZpeD0iLnBrbCIpCiAgICBtb2RlbF9vYmogPSBsb2FkKG9wZW4oc3RyKG1vZGVsX2ZpbGUpLCAicmIiKSkKCiAgICB0cnk6CiAgICAgICAgaWYgbm90IG1vZGVsX2V2YWx1YXRvcjoKICAgICAgICAgICAgZXZhbF9tZXRyaWNzID0gZXZhbF9jbGFzc19tb2RlbChjb250ZXh0LCB4dGVzdCwgeXRlc3QsIG1vZGVsX29iaikKCiAgICAgICAgbW9kZWxfcGxvdHMgPSBldmFsX21ldHJpY3MucG9wKCJwbG90cyIpCiAgICAgICAgbW9kZWxfdGFibGVzID0gZXZhbF9tZXRyaWNzLnBvcCgidGFibGVzIikKICAgICAgICBmb3IgcGxvdCBpbiBtb2RlbF9wbG90czoKICAgICAgICAgICAgY29udGV4dC5sb2dfYXJ0aWZhY3QocGxvdCwgbG9jYWxfcGF0aD1mIntwbG90c19kZXN0fS97cGxvdC5rZXl9Lmh0bWwiKQogICAgICAgIGZvciB0YmwgaW4gbW9kZWxfdGFibGVzOgogICAgICAgICAgICBjb250ZXh0LmxvZ19hcnRpZmFjdCh0YmwsIGxvY2FsX3BhdGg9ZiJ7cGxvdHNfZGVzdH0ve3Bsb3Qua2V5fS5jc3YiKQoKICAgICAgICBjb250ZXh0LmxvZ19yZXN1bHRzKGV2YWxfbWV0cmljcykKICAgIGV4Y2VwdDoKICAgICAgICBjb250ZXh0LmxvZ19kYXRhc2V0KAogICAgICAgICAgICAiY294LXRlc3Qtc3VtbWFyeSIsIGRmPW1vZGVsX29iai5zdW1tYXJ5LCBpbmRleD1UcnVlLCBmb3JtYXQ9ImNzdiIKICAgICAgICApCiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiY294IHRlc3RlciBub3QgaW1wbGVtZW50ZWQiKQo=
- commands: []
- code_origin: https://github.com/daniels290813/functions.git#55a79c32be5d233cc11efcf40cd3edbe309bfdef:/home/kali/functions/coxph_test/coxph_test.py
- affinity: null
-verbose: false
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/latest/static/item.html b/functions/development/coxph_test/latest/static/item.html
deleted file mode 100644
index a5c53b4e..00000000
--- a/functions/development/coxph_test/latest/static/item.html
+++ /dev/null
@@ -1,48 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-apiVersion: v1
-categories:
-- machine-learning
-- model-testing
-description: Test cox proportional hazards model
-doc: ''
-example: coxph_test.ipynb
-generationDate: 2022-08-28:17-25
-hidden: false
-icon: ''
-labels:
- author: Iguazio
- framework: survival
-maintainers: []
-marketplaceType: ''
-mlrunVersion: 1.1.0
-name: coxph-test
-platformVersion: 3.5.0
-spec:
- filename: coxph_test.py
- handler: cox_test
- image: mlrun/ml-models
- kind: job
- requirements: []
-url: ''
-version: 1.1.0
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/coxph_test/latest/static/source.html b/functions/development/coxph_test/latest/static/source.html
deleted file mode 100644
index 7fc415f5..00000000
--- a/functions/development/coxph_test/latest/static/source.html
+++ /dev/null
@@ -1,97 +0,0 @@
-
-
-
-
-
-
-
-
-
-
- Source
-
-
-
-
-
-
-# Copyright 2019 Iguazio
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-#
-# Generated by nuclio.export.NuclioExporter
-
-import warnings
-
-warnings.simplefilter(action="ignore", category=FutureWarning)
-
-import os
-import pandas as pd
-from mlrun.datastore import DataItem
-from mlrun.artifacts import get_model
-from cloudpickle import load
-from mlrun.mlutils.models import eval_class_model
-
-
-def cox_test(
- context,
- models_path: DataItem,
- test_set: DataItem,
- label_column: str,
- plots_dest: str = "plots",
- model_evaluator=None,
-) -> None:
- """Test one or more classifier models against held-out dataset
-
- Using held-out test features, evaluates the peformance of the estimated model
-
- Can be part of a kubeflow pipeline as a test step that is run post EDA and
- training/validation cycles
-
- :param context: the function context
- :param model_file: model artifact to be tested
- :param test_set: test features and labels
- :param label_column: column name for ground truth labels
- :param score_method: for multiclass classification
- :param plots_dest: dir for test plots
- :param model_evaluator: WIP: specific method to generate eval, passed in as string
- or available in this folder
- """
- xtest = test_set.as_df()
- ytest = xtest.pop(label_column)
-
- model_file, model_obj, _ = get_model(models_path.url, suffix=".pkl")
- model_obj = load(open(str(model_file), "rb"))
-
- try:
- if not model_evaluator:
- eval_metrics = eval_class_model(context, xtest, ytest, model_obj)
-
- model_plots = eval_metrics.pop("plots")
- model_tables = eval_metrics.pop("tables")
- for plot in model_plots:
- context.log_artifact(plot, local_path=f"{plots_dest}/{plot.key}.html")
- for tbl in model_tables:
- context.log_artifact(tbl, local_path=f"{plots_dest}/{plot.key}.csv")
-
- context.log_results(eval_metrics)
- except:
- context.log_dataset(
- "cox-test-summary", df=model_obj.summary, index=True, format="csv"
- )
- context.logger.info("cox tester not implemented")
-
-
-
-
-
\ No newline at end of file
diff --git a/functions/development/tags.json b/functions/development/tags.json
index e2157e25..968e5617 100644
--- a/functions/development/tags.json
+++ b/functions/development/tags.json
@@ -1 +1 @@
-{"kind": ["serving", "nuclio:serving", "job"], "categories": ["deep-learning", "model-testing", "data-generation", "model-training", "machine-learning", "huggingface", "utils", "data-analysis", "data-preparation", "data-validation", "NLP", "audio", "genai", "pytorch", "etl", "model-serving", "monitoring"]}
\ No newline at end of file
+{"categories": ["model-testing", "utils", "genai", "machine-learning", "model-training", "data-analysis", "pytorch", "data-generation", "data-preparation", "huggingface", "audio", "model-serving", "deep-learning", "etl", "monitoring", "NLP", "data-validation"], "kind": ["nuclio:serving", "job", "serving"]}
\ No newline at end of file