diff --git a/README.md b/README.md
index 108b087d..3a9aa4cb 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,67 @@
+### Change log [2024-01-24 11:38:14]
+1. Item Updated: `gen_class_data` (from version: `1.2.0` to `1.2.0`)
+2. Item Updated: `churn_server` (from version: `1.1.0` to `1.1.0`)
+3. Item Updated: `v2_model_server` (from version: `1.1.0` to `1.1.0`)
+4. Item Updated: `xgb_custom` (from version: `1.1.0` to `1.1.0`)
+5. Item Updated: `concept_drift_streaming` (from version: `1.1.0` to `1.1.0`)
+6. Item Updated: `describe_dask` (from version: `1.1.0` to `1.1.0`)
+7. Item Updated: `xgb_test` (from version: `1.1.1` to `1.1.1`)
+8. Item Updated: `model_monitoring_stream` (from version: `1.1.0` to `1.1.0`)
+9. Item Updated: `model_server_tester` (from version: `1.1.0` to `1.1.0`)
+10. Item Updated: `open_archive` (from version: `1.1.0` to `1.1.0`)
+11. Item Updated: `github_utils` (from version: `1.1.0` to `1.1.0`)
+12. Item Updated: `load_dask` (from version: `1.1.0` to `1.1.0`)
+13. Item Updated: `structured_data_generator` (from version: `1.3.0` to `1.3.0`)
+14. Item Updated: `huggingface_auto_trainer` (from version: `1.0.0` to `1.0.0`)
+15. Item Updated: `sql_to_file` (from version: `1.1.0` to `1.1.0`)
+16. Item Updated: `xgb_trainer` (from version: `1.1.1` to `1.1.1`)
+17. Item Updated: `hugging_face_serving` (from version: `1.0.0` to `1.0.0`)
+18. Item Updated: `onnx_utils` (from version: `1.2.0` to `1.2.0`)
+19. Item Updated: `batch_inference` (from version: `1.7.0` to `1.7.0`)
+20. Item Updated: `hugging_face_classifier_trainer` (from version: `0.1.0` to `0.1.0`)
+21. Item Updated: `silero_vad` (from version: `1.1.0` to `1.1.0`)
+22. Item Updated: `coxph_test` (from version: `1.1.0` to `1.1.0`)
+23. Item Updated: `describe_spark` (from version: `1.1.0` to `1.1.0`)
+24. Item Updated: `load_dataset` (from version: `1.1.0` to `1.1.0`)
+25. Item Updated: `auto_trainer` (from version: `1.6.0` to `1.6.0`)
+26. Item Updated: `v2_model_tester` (from version: `1.1.0` to `1.1.0`)
+27. Item Updated: `pii_recognizer` (from version: `0.2.0` to `0.2.0`)
+28. Item Updated: `validate_great_expectations` (from version: `1.1.0` to `1.1.0`)
+29. Item Updated: `bert_embeddings` (from version: `1.2.0` to `1.2.0`)
+30. Item Updated: `model_server` (from version: `1.1.0` to `1.1.0`)
+31. Item Updated: `pandas_profiling_report` (from version: `1.1.0` to `1.1.0`)
+32. Item Updated: `stream_to_parquet` (from version: `1.1.0` to `1.1.0`)
+33. Item Updated: `get_offline_features` (from version: `1.2.0` to `1.2.0`)
+34. Item Updated: `azureml_utils` (from version: `1.3.0` to `1.3.0`)
+35. Item Updated: `tf1_serving` (from version: `1.1.0` to `1.1.0`)
+36. Item Updated: `virtual_drift` (from version: `1.1.0` to `1.1.0`)
+37. Item Updated: `arc_to_parquet` (from version: `1.4.1` to `1.4.1`)
+38. Item Updated: `question_answering` (from version: `0.3.1` to `0.3.1`)
+39. Item Updated: `sklearn_classifier_dask` (from version: `1.1.1` to `1.1.1`)
+40. Item Updated: `feature_selection` (from version: `1.3.0` to `1.3.0`)
+41. Item Updated: `concept_drift` (from version: `1.1.0` to `1.1.0`)
+42. Item Updated: `test_classifier` (from version: `1.1.0` to `1.1.0`)
+43. Item Updated: `snowflake_dask` (from version: `1.1.0` to `1.1.0`)
+44. Item Updated: `feature_perms` (from version: `1.1.0` to `1.1.0`)
+45. Item Updated: `azureml_serving` (from version: `1.1.0` to `1.1.0`)
+46. Item Updated: `send_email` (from version: `1.2.0` to `1.2.0`)
+47. Item Updated: `batch_inference_v2` (from version: `2.5.0` to `2.5.0`)
+48. Item Updated: `model_monitoring_batch` (from version: `1.1.0` to `1.1.0`)
+49. Item Updated: `transcribe` (from version: `1.0.0` to `1.0.0`)
+50. Item Updated: `describe` (from version: `1.2.0` to `1.2.0`)
+51. Item Updated: `xgb_serving` (from version: `1.1.2` to `1.1.2`)
+52. Item Updated: `slack_notify` (from version: `1.1.0` to `1.1.0`)
+53. Item Updated: `text_to_audio_generator` (from version: `1.1.0` to `1.1.0`)
+54. Item Updated: `tf2_serving` (from version: `1.1.0` to `1.1.0`)
+55. Item Updated: `aggregate` (from version: `1.3.0` to `1.3.0`)
+56. Item Updated: `sklearn_classifier` (from version: `1.1.1` to `1.1.1`)
+57. Item Updated: `coxph_trainer` (from version: `1.1.0` to `1.1.0`)
+58. Item Updated: `rnn_serving` (from version: `1.1.0` to `1.1.0`)
+59. Item Updated: `pyannote_audio` (from version: `1.0.0` to `1.0.0`)
+60. Item Updated: `tf2_serving_v2` (from version: `1.1.0` to `1.1.0`)
+61. Item Updated: `ingest` (from version: `1.1.0` to `1.1.0`)
+62. Item Updated: `translate` (from version: `0.0.2` to `0.0.2`)
+
### Change log [2024-01-21 08:44:45]
1. Item Updated: `gen_class_data` (from version: `1.2.0` to `1.2.0`)
2. Item Updated: `churn_server` (from version: `1.1.0` to `1.1.0`)
diff --git a/catalog.json b/catalog.json
index 3f926933..3eeff731 100644
--- a/catalog.json
+++ b/catalog.json
@@ -1 +1 @@
-{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.0.2"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.2"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
+{"functions": {"development": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.7.1", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.0.2"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.2"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-10-25:00-15", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "onnx_utils", "platformVersion": "", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.8.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.1"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "0.9.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.3"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.0.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.4"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.10.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "0.10.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.1.1"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.3.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.3.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}, "master": {"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1"}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0"}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1"}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1"}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1"}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1"}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0"}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1"}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1"}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1"}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1"}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1"}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1"}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1"}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1"}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1"}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0"}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1"}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1"}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1"}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0"}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0"}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1"}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0"}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5"}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4"}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0"}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0"}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6"}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5"}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0"}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3"}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7"}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0"}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0"}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0"}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0"}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1"}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0"}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0"}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1"}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0"}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0"}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0"}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1"}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0"}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0"}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1"}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0"}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0"}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0"}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0"}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0"}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0"}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0"}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0"}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0"}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0"}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0"}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}, "1.1.0": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0"}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}, "1.0.0": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0"}}}}}
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/src/batch_inference_v2.ipynb b/functions/master/batch_inference_v2/2.5.0/src/batch_inference_v2.ipynb
new file mode 100644
index 00000000..be7a7722
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/src/batch_inference_v2.ipynb
@@ -0,0 +1,2062 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "# Batch Inference V2\n",
+ "\n",
+ "A function for inferring given input through a given model while producing a **Result Set** and performing **Data Drift Analysis**.\n",
+ "\n",
+ "In this notebook we will go over the function's docs and outputs and see an end-to-end example of running it.\n",
+ "\n",
+ "1. [Documentation](#chapter1)\n",
+ "2. [Results Prediction](#chapter2)\n",
+ "3. [Data Drift Analysis](#chapter3)\n",
+ "4. [End-to-end Demo](#chapter4)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ " \n",
+ "## 1. Documentation\n",
+ "\n",
+ "Perform a prediction on a given dataset with the given model. Can perform drift analysis between the sample set\n",
+ "statistics stored in the model to the current input data. The drift rule is the value per-feature mean of the TVD\n",
+ "and Hellinger scores according to the thresholds configures here. When performing drift analysis, this function\n",
+ "either creates or update an existing model endpoint record (depends on the provided `endpoint_id`).\n",
+ "\n",
+ "At the moment, this function is supported for `mlrun>=1.5.0` versions."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ },
+ "tags": []
+ },
+ "source": [
+ "### 1.1. Parameters:\n",
+ "#### 1.1.1 Batch Infer Parameters:\n",
+ "* **context**: `mlrun.MLClientCtx`\n",
+ "\n",
+ " An MLRun context.\n",
+ " \n",
+ "* **dataset**: `Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray]`\n",
+ " \n",
+ " The dataset to infer through the model.\n",
+ " * Can be passed in `inputs` as a dataset artifact / Feature vector URI.\n",
+ " * Or, in `parameters` as a list, dictionary or numpy array.\n",
+ " \n",
+ "* **model_path**: `Union[str, mlrun.DataItem]`\n",
+ " \n",
+ " Model store uri (should start with store://). Provided as an input (DataItem). To generate a valid model store URI, please log the model before running this function. If `endpoint_id` of existing model endpoint is provided, make sure that it has a similar model store path, otherwise the drift analysis won't be triggered.\n",
+ " \n",
+ "* **drop_columns**: `Union[str, List[str], int, List[int]]` = `None`\n",
+ " \n",
+ " A string / integer or a list of strings / integers that represent the column names / indices to drop. When the dataset is a list or a numpy array this parameter must be represented by integers.\n",
+ " \n",
+ "* **label_columns**: `Union[str, List[str]]` = `None`\n",
+ " \n",
+ " The target label(s) of the column(s) in the dataset. These names will be used as the column names for the predictions. The label column can be accessed from the model object, or the feature vector provided if available. The default name is `\"predicted_label_i\"` for the `i` column.\n",
+ "\n",
+ "* **feature_columns**: `Union[str, List[str]]` = `None`\n",
+ " \n",
+ " List of feature columns that will be used to build the dataframe when dataset is\n",
+ " from type list or numpy array.\n",
+ "\n",
+ "* **log_result_set**: `str` = `True`\n",
+ " \n",
+ " Whether to log the result set - a DataFrame of the given inputs concatenated with the predictions. Defaulted to `True`.\n",
+ "\n",
+ "* **result_set_name**: `str` = `\"prediction\"`\n",
+ " \n",
+ " The db key to set name of the prediction result and the filename. Defaulted to `\"prediction\"`.\n",
+ "\n",
+ "* **batch_id**: `str` = `None`\n",
+ "\n",
+ " The ID of the given batch (inference dataset). If `None`, it will be generated. Will be logged as a result of the run.\n",
+ " \n",
+ "\n",
+ "* **artifacts_tag**: `str` = `\"\"`\n",
+ " \n",
+ " Tag to use for all the artifacts resulted from the function. Defaulted to no tag.\n",
+ " \n",
+ " \n",
+ " \n",
+ "#### 1.1.2 Drift Analysis Parameters:\n",
+ "\n",
+ "* **perform_drift_analysis**: `bool` = `None`\n",
+ " \n",
+ " Whether to perform drift analysis between the sample set of the model object to the\n",
+ " dataset given. By default, None, which means it will perform drift analysis if the\n",
+ " model already has feature stats that are considered as a reference sample set.\n",
+ " Performing drift analysis on a new endpoint id will generate a new model endpoint\n",
+ " record. Please note that in order to trigger the drift analysis job, you need to\n",
+ " set `trigger_monitoring_job=True`. Otherwise, the drift analysis will be triggered\n",
+ " only as part the scheduled monitoring job (if exist in the current project) or\n",
+ " if triggered manually by the user.\n",
+ " \n",
+ "* **trigger_monitoring_job**: `bool` = `False`\n",
+ "\n",
+ " Whether to trigger the batch drift analysis after the infer job.\n",
+ "\n",
+ "* **batch_image_job**: `str` = `mlrun/mlrun`\n",
+ "\n",
+ " The image that will be used for the monitoring batch job analysis. By default,\n",
+ " the image is mlrun/mlrun\n",
+ "\n",
+ "* **endpoint_id**: `str` = `\"\"`\n",
+ " \n",
+ " Model endpoint unique ID. If `perform_drift_analysis` was set, the endpoint_id\n",
+ " will be used either to perform the analysis on existing model endpoint or to\n",
+ " generate a new model endpoint record.\n",
+ " \n",
+ "#### 1.1.3 New Model Endpoint Parameters:\n",
+ " \n",
+ "* **model_endpoint_name**: `str` = `\"batch-infer\"`\n",
+ " \n",
+ " If a new model endpoint is generated, the model name will be presented under this endpoint.\n",
+ "\n",
+ "* **model_endpoint_drift_threshold**: `float` = `0.7`\n",
+ " \n",
+ " The threshold of which to mark drifts. Defaulted to 0.7.\n",
+ "\n",
+ "* **model_endpoint_possible_drift_threshold**: `float` = `0.5`\n",
+ " \n",
+ " The threshold of which to mark possible drifts. Defaulted to 0.5.\n",
+ " \n",
+ "* **model_endpoint_sample_set**: `Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray]` = `None`\n",
+ " \n",
+ " A sample dataset to give to compare the inputs in the drift analysis. Can be provided as an input or as a parameter. The default chosen sample\n",
+ " set will always be the one who is set in the model artifact itself.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### 1.2. Outputs\n",
+ "\n",
+ "The outputs are split to two actions the functions can perform:\n",
+ "* [**Results Prediction**](#chapter2) - Will log:\n",
+ " * A dataset artifact named by the `result_set_name` parameter.\n",
+ " * A `str` result named `\"batch_id\"` of the given / generated batch ID.\n",
+ "\n",
+ "* [**Data Drift Analysis**](#chapter3) - Will log:\n",
+ " * A `plotly` artifact named `\"data_drift_table\"` with a visualization of the drifts results and histograms.\n",
+ " * A json artifact named `\"features_drift_results\"` with all the features metric values.\n",
+ " * A `bool` result named `\"drift_status\"` of the overall drift status (`True` if there was a drift and `False` otherwise).\n",
+ " * A `float` result named `\"drift_score\"` of the overall drift metric score.\n",
+ "\n",
+ "For more details, see the next chapters."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ " \n",
+ "## 2. Results Prediction\n",
+ "\n",
+ "The result set is a concatenated dataset of the inputs ($X$) provided and the predictions ($Y$) yielded by the model, so it will be $X | Y$.\n",
+ "\n",
+ "For example, if the `dataset` given as inputs was:\n",
+ "\n",
+ "| x1 | x2 | x3 | x4 | x5 |\n",
+ "|-----|-----|-----|-----|-----|\n",
+ "| ... | ... | ... | ... | ... |\n",
+ "| ... | ... | ... | ... | ... |\n",
+ "| ... | ... | ... | ... | ... |\n",
+ "\n",
+ "And the outputs yielded by the model's prediction was:\n",
+ "\n",
+ "| y1 | y2 |\n",
+ "|-----|-----|\n",
+ "| ... | ... |\n",
+ "| ... | ... |\n",
+ "| ... | ... |\n",
+ "\n",
+ "Then the result set will be:\n",
+ "\n",
+ "| x1 | x2 | x3 | x4 | x5 | y1 | y2 |\n",
+ "|-----|-----|-----|-----|-----|-----|-----|\n",
+ "| ... | ... | ... | ... | ... | ... | ... |\n",
+ "| ... | ... | ... | ... | ... | ... | ... |\n",
+ "| ... | ... | ... | ... | ... | ... | ... |\n",
+ "\n",
+ "In case the parameter `log_result_set` is `True`, the outputs of the results prediction will be:\n",
+ "* The result set as described above.\n",
+ "* The batch ID result - `batch_id`: `str` - a hashing result that is given by the user or generated randomly in case it was not provided to represent the batch that was being inferred.\n",
+ "\n",
+ " ```python\n",
+ " {\n",
+ " \"batch_id\": \"884a0cb00d8ae16d132dd8259aac29aa78f50a9245d0e4bd58cfbf77\",\n",
+ " }\n",
+ " ```\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ " \n",
+ "## 3. Data Drift Analysis\n",
+ "\n",
+ "The data drift analysis is done per feature using two distance measure metrics for probability distributions.\n",
+ "\n",
+ "Let us mark our sample set as $S$ and our inputs as $I$. We will look at one feature $x$ out of $n$ features. Assuming the histograms of feature $x$ is split into 20 bins: $b_1,b_2,...,b_{20}$, we will match the feature $x$ histogram of the inputs $I$ ($x_I$) into the same bins (meaning to $x_S$) and compare their distributions using:\n",
+ "\n",
+ "* Total Variance Distance: $TVD(x_S,x_I) = \\frac{1}{2}\\sum_{b_1}^{b_{20}} {|x_S - x_I|}$\n",
+ "* Hellinger Distance: $H(x_S,x_I) = \\sqrt{1-{\\sum_{b_1}^{b_{20}}\\sqrt{x_S \\cdot x_I}}}$\n",
+ "\n",
+ "Our **rule** then is calculating for each $x\\in S: \\frac{H(x_S,x_I)+TVD(x_S,x_I)}{2} < $ given thresholds.\n",
+ "\n",
+ "The outputs of the analysis will be:\n",
+ "* **Drift table plot** - The results are presented in a `plotly` table artifact named `\"drift_table_plot\"` that shows each feature's statistics and its TVD, Hellinger and KLD (Kullback–Leibler divergence) results as follows:\n",
+ "\n",
+ "| | Count | | Mean | | Std | | Min | | Max | | Tvd | Hellinger | Kld | Histograms |\n",
+ "| ------ | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | --- | --------- | --- |------------|\n",
+ "| | **Sample** | **Input** | **Sample** | **Input** | **Sample** | **Input** | **Sample** | **Input** | **Sample** | **Input** | | | | |\n",
+ "| **x1** | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |\n",
+ "| **x2** | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |\n",
+ "| **x3** | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |\n",
+ "\n",
+ "* **Features drift results** - A rule metric per feature dictionary is saved in a json file named `\"features_drift_results\"` where each key is a feature and its value is the feature's metric value: `Dict[str, float]`\n",
+ "\n",
+ " ```python\n",
+ " {\n",
+ " \"x1\": 0.12,\n",
+ " \"x2\": 0.345,\n",
+ " \"x3\": 0.00678,\n",
+ " ...\n",
+ " }\n",
+ " ```\n",
+ "\n",
+ "* In addition, two results are being added to summarize the drift analysis:\n",
+ "\n",
+ " * `drift_status`: `bool` - A boolean value indicating whether a drift was found.\n",
+ " * `drift_metric`: `float` - The mean of all the features drift metric value (the rule above):\n",
+ " for $n$ features and metric rule $M(x_S,x_I)=\\frac{H(x_S,x_I)+TVD(x_S,x_I)}{2}$, `drift_metric` $=\\frac{1}{n}\\sum_{x\\in S}M(x_S,x_I)$\n",
+ "\n",
+ " ```python\n",
+ " {\n",
+ " \"drift_status\": True,\n",
+ " \"drift_metric\": 0.81234\n",
+ " }\n",
+ " ```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ " \n",
+ "## 4. End-to-end Demo\n",
+ "\n",
+ "We will see an end-to-end example that follows the steps below:\n",
+ "1. Generate data.\n",
+ "2. Train a model.\n",
+ "3. Infer data through the model using `batch_predict` and review the outputs."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### 4.1. Code review\n",
+ "\n",
+ "We are using a very simple example of training a decision tree on a binary classification problem. For that we wrote two functions:\n",
+ "* `generate_data` - Generate a binary classification data. The data will be split into a *training set* and *data for prediction*. The data for prediction will be drifted in half of its features to showcase the plot later on.\n",
+ "* `train` - Train a decision tree classifier on a given data."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:13:44,649 [warning] Failed resolving version info. Ignoring and using defaults\n",
+ "> 2023-08-29 11:13:46,598 [warning] Server or client version is unstable. Assuming compatible: {'server_version': '0.0.0+image-test', 'client_version': '0.0.0+unstable'}\n",
+ "> 2023-08-29 11:13:46,667 [info] Loading project from path: {'project_name': 'batch-infer-demo', 'path': './'}\n",
+ "> 2023-08-29 11:14:02,192 [info] Project loaded successfully: {'project_name': 'batch-infer-demo', 'path': './', 'stored_in_db': True}\n"
+ ]
+ }
+ ],
+ "source": [
+ "import mlrun\n",
+ "\n",
+ "# Create MLRun project\n",
+ "project_name = \"batch-infer-demo\"\n",
+ "project = mlrun.get_or_create_project(project_name, context=\"./\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# mlrun: start-code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# upload environment variables from env file if exists\n",
+ "import os\n",
+ "\n",
+ "# Specify path\n",
+ "path = \"/tmp/examples_ci.env\"\n",
+ "\n",
+ "if os.path.exists(path):\n",
+ " env_dict = mlrun.set_env_from_file(path, return_dict=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "\n",
+ "from sklearn.datasets import make_classification\n",
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "\n",
+ "from mlrun.frameworks.sklearn import apply_mlrun\n",
+ "\n",
+ "\n",
+ "def generate_data(n_samples: int = 5000, n_features: int = 20):\n",
+ " # Generate a classification data:\n",
+ " x, y = make_classification(\n",
+ " n_samples=n_samples, n_features=n_features, n_classes=2\n",
+ " )\n",
+ "\n",
+ " # Split the data into a training set and a prediction set:\n",
+ " x_train, x_prediction = x[: n_samples // 2], x[n_samples // 2 :]\n",
+ " y_train = y[: n_samples // 2]\n",
+ " \n",
+ " # Randomly drift some features:\n",
+ " x_prediction += (\n",
+ " np.random.uniform(low=2, high=4, size=x_train.shape) * \n",
+ " np.random.randint(low=0, high=2, size=x_train.shape[1], dtype=int)\n",
+ " )\n",
+ " \n",
+ " # Initialize dataframes:\n",
+ " features = [f\"feature_{i}\" for i in range(n_features)]\n",
+ " training_set = pd.DataFrame(data=x_train, columns=features)\n",
+ " training_set.insert(\n",
+ " loc=n_features, column=\"label\", value=y_train, allow_duplicates=True\n",
+ " )\n",
+ " prediction_set = pd.DataFrame(data=x_prediction, columns=features)\n",
+ "\n",
+ " return training_set, prediction_set\n",
+ "\n",
+ "\n",
+ "def train(training_set: pd.DataFrame):\n",
+ " # Get the data into x, y:\n",
+ " labels = pd.DataFrame(training_set[\"label\"])\n",
+ " training_set.drop(columns=[\"label\"], inplace=True)\n",
+ "\n",
+ " # Initialize a model:\n",
+ " model = DecisionTreeClassifier()\n",
+ "\n",
+ " # Apply MLRun:\n",
+ " apply_mlrun(model=model, model_name=\"model\")\n",
+ "\n",
+ " # Train:\n",
+ " model.fit(training_set, labels)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [],
+ "source": [
+ "# mlrun: end-code"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### 4.2. Run the Example with MLRun\n",
+ "\n",
+ "First, we will prepare our MLRun functions:\n",
+ "1. We will use `mlrun.code_to_function` to turn this demo notebook into an MLRun function we can run.\n",
+ "2. We will use `mlrun.import_function` to import the `batch_predict` function ."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:14:04,182 [warning] Failed to add git metadata, ignore if path is not part of a git repo.: {'path': './', 'error': '/User/EYAL'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Create an MLRun function to run the notebook:\n",
+ "demo_function = mlrun.code_to_function(name=\"batch-inference-demo\", kind=\"job\")\n",
+ "\n",
+ "# Import the `batch_inference_v2` function from the functions hub:\n",
+ "batch_inference_function = mlrun.import_function('hub://batch_inference_v2')\n",
+ "# you can import the function from the current directory as well: \n",
+ "# batch_inference_function = mlrun.import_function(\"function.yaml\")\n",
+ "\n",
+ "# Set the desired artifact path:\n",
+ "artifact_path = \"./\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "Now, we will follow the demo steps as discussed above:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:14:42,198 [warning] artifact/output path is not defined or is local and relative, artifacts will not be visible in the UI: {'output_path': './'}\n",
+ "> 2023-08-29 11:14:42,198 [info] Storing function: {'name': 'batch-inference-demo-generate-data', 'uid': 'd04e9f978132472695774f01b2becb6c', 'db': None}\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " batch-infer-demo \n",
+ " \n",
+ " 0 \n",
+ " Aug 29 11:14:42 \n",
+ " completed \n",
+ " batch-inference-demo-generate-data \n",
+ " v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-69ff7bc987-9fmj4
\n",
+ " \n",
+ " \n",
+ " \n",
+ " training_set
prediction_set
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": []
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:14:44,943 [info] Run execution finished: {'status': 'completed', 'name': 'batch-inference-demo-generate-data'}\n",
+ "> 2023-08-29 11:14:44,945 [warning] artifact/output path is not defined or is local and relative, artifacts will not be visible in the UI: {'output_path': './'}\n",
+ "> 2023-08-29 11:14:44,946 [info] Storing function: {'name': 'batch-inference-demo-train', 'uid': 'c0a23b01a8ac4b36b78c6066780df84d', 'db': None}\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " batch-infer-demo \n",
+ " \n",
+ " 0 \n",
+ " Aug 29 11:14:45 \n",
+ " completed \n",
+ " batch-inference-demo-train \n",
+ " v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-69ff7bc987-9fmj4
\n",
+ " training_set
\n",
+ " \n",
+ " \n",
+ " model
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": []
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:14:45,967 [info] Run execution finished: {'status': 'completed', 'name': 'batch-inference-demo-train'}\n",
+ "> 2023-08-29 11:14:45,971 [warning] artifact/output path is not defined or is local and relative, artifacts will not be visible in the UI: {'output_path': './'}\n",
+ "> 2023-08-29 11:14:45,971 [info] Storing function: {'name': 'batch-inference-demo-infer', 'uid': 'b4ff7a15a7594058ba3e5900546c8a4d', 'db': None}\n",
+ "> 2023-08-29 11:14:46,230 [info] Loading model...\n",
+ "> 2023-08-29 11:14:46,255 [info] Loading data...\n",
+ "> 2023-08-29 11:14:46,264 [info] Calculating prediction...\n",
+ "> 2023-08-29 11:14:46,268 [info] Logging result set (x | prediction)...\n",
+ "> 2023-08-29 11:14:46,560 [info] Performing drift analysis...\n",
+ "> 2023-08-29 11:14:48,232 [info] Storing function: {'name': 'model-monitoring-batch', 'uid': '54146baa72334a6aab0dc9d6ed3294b0', 'db': 'http://mlrun-api:8080'}\n",
+ "> 2023-08-29 11:14:48,480 [info] Job is running in the background, pod: model-monitoring-batch-klkxx\n",
+ "> 2023-08-29 11:15:03,762 [warning] Server or client version is unstable. Assuming compatible: {'server_version': '0.0.0+image-test', 'client_version': '0.0.0+image-test'}\n",
+ "> 2023-08-29 11:15:03,907 [info] Initializing BatchProcessor: {'project': 'batch-infer-demo'}\n",
+ "This will be deprecated in 1.3.0, and will be removed in 1.5.0\n",
+ "divide by zero encountered in log\n",
+ "> 2023-08-29 11:15:04,332 [info] Drift result: {'drift_result': defaultdict(, {'feature_5': {'tvd': 0.0434, 'hellinger': 0.05100089784945347, 'kld': 0.014494998206659872}, 'tvd_sum': 8.5102, 'tvd_mean': 0.405247619047619, 'hellinger_sum': 10.300052681268772, 'hellinger_mean': 0.49047869910803676, 'kld_sum': 62.6616191196174, 'kld_mean': 2.9838866247436857, 'feature_2': {'tvd': 0.02459999999999999, 'hellinger': 0.030899816438305312, 'kld': 0.006057604919573473}, 'feature_19': {'tvd': 0.7218000000000002, 'hellinger': 0.7922489156563376, 'kld': 5.537308189437186}, 'label': {'tvd': 0.24960000000000002, 'hellinger': 0.18384462140440389, 'kld': 0.27238393060366317}, 'feature_17': {'tvd': 0.647, 'hellinger': 0.798114529629571, 'kld': 4.721655573957096}, 'feature_16': {'tvd': 0.5, 'hellinger': 1.0, 'kld': 6.647696602384231}, 'feature_4': {'tvd': 0.652, 'hellinger': 0.7890180560465803, 'kld': 4.724331880103662}, 'feature_10': {'tvd': 0.6936, 'hellinger': 0.798649085236416, 'kld': 5.143133985824956}, 'feature_18': {'tvd': 0.029800000000000004, 'hellinger': 0.04016200720162751, 'kld': 0.010300448066673708}, 'feature_1': {'tvd': 0.6028, 'hellinger': 0.8034907163435347, 'kld': 4.375985111186623}, 'feature_0': {'tvd': 0.036800000000000006, 'hellinger': 0.038468796584326524, 'kld': 0.01082520912974786}, 'feature_12': {'tvd': 0.6426000000000001, 'hellinger': 0.7881935479078817, 'kld': 4.434165973058529}, 'feature_15': {'tvd': 0.05080000000000001, 'hellinger': 0.05278865255294484, 'kld': 0.02081902282461378}, 'feature_7': {'tvd': 0.6878, 'hellinger': 0.7901987054573444, 'kld': 5.043243793527386}, 'feature_3': {'tvd': 0.035600000000000014, 'hellinger': 0.04663589029042092, 'kld': 0.014301909461766606}, 'feature_14': {'tvd': 0.04439999999999999, 'hellinger': 0.06309191719567614, 'kld': 0.021311623053023344}, 'feature_9': {'tvd': 0.0424, 'hellinger': 0.05342675000294549, 'kld': 0.020325699772498724}, 'feature_8': {'tvd': 0.6944, 'hellinger': 0.7972137555552585, 'kld': 5.385980028089341}, 'feature_11': {'tvd': 0.7078, 'hellinger': 0.7934880907740085, 'kld': 5.3956608599070055}, 'feature_13': {'tvd': 0.6986, 'hellinger': 0.8067455940744085, 'kld': 5.650553956005931}, 'feature_6': {'tvd': 0.7043999999999999, 'hellinger': 0.7823723350673265, 'kld': 5.211082720097231}})}\n",
+ "> 2023-08-29 11:15:04,333 [info] Drift status: {'endpoint_id': '80daa6376087b987a2e8d97b4850772fee6ff503', 'drift_status': 'DRIFT_DETECTED', 'drift_measure': 0.4478631590778279}\n",
+ "> 2023-08-29 11:15:04,345 [warning] Could not write drift measures to TSDB: {'err': Error(\"cannot call API - write error: backend Write failed: failed to create adapter: No TSDB schema file found at 'v3io-webapi:8081/users/pipelines/batch-infer-demo/model-endpoints/events/'.\"), 'tsdb_path': 'pipelines/batch-infer-demo/model-endpoints/events/', 'endpoint': '80daa6376087b987a2e8d97b4850772fee6ff503'}\n",
+ "> 2023-08-29 11:15:04,345 [info] Done updating drift measures: {'endpoint_id': '80daa6376087b987a2e8d97b4850772fee6ff503'}\n",
+ "> 2023-08-29 11:15:04,451 [info] Run execution finished: {'status': 'completed', 'name': 'model-monitoring-batch'}\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " batch-infer-demo \n",
+ " \n",
+ " 0 \n",
+ " Aug 29 11:15:03 \n",
+ " completed \n",
+ " model-monitoring-batch \n",
+ " v3io_user=iguazio
kind=job
owner=iguazio
mlrun/client_version=0.0.0+unstable
mlrun/client_python_version=3.9.16
host=model-monitoring-batch-klkxx
\n",
+ " \n",
+ " model_endpoints=['80daa6376087b987a2e8d97b4850772fee6ff503']
batch_intervals_dict={'minutes': 0, 'hours': 1, 'days': 0}
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": []
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:15:06,630 [info] Run execution finished: {'status': 'completed', 'name': 'model-monitoring-batch'}\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/mlrun/model_monitoring/features_drift_table.py:359: RuntimeWarning:\n",
+ "\n",
+ "invalid value encountered in true_divide\n",
+ "\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " project \n",
+ " uid \n",
+ " iter \n",
+ " start \n",
+ " state \n",
+ " name \n",
+ " labels \n",
+ " inputs \n",
+ " parameters \n",
+ " results \n",
+ " artifacts \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " batch-infer-demo \n",
+ " \n",
+ " 0 \n",
+ " Aug 29 11:14:46 \n",
+ " completed \n",
+ " batch-inference-demo-infer \n",
+ " v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-69ff7bc987-9fmj4
\n",
+ " dataset
\n",
+ " model_path=store://artifacts/batch-infer-demo/model:c0a23b01a8ac4b36b78c6066780df84d
label_columns=label
trigger_monitoring_job=True
perform_drift_analysis=True
model_endpoint_drift_threshold=0.2
model_endpoint_possible_drift_threshold=0.1
batch_image_job=eyaligu/mlrun-api:image-test
\n",
+ " batch_id=3d5f6aa8a2d63cc0e84ebd95a0bc0000979a0989bbf4c211651a4e2a
drift_status=True
drift_metric=0.4478631590778279
\n",
+ " prediction
drift_table_plot
features_drift_results
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": []
+ },
+ {
+ "data": {
+ "text/html": [
+ " > to track results use the .show() or .logs() methods or click here to open in UI "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "> 2023-08-29 11:15:08,835 [info] Run execution finished: {'status': 'completed', 'name': 'batch-inference-demo-infer'}\n"
+ ]
+ }
+ ],
+ "source": [
+ "# 1. Generate data:\n",
+ "generate_data_run = demo_function.run(\n",
+ " handler=\"generate_data\",\n",
+ " artifact_path=artifact_path,\n",
+ " returns=[\"training_set : dataset\", \"prediction_set : dataset\"],\n",
+ " local=True,\n",
+ ")\n",
+ "\n",
+ "# 2. Train a model:\n",
+ "train_run = demo_function.run(\n",
+ " handler=\"train\",\n",
+ " artifact_path=artifact_path,\n",
+ " inputs={\"training_set\": generate_data_run.outputs[\"training_set\"]},\n",
+ " local=True,\n",
+ ")\n",
+ "\n",
+ "# 3. Perform batch prediction:\n",
+ "batch_inference_run = batch_inference_function.run(\n",
+ " handler=\"infer\",\n",
+ " artifact_path=artifact_path,\n",
+ " inputs={\"dataset\": generate_data_run.outputs[\"prediction_set\"]},\n",
+ " params={\n",
+ " \"model_path\": train_run.outputs[\"model\"],\n",
+ " \"label_columns\": \"label\",\n",
+ " \"trigger_monitoring_job\": True,\n",
+ " \"perform_drift_analysis\": True,\n",
+ " \"model_endpoint_drift_threshold\": 0.2,\n",
+ " \"model_endpoint_possible_drift_threshold\": 0.1,\n",
+ " },\n",
+ " local=True,\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "### 4.3. Review Outputs\n",
+ "\n",
+ "We will review the outputs as explained in the notebook above."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### 4.3.1. Results Prediction\n",
+ "\n",
+ "First we will showcase the **Result Set**. As we didn't send any name, it's default name will be `\"prediction\"`:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " feature_0 \n",
+ " feature_1 \n",
+ " feature_2 \n",
+ " feature_3 \n",
+ " feature_4 \n",
+ " feature_5 \n",
+ " feature_6 \n",
+ " feature_7 \n",
+ " feature_8 \n",
+ " feature_9 \n",
+ " ... \n",
+ " feature_11 \n",
+ " feature_12 \n",
+ " feature_13 \n",
+ " feature_14 \n",
+ " feature_15 \n",
+ " feature_16 \n",
+ " feature_17 \n",
+ " feature_18 \n",
+ " feature_19 \n",
+ " label \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " -0.839322 \n",
+ " 1.333380 \n",
+ " 0.096353 \n",
+ " -1.406629 \n",
+ " 2.400648 \n",
+ " -1.290373 \n",
+ " 3.977797 \n",
+ " 3.313780 \n",
+ " 5.283433 \n",
+ " -1.052645 \n",
+ " ... \n",
+ " 2.453055 \n",
+ " 3.461347 \n",
+ " 2.907938 \n",
+ " -0.101736 \n",
+ " 0.525861 \n",
+ " 3.303174 \n",
+ " 2.662573 \n",
+ " -0.156935 \n",
+ " 3.249469 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " -1.396684 \n",
+ " 2.160555 \n",
+ " -2.079091 \n",
+ " -0.202079 \n",
+ " 2.884480 \n",
+ " 2.034316 \n",
+ " 4.885637 \n",
+ " 4.221477 \n",
+ " 2.573911 \n",
+ " 0.180173 \n",
+ " ... \n",
+ " 4.962888 \n",
+ " 1.372881 \n",
+ " 2.562159 \n",
+ " 0.662939 \n",
+ " -0.805594 \n",
+ " 3.533896 \n",
+ " 3.790616 \n",
+ " -0.154599 \n",
+ " 4.930846 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1.040872 \n",
+ " 5.255454 \n",
+ " -0.147940 \n",
+ " 0.294196 \n",
+ " 0.597649 \n",
+ " -1.235295 \n",
+ " 4.313004 \n",
+ " 5.238071 \n",
+ " 5.605235 \n",
+ " 0.012568 \n",
+ " ... \n",
+ " 2.174434 \n",
+ " 3.278299 \n",
+ " 3.462563 \n",
+ " -0.409624 \n",
+ " 0.322454 \n",
+ " 4.029577 \n",
+ " 2.600332 \n",
+ " -1.107307 \n",
+ " 2.887775 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 0.997923 \n",
+ " 2.140354 \n",
+ " -0.010764 \n",
+ " 0.354853 \n",
+ " 1.915891 \n",
+ " -1.041988 \n",
+ " 2.193550 \n",
+ " 3.467318 \n",
+ " 2.996250 \n",
+ " 0.242412 \n",
+ " ... \n",
+ " 3.236173 \n",
+ " 2.916559 \n",
+ " 4.634331 \n",
+ " -0.348694 \n",
+ " -2.413849 \n",
+ " 2.261911 \n",
+ " 1.594445 \n",
+ " -0.301463 \n",
+ " 2.758082 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 0.201835 \n",
+ " 2.702231 \n",
+ " 0.350186 \n",
+ " 1.007252 \n",
+ " 3.745162 \n",
+ " 1.618354 \n",
+ " 5.198454 \n",
+ " 4.954427 \n",
+ " 4.045311 \n",
+ " -0.155478 \n",
+ " ... \n",
+ " 3.502037 \n",
+ " 5.419818 \n",
+ " 0.721887 \n",
+ " 0.780405 \n",
+ " -1.332553 \n",
+ " 2.386323 \n",
+ " 3.399030 \n",
+ " 0.805458 \n",
+ " 5.311518 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 2495 \n",
+ " -1.612271 \n",
+ " 1.136322 \n",
+ " 0.439253 \n",
+ " -1.661940 \n",
+ " 2.503822 \n",
+ " -0.445082 \n",
+ " 2.862625 \n",
+ " 2.228701 \n",
+ " 3.714258 \n",
+ " -1.834704 \n",
+ " ... \n",
+ " 3.293596 \n",
+ " 5.575856 \n",
+ " 4.126424 \n",
+ " 0.011100 \n",
+ " -0.096880 \n",
+ " 3.031544 \n",
+ " 1.944827 \n",
+ " -0.927567 \n",
+ " 4.226295 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2496 \n",
+ " 0.266415 \n",
+ " 3.206542 \n",
+ " -0.116758 \n",
+ " 0.445226 \n",
+ " 3.721457 \n",
+ " 0.407119 \n",
+ " 2.387406 \n",
+ " 1.687102 \n",
+ " 2.824435 \n",
+ " 1.165571 \n",
+ " ... \n",
+ " 3.934637 \n",
+ " 1.732800 \n",
+ " 2.574786 \n",
+ " 0.529199 \n",
+ " -0.287021 \n",
+ " 3.898641 \n",
+ " 0.147049 \n",
+ " 1.544828 \n",
+ " 2.825104 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2497 \n",
+ " -0.326930 \n",
+ " 2.356003 \n",
+ " 0.174470 \n",
+ " -0.050694 \n",
+ " 3.098816 \n",
+ " 0.469552 \n",
+ " 3.528227 \n",
+ " 1.894595 \n",
+ " 3.937233 \n",
+ " -0.107356 \n",
+ " ... \n",
+ " 1.889425 \n",
+ " 3.963069 \n",
+ " 2.947138 \n",
+ " -0.626888 \n",
+ " -0.797704 \n",
+ " 3.755991 \n",
+ " 2.711294 \n",
+ " 1.180842 \n",
+ " 4.045224 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2498 \n",
+ " 0.153820 \n",
+ " 3.246263 \n",
+ " 0.519227 \n",
+ " 0.920204 \n",
+ " 3.802444 \n",
+ " 1.531671 \n",
+ " 2.902433 \n",
+ " 3.815808 \n",
+ " 2.586090 \n",
+ " -1.919927 \n",
+ " ... \n",
+ " 2.679366 \n",
+ " 2.824765 \n",
+ " 3.152592 \n",
+ " -0.303761 \n",
+ " 1.058759 \n",
+ " 3.185221 \n",
+ " 3.995456 \n",
+ " 0.490862 \n",
+ " 2.338864 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ " 2499 \n",
+ " -1.521514 \n",
+ " 3.773368 \n",
+ " -0.685662 \n",
+ " 0.175765 \n",
+ " 3.599282 \n",
+ " 2.990228 \n",
+ " 1.918675 \n",
+ " 4.382931 \n",
+ " 5.108156 \n",
+ " 0.764052 \n",
+ " ... \n",
+ " 4.139320 \n",
+ " 1.933803 \n",
+ " 2.970427 \n",
+ " -0.553020 \n",
+ " 0.483961 \n",
+ " 2.124600 \n",
+ " 2.598879 \n",
+ " -0.444126 \n",
+ " 2.429726 \n",
+ " 0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2500 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " feature_0 feature_1 feature_2 feature_3 feature_4 feature_5 \\\n",
+ "0 -0.839322 1.333380 0.096353 -1.406629 2.400648 -1.290373 \n",
+ "1 -1.396684 2.160555 -2.079091 -0.202079 2.884480 2.034316 \n",
+ "2 1.040872 5.255454 -0.147940 0.294196 0.597649 -1.235295 \n",
+ "3 0.997923 2.140354 -0.010764 0.354853 1.915891 -1.041988 \n",
+ "4 0.201835 2.702231 0.350186 1.007252 3.745162 1.618354 \n",
+ "... ... ... ... ... ... ... \n",
+ "2495 -1.612271 1.136322 0.439253 -1.661940 2.503822 -0.445082 \n",
+ "2496 0.266415 3.206542 -0.116758 0.445226 3.721457 0.407119 \n",
+ "2497 -0.326930 2.356003 0.174470 -0.050694 3.098816 0.469552 \n",
+ "2498 0.153820 3.246263 0.519227 0.920204 3.802444 1.531671 \n",
+ "2499 -1.521514 3.773368 -0.685662 0.175765 3.599282 2.990228 \n",
+ "\n",
+ " feature_6 feature_7 feature_8 feature_9 ... feature_11 feature_12 \\\n",
+ "0 3.977797 3.313780 5.283433 -1.052645 ... 2.453055 3.461347 \n",
+ "1 4.885637 4.221477 2.573911 0.180173 ... 4.962888 1.372881 \n",
+ "2 4.313004 5.238071 5.605235 0.012568 ... 2.174434 3.278299 \n",
+ "3 2.193550 3.467318 2.996250 0.242412 ... 3.236173 2.916559 \n",
+ "4 5.198454 4.954427 4.045311 -0.155478 ... 3.502037 5.419818 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "2495 2.862625 2.228701 3.714258 -1.834704 ... 3.293596 5.575856 \n",
+ "2496 2.387406 1.687102 2.824435 1.165571 ... 3.934637 1.732800 \n",
+ "2497 3.528227 1.894595 3.937233 -0.107356 ... 1.889425 3.963069 \n",
+ "2498 2.902433 3.815808 2.586090 -1.919927 ... 2.679366 2.824765 \n",
+ "2499 1.918675 4.382931 5.108156 0.764052 ... 4.139320 1.933803 \n",
+ "\n",
+ " feature_13 feature_14 feature_15 feature_16 feature_17 feature_18 \\\n",
+ "0 2.907938 -0.101736 0.525861 3.303174 2.662573 -0.156935 \n",
+ "1 2.562159 0.662939 -0.805594 3.533896 3.790616 -0.154599 \n",
+ "2 3.462563 -0.409624 0.322454 4.029577 2.600332 -1.107307 \n",
+ "3 4.634331 -0.348694 -2.413849 2.261911 1.594445 -0.301463 \n",
+ "4 0.721887 0.780405 -1.332553 2.386323 3.399030 0.805458 \n",
+ "... ... ... ... ... ... ... \n",
+ "2495 4.126424 0.011100 -0.096880 3.031544 1.944827 -0.927567 \n",
+ "2496 2.574786 0.529199 -0.287021 3.898641 0.147049 1.544828 \n",
+ "2497 2.947138 -0.626888 -0.797704 3.755991 2.711294 1.180842 \n",
+ "2498 3.152592 -0.303761 1.058759 3.185221 3.995456 0.490862 \n",
+ "2499 2.970427 -0.553020 0.483961 2.124600 2.598879 -0.444126 \n",
+ "\n",
+ " feature_19 label \n",
+ "0 3.249469 0 \n",
+ "1 4.930846 0 \n",
+ "2 2.887775 0 \n",
+ "3 2.758082 0 \n",
+ "4 5.311518 0 \n",
+ "... ... ... \n",
+ "2495 4.226295 0 \n",
+ "2496 2.825104 0 \n",
+ "2497 4.045224 0 \n",
+ "2498 2.338864 0 \n",
+ "2499 2.429726 0 \n",
+ "\n",
+ "[2500 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "batch_inference_run.artifact(\"prediction\").as_df()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "pycharm": {
+ "name": "#%% md\n"
+ }
+ },
+ "source": [
+ "#### 4.3.2. Data Drift Analysis\n",
+ "\n",
+ "Second we will review the data drift table plot and the drift results:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ "\n",
+ " \n",
+ "\n",
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "batch_inference_run.artifact(\"drift_table_plot\").show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false,
+ "pycharm": {
+ "name": "#%%\n"
+ }
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'batch_id': '3d5f6aa8a2d63cc0e84ebd95a0bc0000979a0989bbf4c211651a4e2a',\n",
+ " 'drift_status': True,\n",
+ " 'drift_metric': 0.4478631590778279}"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "batch_inference_run.status.results"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "mlrun-base",
+ "language": "python",
+ "name": "conda-env-mlrun-base-py"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.9.16"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/functions/master/batch_inference_v2/2.5.0/src/batch_inference_v2.py b/functions/master/batch_inference_v2/2.5.0/src/batch_inference_v2.py
new file mode 100644
index 00000000..1d4d9ec7
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/src/batch_inference_v2.py
@@ -0,0 +1,268 @@
+# Copyright 2023 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from inspect import signature
+from typing import Any, Dict, List, Union, Optional
+import mlrun
+
+try:
+ import mlrun.model_monitoring.api
+except ModuleNotFoundError:
+ raise mlrun.errors.MLRunNotFoundError(
+ f"Please update your `mlrun` version to >=1.5.0 or use an "
+ f"older version of the batch inference function."
+ )
+
+import numpy as np
+import pandas as pd
+from mlrun.frameworks.auto_mlrun import AutoMLRun
+
+
+def _prepare_result_set(x: pd.DataFrame, label_columns: List[str], y_pred: np.ndarray) -> pd.DataFrame:
+ """
+ Set default label column names and validate given names to prepare the result set - a concatenation of the inputs
+ (x) and the model predictions (y_pred).
+
+ :param x: The inputs.
+ :param label_columns: A list of strings representing the target column names to add to the predictions. Default name
+ will be used in case the list is empty (predicted_label_{i}).
+ :param y_pred: The model predictions on the inputs.
+
+ :returns: The result set.
+
+ raises MLRunInvalidArgumentError: If the labels columns amount do not match the outputs or if one of the label
+ column already exists in the dataset.
+ """
+ # Prepare default target columns names if not provided:
+ prediction_columns_amount = 1 if len(y_pred.shape) == 1 else y_pred.shape[1]
+ if len(label_columns) == 0:
+ # Add default label column names:
+ if prediction_columns_amount == 1:
+ label_columns = ["predicted_label"]
+ else:
+ label_columns = [
+ f"predicted_label_{i}" for i in range(prediction_columns_amount)
+ ]
+
+ # Validate the label columns:
+ if prediction_columns_amount != len(label_columns):
+ # No equality between provided label column names and outputs amount:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The number of predicted labels: {prediction_columns_amount} "
+ f"is not equal to the given label columns: {len(label_columns)}"
+ )
+ common_labels = set(label_columns) & set(x.columns.tolist())
+ if common_labels:
+ # Label column exist in the original inputs:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The labels: {common_labels} are already existed in the given dataset."
+ )
+
+ return pd.concat(
+ [x, pd.DataFrame(y_pred, columns=label_columns, index=x.index)], axis=1
+ )
+
+
+def _get_sample_set_statistics_parameters(context: mlrun.MLClientCtx,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_artifact_feature_stats: dict,
+ feature_columns: Optional[List],
+ drop_columns: Optional[List],
+ label_columns: Optional[List]) -> Dict[str, Any]:
+ statics_input_full_dict = dict(sample_set=model_endpoint_sample_set,
+ model_artifact_feature_stats=model_artifact_feature_stats,
+ sample_set_columns=feature_columns,
+ sample_set_drop_columns=drop_columns,
+ sample_set_label_columns=label_columns)
+ get_sample_statics_function = mlrun.model_monitoring.api.get_sample_set_statistics
+ statics_function_input_dict = signature(get_sample_statics_function).parameters
+ # As a result of changes to input parameters in the mlrun-get_sample_set_statistics function,
+ # we will now send only the parameters it expects.
+ statistics_input_filtered = {key: statics_input_full_dict[key] for key in statics_function_input_dict}
+ if len(statistics_input_filtered) != len(statics_function_input_dict):
+ context.logger.warning(f"get_sample_set_statistics is in an older version; "
+ "some parameters will not be sent to the function."
+ f" Expected input: {list(statics_function_input_dict.keys())},"
+ f" actual input: {list(statistics_input_filtered.keys())}")
+ return statistics_input_filtered
+
+
+def infer(
+ context: mlrun.MLClientCtx,
+ dataset: Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_path: Union[str, mlrun.DataItem],
+ drop_columns: Union[str, List[str], int, List[int]] = None,
+ label_columns: Union[str, List[str]] = None,
+ feature_columns: Union[str, List[str]] = None,
+ log_result_set: bool = True,
+ result_set_name: str = "prediction",
+ batch_id: str = None,
+ artifacts_tag: str = "",
+ # Drift analysis parameters
+ perform_drift_analysis: bool = None,
+ trigger_monitoring_job: bool = False,
+ batch_image_job: str = "mlrun/mlrun",
+ endpoint_id: str = "",
+ # The following model endpoint parameters are relevant only if:
+ # perform drift analysis is not disabled
+ # a new model endpoint record is going to be generated
+ model_endpoint_name: str = "batch-infer",
+ model_endpoint_drift_threshold: float = 0.7,
+ model_endpoint_possible_drift_threshold: float = 0.5,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray
+ ] = None,
+ **predict_kwargs: Dict[str, Any],
+):
+ """
+ Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
+ under the current project.
+ Can perform drift analysis between the sample set statistics stored in the model to the current input data. The
+ drift rule is the value per-feature mean of the TVD and Hellinger scores according to the thresholds configures
+ here. When performing drift analysis, this function either uses an existing model endpoint record or creates
+ a new one.
+ At the moment, this function is supported for `mlrun>=1.5.0` versions.
+
+ :param context: MLRun context.
+ :param dataset: The dataset to infer through the model. Provided as an input (DataItem)
+ that represents Dataset artifact / Feature vector URI.
+ If using MLRun SDK, `dataset` can also be provided as a list, dictionary or
+ numpy array.
+ :param model_path: Model store uri (should start with store://). Provided as an input (DataItem).
+ If using MLRun SDK, `model_path` can also be provided as a parameter (string).
+ To generate a valid model store URI, please log the model before running this function.
+ If `endpoint_id` of existing model endpoint is provided, make sure
+ that it has a similar model store path, otherwise the drift analysis
+ won't be triggered.
+ :param drop_columns: A string / integer or a list of strings / integers that represent the column names
+ / indices to drop. When the dataset is a list or a numpy array this parameter must
+ be represented by integers.
+ :param label_columns: The target label(s) of the column(s) in the dataset for Regression or
+ Classification tasks. The label column can be accessed from the model object, or
+ the feature vector provided if available.
+ :param feature_columns: List of feature columns that will be used to build the dataframe when dataset is
+ from type list or numpy array.
+ :param log_result_set: Whether to log the result set - a DataFrame of the given inputs concatenated with
+ the predictions. Defaulted to True.
+ :param result_set_name: The db key to set name of the prediction result and the filename. Defaulted to
+ 'prediction'.
+ :param batch_id: The ID of the given batch (inference dataset). If `None`, it will be generated.
+ Will be logged as a result of the run.
+ :param artifacts_tag: Tag to use for all the artifacts resulted from the function (result set and
+ model monitoring artifacts)
+ :param perform_drift_analysis: Whether to perform drift analysis between the sample set of the model object to the
+ dataset given. By default, None, which means it will perform drift analysis if the
+ model already has feature stats that are considered as a reference sample set.
+ Performing drift analysis on a new endpoint id will generate a new model endpoint
+ record. Please note that in order to trigger the drift analysis job, you need to
+ set `trigger_monitoring_job=True`. Otherwise, the drift analysis will be triggered
+ only as part the scheduled monitoring job (if exist in the current project) or
+ if triggered manually by the user.
+ :param trigger_monitoring_job: Whether to trigger the batch drift analysis after the infer job.
+ :param batch_image_job: The image that will be used to register the monitoring batch job if not exist.
+ By default, the image is mlrun/mlrun.
+ :param endpoint_id: Model endpoint unique ID. If `perform_drift_analysis` was set, the endpoint_id
+ will be used either to perform the analysis on existing model endpoint or to
+ generate a new model endpoint record.
+ :param model_endpoint_name: If a new model endpoint is generated, the model name will be presented under this
+ endpoint.
+ :param model_endpoint_drift_threshold: The threshold of which to mark drifts. Defaulted to 0.7.
+ :param model_endpoint_possible_drift_threshold: The threshold of which to mark possible drifts. Defaulted to 0.5.
+ :param model_endpoint_sample_set: A sample dataset to give to compare the inputs in the drift analysis.
+ Can be provided as an input (DataItem) or as a parameter (e.g. string, list, DataFrame).
+ The default chosen sample set will always be the one who is set in the model artifact itself.
+
+ raises MLRunInvalidArgumentError: if both `model_path` and `endpoint_id` are not provided
+ """
+
+ # Loading the model:
+ context.logger.info(f"Loading model...")
+ if isinstance(model_path, mlrun.DataItem):
+ model_path = model_path.artifact_url
+ if not mlrun.datastore.is_store_uri(model_path):
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The provided model path ({model_path}) is invalid - should start with `store://`. "
+ f"Please make sure that you have logged the model using `project.log_model()` "
+ f"which generates a unique store uri for the logged model."
+ )
+ model_handler = AutoMLRun.load_model(model_path=model_path, context=context)
+
+ if label_columns is None:
+ label_columns = [
+ output.name for output in model_handler._model_artifact.spec.outputs
+ ]
+
+ if feature_columns is None:
+ feature_columns = [
+ input.name for input in model_handler._model_artifact.spec.inputs
+ ]
+
+ # Get dataset by object, URL or by FeatureVector:
+ context.logger.info(f"Loading data...")
+ x, label_columns = mlrun.model_monitoring.api.read_dataset_as_dataframe(
+ dataset=dataset,
+ feature_columns=feature_columns,
+ label_columns=label_columns,
+ drop_columns=drop_columns,
+ )
+
+ # Predict:
+ context.logger.info(f"Calculating prediction...")
+ y_pred = model_handler.model.predict(x, **predict_kwargs)
+
+ # Prepare the result set:
+ result_set = _prepare_result_set(x=x, label_columns=label_columns, y_pred=y_pred)
+
+ # Check for logging the result set:
+ if log_result_set:
+ mlrun.model_monitoring.api.log_result(
+ context=context,
+ result_set_name=result_set_name,
+ result_set=result_set,
+ artifacts_tag=artifacts_tag,
+ batch_id=batch_id,
+ )
+
+ # Check for performing drift analysis
+ if (
+ perform_drift_analysis is None
+ and model_handler._model_artifact.spec.feature_stats is not None
+ ):
+ perform_drift_analysis = True
+ if perform_drift_analysis:
+ context.logger.info("Performing drift analysis...")
+ # Get the sample set statistics (either from the sample set or from the statistics logged with the model)
+ statistics_input_filtered = _get_sample_set_statistics_parameters(
+ context=context,
+ model_endpoint_sample_set=model_endpoint_sample_set,
+ model_artifact_feature_stats=model_handler._model_artifact.spec.feature_stats,
+ feature_columns=feature_columns,
+ drop_columns=drop_columns,
+ label_columns=label_columns)
+ sample_set_statistics = mlrun.model_monitoring.api.get_sample_set_statistics(**statistics_input_filtered)
+ mlrun.model_monitoring.api.record_results(
+ project=context.project,
+ context=context,
+ endpoint_id=endpoint_id,
+ model_path=model_path,
+ model_endpoint_name=model_endpoint_name,
+ infer_results_df=result_set.copy(),
+ sample_set_statistics=sample_set_statistics,
+ drift_threshold=model_endpoint_drift_threshold,
+ possible_drift_threshold=model_endpoint_possible_drift_threshold,
+ artifacts_tag=artifacts_tag,
+ trigger_monitoring_job=trigger_monitoring_job,
+ default_batch_image=batch_image_job,
+ )
diff --git a/functions/master/batch_inference_v2/2.5.0/src/function.yaml b/functions/master/batch_inference_v2/2.5.0/src/function.yaml
new file mode 100644
index 00000000..653346c0
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/src/function.yaml
@@ -0,0 +1,162 @@
+kind: job
+metadata:
+ name: batch-inference-v2
+ tag: ''
+ hash: cfe7a24a5d05a7d6b9f03d119d9f2661e48db0f5
+ project: ''
+ labels:
+ author: eyald
+ categories:
+ - utils
+ - data-analysis
+ - monitoring
+spec:
+ command: ''
+ args: []
+ image: mlrun/mlrun
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAyMyBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCgpmcm9tIGluc3BlY3QgaW1wb3J0IHNpZ25hdHVyZQpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBEaWN0LCBMaXN0LCBVbmlvbgppbXBvcnQgbWxydW4KCnRyeToKICAgIGltcG9ydCBtbHJ1bi5tb2RlbF9tb25pdG9yaW5nLmFwaQpleGNlcHQgTW9kdWxlTm90Rm91bmRFcnJvcjoKICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bk5vdEZvdW5kRXJyb3IoCiAgICAgICAgZiJQbGVhc2UgdXBkYXRlIHlvdXIgYG1scnVuYCB2ZXJzaW9uIHRvID49MS41LjAgb3IgdXNlIGFuICIKICAgICAgICBmIm9sZGVyIHZlcnNpb24gb2YgdGhlIGJhdGNoIGluZmVyZW5jZSBmdW5jdGlvbi4iCiAgICApCgppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZApmcm9tIG1scnVuLmZyYW1ld29ya3MuYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgoKZGVmIF9wcmVwYXJlX3Jlc3VsdF9zZXQoCiAgICAgICAgeDogcGQuRGF0YUZyYW1lLCBsYWJlbF9jb2x1bW5zOiBMaXN0W3N0cl0sIHlfcHJlZDogbnAubmRhcnJheQopIC0+IHBkLkRhdGFGcmFtZToKICAgICIiIgogICAgU2V0IGRlZmF1bHQgbGFiZWwgY29sdW1uIG5hbWVzIGFuZCB2YWxpZGF0ZSBnaXZlbiBuYW1lcyB0byBwcmVwYXJlIHRoZSByZXN1bHQgc2V0IC0gYSBjb25jYXRlbmF0aW9uIG9mIHRoZSBpbnB1dHMKICAgICh4KSBhbmQgdGhlIG1vZGVsIHByZWRpY3Rpb25zICh5X3ByZWQpLgoKICAgIDpwYXJhbSB4OiAgICAgICAgICAgICBUaGUgaW5wdXRzLgogICAgOnBhcmFtIGxhYmVsX2NvbHVtbnM6IEEgbGlzdCBvZiBzdHJpbmdzIHJlcHJlc2VudGluZyB0aGUgdGFyZ2V0IGNvbHVtbiBuYW1lcyB0byBhZGQgdG8gdGhlIHByZWRpY3Rpb25zLiBEZWZhdWx0IG5hbWUKICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgaW4gY2FzZSB0aGUgbGlzdCBpcyBlbXB0eSAocHJlZGljdGVkX2xhYmVsX3tpfSkuCiAgICA6cGFyYW0geV9wcmVkOiAgICAgICAgVGhlIG1vZGVsIHByZWRpY3Rpb25zIG9uIHRoZSBpbnB1dHMuCgogICAgOnJldHVybnM6IFRoZSByZXN1bHQgc2V0LgoKICAgIHJhaXNlcyBNTFJ1bkludmFsaWRBcmd1bWVudEVycm9yOiBJZiB0aGUgbGFiZWxzIGNvbHVtbnMgYW1vdW50IGRvIG5vdCBtYXRjaCB0aGUgb3V0cHV0cyBvciBpZiBvbmUgb2YgdGhlIGxhYmVsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbHVtbiBhbHJlYWR5IGV4aXN0cyBpbiB0aGUgZGF0YXNldC4KICAgICIiIgogICAgIyBQcmVwYXJlIGRlZmF1bHQgdGFyZ2V0IGNvbHVtbnMgbmFtZXMgaWYgbm90IHByb3ZpZGVkOgogICAgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9IDEgaWYgbGVuKHlfcHJlZC5zaGFwZSkgPT0gMSBlbHNlIHlfcHJlZC5zaGFwZVsxXQogICAgaWYgbGVuKGxhYmVsX2NvbHVtbnMpID09IDA6CiAgICAgICAgIyBBZGQgZGVmYXVsdCBsYWJlbCBjb2x1bW4gbmFtZXM6CiAgICAgICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9PSAxOgogICAgICAgICAgICBsYWJlbF9jb2x1bW5zID0gWyJwcmVkaWN0ZWRfbGFiZWwiXQogICAgICAgIGVsc2U6CiAgICAgICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgICAgICBmInByZWRpY3RlZF9sYWJlbF97aX0iIGZvciBpIGluIHJhbmdlKHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQpCiAgICAgICAgICAgIF0KCiAgICAjIFZhbGlkYXRlIHRoZSBsYWJlbCBjb2x1bW5zOgogICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCAhPSBsZW4obGFiZWxfY29sdW1ucyk6CiAgICAgICAgIyBObyBlcXVhbGl0eSBiZXR3ZWVuIHByb3ZpZGVkIGxhYmVsIGNvbHVtbiBuYW1lcyBhbmQgb3V0cHV0cyBhbW91bnQ6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIG51bWJlciBvZiBwcmVkaWN0ZWQgbGFiZWxzOiB7cHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudH0gIgogICAgICAgICAgICBmImlzIG5vdCBlcXVhbCB0byB0aGUgZ2l2ZW4gbGFiZWwgY29sdW1uczoge2xlbihsYWJlbF9jb2x1bW5zKX0iCiAgICAgICAgKQogICAgY29tbW9uX2xhYmVscyA9IHNldChsYWJlbF9jb2x1bW5zKSAmIHNldCh4LmNvbHVtbnMudG9saXN0KCkpCiAgICBpZiBjb21tb25fbGFiZWxzOgogICAgICAgICMgTGFiZWwgY29sdW1uIGV4aXN0IGluIHRoZSBvcmlnaW5hbCBpbnB1dHM6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIGxhYmVsczoge2NvbW1vbl9sYWJlbHN9IGFyZSBhbHJlYWR5IGV4aXN0ZWQgaW4gdGhlIGdpdmVuIGRhdGFzZXQuIgogICAgICAgICkKCiAgICByZXR1cm4gcGQuY29uY2F0KAogICAgICAgIFt4LCBwZC5EYXRhRnJhbWUoeV9wcmVkLCBjb2x1bW5zPWxhYmVsX2NvbHVtbnMsIGluZGV4PXguaW5kZXgpXSwgYXhpcz0xCiAgICApCgoKZGVmIF9nZXRfZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljc19wYXJhbWV0ZXJzKGNvbnRleHQsIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQsIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlX2NvbHVtbnMsIGRyb3BfY29sdW1ucywgbGFiZWxfY29sdW1ucyk6CiAgICBzdGF0aWNzX2lucHV0X2Z1bGxfZGljdCA9IGRpY3Qoc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHM9bW9kZWxfYXJ0aWZhY3RfZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2NvbHVtbnM9ZmVhdHVyZV9jb2x1bW5zLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhbXBsZV9zZXRfZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2xhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucykKICAgIGdldF9zYW1wbGVfc3RhdGljc19mdW5jdGlvbiA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MKICAgIHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCA9IHNpZ25hdHVyZShnZXRfc2FtcGxlX3N0YXRpY3NfZnVuY3Rpb24pLnBhcmFtZXRlcnMKICAgICMgIEFzIGEgcmVzdWx0IG9mIGNoYW5nZXMgdG8gaW5wdXQgcGFyYW1ldGVycyBpbiB0aGUgbWxydW4tZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBmdW5jdGlvbiwKICAgICMgIHdlIHdpbGwgbm93IHNlbmQgb25seSB0aGUgcGFyYW1ldGVycyBpdCBleHBlY3RzLgogICAgc3RhdGljc19pbnB1dF9maWx0ZXJlZCA9IHtrZXk6IHN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0W2tleV0gZm9yIGtleSBpbiBzdGF0aWNzX2Z1bmN0aW9uX2lucHV0X2RpY3R9CiAgICBpZiBsZW4oc3RhdGljc19pbnB1dF9maWx0ZXJlZCkgIT0gbGVuKHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCk6CiAgICAgICAgY29udGV4dC5sb2dnZXIud2FybmluZygiZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBpcyBpbiBhbiBvbGRlciB2ZXJzaW9uOyAiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAic29tZSBwYXJhbWV0ZXJzIHdpbGwgbm90IGJlIHNlbnQgdG8gdGhlIGZ1bmN0aW9uLiIpCiAgICByZXR1cm4gc3RhdGljc19pbnB1dF9maWx0ZXJlZAoKCmRlZiBpbmZlcigKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogVW5pb25bbWxydW4uRGF0YUl0ZW0sIGxpc3QsIGRpY3QsIHBkLkRhdGFGcmFtZSwgcGQuU2VyaWVzLCBucC5uZGFycmF5XSwKICAgIG1vZGVsX3BhdGg6IFVuaW9uW3N0ciwgbWxydW4uRGF0YUl0ZW1dLAogICAgZHJvcF9jb2x1bW5zOiBVbmlvbltzdHIsIExpc3Rbc3RyXSwgaW50LCBMaXN0W2ludF1dID0gTm9uZSwKICAgIGxhYmVsX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBmZWF0dXJlX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBsb2dfcmVzdWx0X3NldDogYm9vbCA9IFRydWUsCiAgICByZXN1bHRfc2V0X25hbWU6IHN0ciA9ICJwcmVkaWN0aW9uIiwKICAgIGJhdGNoX2lkOiBzdHIgPSBOb25lLAogICAgYXJ0aWZhY3RzX3RhZzogc3RyID0gIiIsCiAgICAjIERyaWZ0IGFuYWx5c2lzIHBhcmFtZXRlcnMKICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6IGJvb2wgPSBOb25lLAogICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYjogYm9vbCA9IEZhbHNlLAogICAgYmF0Y2hfaW1hZ2Vfam9iOiBzdHIgPSAibWxydW4vbWxydW4iLAogICAgZW5kcG9pbnRfaWQ6IHN0ciA9ICIiLAogICAgIyBUaGUgZm9sbG93aW5nIG1vZGVsIGVuZHBvaW50IHBhcmFtZXRlcnMgYXJlIHJlbGV2YW50IG9ubHkgaWY6CiAgICAjIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaXMgbm90IGRpc2FibGVkCiAgICAjIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZCBpcyBnb2luZyB0byBiZSBnZW5lcmF0ZWQKICAgIG1vZGVsX2VuZHBvaW50X25hbWU6IHN0ciA9ICJiYXRjaC1pbmZlciIsCiAgICBtb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQ6IGZsb2F0ID0gMC43LAogICAgbW9kZWxfZW5kcG9pbnRfcG9zc2libGVfZHJpZnRfdGhyZXNob2xkOiBmbG9hdCA9IDAuNSwKICAgIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQ6IFVuaW9uWwogICAgICAgIG1scnVuLkRhdGFJdGVtLCBsaXN0LCBkaWN0LCBwZC5EYXRhRnJhbWUsIHBkLlNlcmllcywgbnAubmRhcnJheQogICAgXSA9IE5vbmUsCiAgICAqKnByZWRpY3Rfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSwKKToKICAgICIiIgogICAgUGVyZm9ybSBhIHByZWRpY3Rpb24gb24gYSBnaXZlbiBkYXRhc2V0IHdpdGggdGhlIGdpdmVuIG1vZGVsLiBQbGVhc2UgbWFrZSBzdXJlIHRoYXQgeW91IGhhdmUgYWxyZWFkeSBsb2dnZWQgdGhlIG1vZGVsCiAgICB1bmRlciB0aGUgY3VycmVudCBwcm9qZWN0LgogICAgQ2FuIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgYmV0d2VlbiB0aGUgc2FtcGxlIHNldCBzdGF0aXN0aWNzIHN0b3JlZCBpbiB0aGUgbW9kZWwgdG8gdGhlIGN1cnJlbnQgaW5wdXQgZGF0YS4gVGhlCiAgICBkcmlmdCBydWxlIGlzIHRoZSB2YWx1ZSBwZXItZmVhdHVyZSBtZWFuIG9mIHRoZSBUVkQgYW5kIEhlbGxpbmdlciBzY29yZXMgYWNjb3JkaW5nIHRvIHRoZSB0aHJlc2hvbGRzIGNvbmZpZ3VyZXMKICAgIGhlcmUuIFdoZW4gcGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcywgdGhpcyBmdW5jdGlvbiBlaXRoZXIgdXNlcyBhbiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCByZWNvcmQgb3IgY3JlYXRlcwogICAgYSBuZXcgb25lLgogICAgQXQgdGhlIG1vbWVudCwgdGhpcyBmdW5jdGlvbiBpcyBzdXBwb3J0ZWQgZm9yIGBtbHJ1bj49MS41LjBgIHZlcnNpb25zLgoKICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQuCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byBpbmZlciB0aHJvdWdoIHRoZSBtb2RlbC4gUHJvdmlkZWQgYXMgYW4gaW5wdXQgKERhdGFJdGVtKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhhdCByZXByZXNlbnRzIERhdGFzZXQgYXJ0aWZhY3QgLyBGZWF0dXJlIHZlY3RvciBVUkkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBkYXRhc2V0YCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIGxpc3QsIGRpY3Rpb25hcnkgb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bXB5IGFycmF5LgogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTW9kZWwgc3RvcmUgdXJpIChzaG91bGQgc3RhcnQgd2l0aCBzdG9yZTovLykuIFByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBtb2RlbF9wYXRoYCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIHBhcmFtZXRlciAoc3RyaW5nKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRvIGdlbmVyYXRlIGEgdmFsaWQgbW9kZWwgc3RvcmUgVVJJLCBwbGVhc2UgbG9nIHRoZSBtb2RlbCBiZWZvcmUgcnVubmluZyB0aGlzIGZ1bmN0aW9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgYGVuZHBvaW50X2lkYCBvZiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCBpcyBwcm92aWRlZCwgbWFrZSBzdXJlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGF0IGl0IGhhcyBhIHNpbWlsYXIgbW9kZWwgc3RvcmUgcGF0aCwgb3RoZXJ3aXNlIHRoZSBkcmlmdCBhbmFseXNpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29uJ3QgYmUgdHJpZ2dlcmVkLgogICAgOnBhcmFtIGRyb3BfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICAgQSBzdHJpbmcgLyBpbnRlZ2VyIG9yIGEgbGlzdCBvZiBzdHJpbmdzIC8gaW50ZWdlcnMgdGhhdCByZXByZXNlbnQgdGhlIGNvbHVtbiBuYW1lcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLyBpbmRpY2VzIHRvIGRyb3AuIFdoZW4gdGhlIGRhdGFzZXQgaXMgYSBsaXN0IG9yIGEgbnVtcHkgYXJyYXkgdGhpcyBwYXJhbWV0ZXIgbXVzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmUgcmVwcmVzZW50ZWQgYnkgaW50ZWdlcnMuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQgZm9yIFJlZ3Jlc3Npb24gb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENsYXNzaWZpY2F0aW9uIHRhc2tzLiBUaGUgbGFiZWwgY29sdW1uIGNhbiBiZSBhY2Nlc3NlZCBmcm9tIHRoZSBtb2RlbCBvYmplY3QsIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgZmVhdHVyZSB2ZWN0b3IgcHJvdmlkZWQgaWYgYXZhaWxhYmxlLgogICAgOnBhcmFtIGZlYXR1cmVfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgTGlzdCBvZiBmZWF0dXJlIGNvbHVtbnMgdGhhdCB3aWxsIGJlIHVzZWQgdG8gYnVpbGQgdGhlIGRhdGFmcmFtZSB3aGVuIGRhdGFzZXQgaXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZyb20gdHlwZSBsaXN0IG9yIG51bXB5IGFycmF5LgogICAgOnBhcmFtIGxvZ19yZXN1bHRfc2V0OiAgICAgICAgICAgICAgICAgICAgICAgICAgV2hldGhlciB0byBsb2cgdGhlIHJlc3VsdCBzZXQgLSBhIERhdGFGcmFtZSBvZiB0aGUgZ2l2ZW4gaW5wdXRzIGNvbmNhdGVuYXRlZCB3aXRoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgcHJlZGljdGlvbnMuIERlZmF1bHRlZCB0byBUcnVlLgogICAgOnBhcmFtIHJlc3VsdF9zZXRfbmFtZTogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRiIGtleSB0byBzZXQgbmFtZSBvZiB0aGUgcHJlZGljdGlvbiByZXN1bHQgYW5kIHRoZSBmaWxlbmFtZS4gRGVmYXVsdGVkIHRvCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAncHJlZGljdGlvbicuCiAgICA6cGFyYW0gYmF0Y2hfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgSUQgb2YgdGhlIGdpdmVuIGJhdGNoIChpbmZlcmVuY2UgZGF0YXNldCkuIElmIGBOb25lYCwgaXQgd2lsbCBiZSBnZW5lcmF0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaWxsIGJlIGxvZ2dlZCBhcyBhIHJlc3VsdCBvZiB0aGUgcnVuLgogICAgOnBhcmFtIGFydGlmYWN0c190YWc6ICAgICAgICAgICAgICAgICAgICAgICAgICAgVGFnIHRvIHVzZSBmb3IgYWxsIHRoZSBhcnRpZmFjdHMgcmVzdWx0ZWQgZnJvbSB0aGUgZnVuY3Rpb24gKHJlc3VsdCBzZXQgYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBtb25pdG9yaW5nIGFydGlmYWN0cykKICAgIDpwYXJhbSBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOiAgICAgICAgICAgICAgICAgIFdoZXRoZXIgdG8gcGVyZm9ybSBkcmlmdCBhbmFseXNpcyBiZXR3ZWVuIHRoZSBzYW1wbGUgc2V0IG9mIHRoZSBtb2RlbCBvYmplY3QgdG8gdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhc2V0IGdpdmVuLiBCeSBkZWZhdWx0LCBOb25lLCB3aGljaCBtZWFucyBpdCB3aWxsIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaWYgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBhbHJlYWR5IGhhcyBmZWF0dXJlIHN0YXRzIHRoYXQgYXJlIGNvbnNpZGVyZWQgYXMgYSByZWZlcmVuY2Ugc2FtcGxlIHNldC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMgb24gYSBuZXcgZW5kcG9pbnQgaWQgd2lsbCBnZW5lcmF0ZSBhIG5ldyBtb2RlbCBlbmRwb2ludAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb3JkLiBQbGVhc2Ugbm90ZSB0aGF0IGluIG9yZGVyIHRvIHRyaWdnZXIgdGhlIGRyaWZ0IGFuYWx5c2lzIGpvYiwgeW91IG5lZWQgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNldCBgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj1UcnVlYC4gT3RoZXJ3aXNlLCB0aGUgZHJpZnQgYW5hbHlzaXMgd2lsbCBiZSB0cmlnZ2VyZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkgYXMgcGFydCB0aGUgc2NoZWR1bGVkIG1vbml0b3Jpbmcgam9iIChpZiBleGlzdCBpbiB0aGUgY3VycmVudCBwcm9qZWN0KSBvcgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWYgdHJpZ2dlcmVkIG1hbnVhbGx5IGJ5IHRoZSB1c2VyLgogICAgOnBhcmFtIHRyaWdnZXJfbW9uaXRvcmluZ19qb2I6ICAgICAgICAgICAgICAgICAgV2hldGhlciB0byB0cmlnZ2VyIHRoZSBiYXRjaCBkcmlmdCBhbmFseXNpcyBhZnRlciB0aGUgaW5mZXIgam9iLgogICAgOnBhcmFtIGJhdGNoX2ltYWdlX2pvYjogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGltYWdlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIHJlZ2lzdGVyIHRoZSBtb25pdG9yaW5nIGJhdGNoIGpvYiBpZiBub3QgZXhpc3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCeSBkZWZhdWx0LCB0aGUgaW1hZ2UgaXMgbWxydW4vbWxydW4uCiAgICA6cGFyYW0gZW5kcG9pbnRfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNb2RlbCBlbmRwb2ludCB1bmlxdWUgSUQuIElmIGBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzYCB3YXMgc2V0LCB0aGUgZW5kcG9pbnRfaWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdpbGwgYmUgdXNlZCBlaXRoZXIgdG8gcGVyZm9ybSB0aGUgYW5hbHlzaXMgb24gZXhpc3RpbmcgbW9kZWwgZW5kcG9pbnQgb3IgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVyYXRlIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZC4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9uYW1lOiAgICAgICAgICAgICAgICAgICAgIElmIGEgbmV3IG1vZGVsIGVuZHBvaW50IGlzIGdlbmVyYXRlZCwgdGhlIG1vZGVsIG5hbWUgd2lsbCBiZSBwcmVzZW50ZWQgdW5kZXIgdGhpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kcG9pbnQuCiAgICA6cGFyYW0gbW9kZWxfZW5kcG9pbnRfZHJpZnRfdGhyZXNob2xkOiAgICAgICAgICBUaGUgdGhyZXNob2xkIG9mIHdoaWNoIHRvIG1hcmsgZHJpZnRzLiBEZWZhdWx0ZWQgdG8gMC43LgogICAgOnBhcmFtIG1vZGVsX2VuZHBvaW50X3Bvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZDogVGhlIHRocmVzaG9sZCBvZiB3aGljaCB0byBtYXJrIHBvc3NpYmxlIGRyaWZ0cy4gRGVmYXVsdGVkIHRvIDAuNS4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0OiAgICAgICAgICAgICAgIEEgc2FtcGxlIGRhdGFzZXQgdG8gZ2l2ZSB0byBjb21wYXJlIHRoZSBpbnB1dHMgaW4gdGhlIGRyaWZ0IGFuYWx5c2lzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkgb3IgYXMgYSBwYXJhbWV0ZXIgKGUuZy4gc3RyaW5nLCBsaXN0LCBEYXRhRnJhbWUpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRlZmF1bHQgY2hvc2VuIHNhbXBsZSBzZXQgd2lsbCBhbHdheXMgYmUgdGhlIG9uZSB3aG8gaXMgc2V0IGluIHRoZSBtb2RlbCBhcnRpZmFjdCBpdHNlbGYuCgogICAgcmFpc2VzIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IGlmIGJvdGggYG1vZGVsX3BhdGhgIGFuZCBgZW5kcG9pbnRfaWRgIGFyZSBub3QgcHJvdmlkZWQKICAgICIiIgoKICAgICMgTG9hZGluZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiTG9hZGluZyBtb2RlbC4uLiIpCiAgICBpZiBpc2luc3RhbmNlKG1vZGVsX3BhdGgsIG1scnVuLkRhdGFJdGVtKToKICAgICAgICBtb2RlbF9wYXRoID0gbW9kZWxfcGF0aC5hcnRpZmFjdF91cmwKICAgIGlmIG5vdCBtbHJ1bi5kYXRhc3RvcmUuaXNfc3RvcmVfdXJpKG1vZGVsX3BhdGgpOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBwcm92aWRlZCBtb2RlbCBwYXRoICh7bW9kZWxfcGF0aH0pIGlzIGludmFsaWQgLSBzaG91bGQgc3RhcnQgd2l0aCBgc3RvcmU6Ly9gLiAiCiAgICAgICAgICAgIGYiUGxlYXNlIG1ha2Ugc3VyZSB0aGF0IHlvdSBoYXZlIGxvZ2dlZCB0aGUgbW9kZWwgdXNpbmcgYHByb2plY3QubG9nX21vZGVsKClgICIKICAgICAgICAgICAgZiJ3aGljaCBnZW5lcmF0ZXMgYSB1bmlxdWUgc3RvcmUgdXJpIGZvciB0aGUgbG9nZ2VkIG1vZGVsLiIKICAgICAgICApCiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgaWYgbGFiZWxfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgIG91dHB1dC5uYW1lIGZvciBvdXRwdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5vdXRwdXRzCiAgICAgICAgXQoKICAgIGlmIGZlYXR1cmVfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGZlYXR1cmVfY29sdW1ucyA9IFsKICAgICAgICAgICAgaW5wdXQubmFtZSBmb3IgaW5wdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5pbnB1dHMKICAgICAgICBdCgogICAgIyBHZXQgZGF0YXNldCBieSBvYmplY3QsIFVSTCBvciBieSBGZWF0dXJlVmVjdG9yOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmIkxvYWRpbmcgZGF0YS4uLiIpCiAgICB4LCBsYWJlbF9jb2x1bW5zID0gbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkucmVhZF9kYXRhc2V0X2FzX2RhdGFmcmFtZSgKICAgICAgICBkYXRhc2V0PWRhdGFzZXQsCiAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX2NvbHVtbnMsCiAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICkKCiAgICAjIFByZWRpY3Q6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiQ2FsY3VsYXRpbmcgcHJlZGljdGlvbi4uLiIpCiAgICB5X3ByZWQgPSBtb2RlbF9oYW5kbGVyLm1vZGVsLnByZWRpY3QoeCwgKipwcmVkaWN0X2t3YXJncykKCiAgICAjIFByZXBhcmUgdGhlIHJlc3VsdCBzZXQ6CiAgICByZXN1bHRfc2V0ID0gX3ByZXBhcmVfcmVzdWx0X3NldCh4PXgsIGxhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucywgeV9wcmVkPXlfcHJlZCkKCiAgICAjIENoZWNrIGZvciBsb2dnaW5nIHRoZSByZXN1bHQgc2V0OgogICAgaWYgbG9nX3Jlc3VsdF9zZXQ6CiAgICAgICAgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkubG9nX3Jlc3VsdCgKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICByZXN1bHRfc2V0X25hbWU9cmVzdWx0X3NldF9uYW1lLAogICAgICAgICAgICByZXN1bHRfc2V0PXJlc3VsdF9zZXQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgYmF0Y2hfaWQ9YmF0Y2hfaWQsCiAgICAgICAgKQoKICAgICMgQ2hlY2sgZm9yIHBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMKICAgIGlmICgKICAgICAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyBpcyBOb25lCiAgICAgICAgICAgIGFuZCBtb2RlbF9oYW5kbGVyLl9tb2RlbF9hcnRpZmFjdC5zcGVjLmZlYXR1cmVfc3RhdHMgaXMgbm90IE5vbmUKICAgICk6CiAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyA9IFRydWUKICAgIGlmIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiUGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcy4uLiIpCiAgICAgICAgIyBHZXQgdGhlIHNhbXBsZSBzZXQgc3RhdGlzdGljcyAoZWl0aGVyIGZyb20gdGhlIHNhbXBsZSBzZXQgb3IgZnJvbSB0aGUgc3RhdGlzdGljcyBsb2dnZWQgd2l0aCB0aGUgbW9kZWwpCiAgICAgICAgc3RhdGljc19pbnB1dF9mdWxsX2RpY3QgPSBkaWN0KGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWxfZW5kcG9pbnRfc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9hcnRpZmFjdF9mZWF0dXJlX3N0YXRzPW1vZGVsX2hhbmRsZXIuX21vZGVsX2FydGlmYWN0LnNwZWMuZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxfY29sdW1ucz1sYWJlbF9jb2x1bW5zKQogICAgICAgIHN0YXRpY3NfaW5wdXRfZmlsdGVyZWQgPSBfZ2V0X2dldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3NfcGFyYW1ldGVycygqKnN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0KQogICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcyA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MoKipzdGF0aWNzX2lucHV0X2ZpbHRlcmVkKQogICAgICAgIG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLnJlY29yZF9yZXN1bHRzKAogICAgICAgICAgICBwcm9qZWN0PWNvbnRleHQucHJvamVjdCwKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBlbmRwb2ludF9pZD1lbmRwb2ludF9pZCwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICBtb2RlbF9lbmRwb2ludF9uYW1lPW1vZGVsX2VuZHBvaW50X25hbWUsCiAgICAgICAgICAgIGluZmVyX3Jlc3VsdHNfZGY9cmVzdWx0X3NldC5jb3B5KCksCiAgICAgICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcz1zYW1wbGVfc2V0X3N0YXRpc3RpY3MsCiAgICAgICAgICAgIGRyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIHBvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9wb3NzaWJsZV9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj10cmlnZ2VyX21vbml0b3Jpbmdfam9iLAogICAgICAgICAgICBkZWZhdWx0X2JhdGNoX2ltYWdlPWJhdGNoX2ltYWdlX2pvYiwKICAgICAgICApCg==
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ with_mlrun: false
+ auto_build: false
+ requirements: []
+ entry_points:
+ infer:
+ name: infer
+ doc: 'Perform a prediction on a given dataset with the given model. Please make
+ sure that you have already logged the model
+
+ under the current project.
+
+ Can perform drift analysis between the sample set statistics stored in the
+ model to the current input data. The
+
+ drift rule is the value per-feature mean of the TVD and Hellinger scores according
+ to the thresholds configures
+
+ here. When performing drift analysis, this function either uses an existing
+ model endpoint record or creates
+
+ a new one.
+
+ At the moment, this function is supported for `mlrun>=1.5.0` versions.'
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: MLRun context.
+ - name: dataset
+ type: Union[DataItem, list, dict, DataFrame, Series, ndarray]
+ doc: The dataset to infer through the model. Provided as an input (DataItem)
+ that represents Dataset artifact / Feature vector URI. If using MLRun SDK,
+ `dataset` can also be provided as a list, dictionary or numpy array.
+ - name: model_path
+ type: Union[str, DataItem]
+ doc: Model store uri (should start with store://). Provided as an input (DataItem).
+ If using MLRun SDK, `model_path` can also be provided as a parameter (string).
+ To generate a valid model store URI, please log the model before running
+ this function. If `endpoint_id` of existing model endpoint is provided,
+ make sure that it has a similar model store path, otherwise the drift analysis
+ won't be triggered.
+ - name: drop_columns
+ type: Union[str, List[str], int, List[int]]
+ doc: A string / integer or a list of strings / integers that represent the
+ column names / indices to drop. When the dataset is a list or a numpy array
+ this parameter must be represented by integers.
+ default: null
+ - name: label_columns
+ type: Union[str, List[str]]
+ doc: The target label(s) of the column(s) in the dataset for Regression or
+ Classification tasks. The label column can be accessed from the model object,
+ or the feature vector provided if available.
+ default: null
+ - name: feature_columns
+ type: Union[str, List[str]]
+ doc: List of feature columns that will be used to build the dataframe when
+ dataset is from type list or numpy array.
+ default: null
+ - name: log_result_set
+ type: bool
+ doc: Whether to log the result set - a DataFrame of the given inputs concatenated
+ with the predictions. Defaulted to True.
+ default: true
+ - name: result_set_name
+ type: str
+ doc: The db key to set name of the prediction result and the filename. Defaulted
+ to 'prediction'.
+ default: prediction
+ - name: batch_id
+ type: str
+ doc: The ID of the given batch (inference dataset). If `None`, it will be
+ generated. Will be logged as a result of the run.
+ default: null
+ - name: artifacts_tag
+ type: str
+ doc: Tag to use for all the artifacts resulted from the function (result set
+ and model monitoring artifacts)
+ default: ''
+ - name: perform_drift_analysis
+ type: bool
+ doc: Whether to perform drift analysis between the sample set of the model
+ object to the dataset given. By default, None, which means it will perform
+ drift analysis if the model already has feature stats that are considered
+ as a reference sample set. Performing drift analysis on a new endpoint id
+ will generate a new model endpoint record. Please note that in order to
+ trigger the drift analysis job, you need to set `trigger_monitoring_job=True`.
+ Otherwise, the drift analysis will be triggered only as part the scheduled
+ monitoring job (if exist in the current project) or if triggered manually
+ by the user.
+ default: null
+ - name: trigger_monitoring_job
+ type: bool
+ doc: Whether to trigger the batch drift analysis after the infer job.
+ default: false
+ - name: batch_image_job
+ type: str
+ doc: The image that will be used to register the monitoring batch job if not
+ exist. By default, the image is mlrun/mlrun.
+ default: mlrun/mlrun
+ - name: endpoint_id
+ type: str
+ doc: Model endpoint unique ID. If `perform_drift_analysis` was set, the endpoint_id
+ will be used either to perform the analysis on existing model endpoint or
+ to generate a new model endpoint record.
+ default: ''
+ - name: model_endpoint_name
+ type: str
+ doc: If a new model endpoint is generated, the model name will be presented
+ under this endpoint.
+ default: batch-infer
+ - name: model_endpoint_drift_threshold
+ type: float
+ doc: The threshold of which to mark drifts. Defaulted to 0.7.
+ default: 0.7
+ - name: model_endpoint_possible_drift_threshold
+ type: float
+ doc: The threshold of which to mark possible drifts. Defaulted to 0.5.
+ default: 0.5
+ - name: model_endpoint_sample_set
+ type: Union[DataItem, list, dict, DataFrame, Series, ndarray]
+ doc: A sample dataset to give to compare the inputs in the drift analysis.
+ Can be provided as an input (DataItem) or as a parameter (e.g. string, list,
+ DataFrame). The default chosen sample set will always be the one who is
+ set in the model artifact itself.
+ default: null
+ outputs: []
+ lineno: 97
+ has_varargs: false
+ has_kwargs: true
+ description: Batch inference (also knows as prediction) for the common ML frameworks
+ (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.
+ default_handler: infer
+ disable_auto_mount: false
+ allow_empty_resources: true
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
diff --git a/functions/master/batch_inference_v2/2.5.0/src/item.yaml b/functions/master/batch_inference_v2/2.5.0/src/item.yaml
new file mode 100644
index 00000000..292f3424
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/src/item.yaml
@@ -0,0 +1,32 @@
+apiVersion: v1
+categories:
+- utils
+- data-analysis
+- monitoring
+description: Batch inference (also knows as prediction) for the common ML frameworks
+ (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.
+doc: ''
+example: batch_inference_v2.ipynb
+generationDate: 2023-08-07:12-25
+hidden: false
+icon: ''
+labels:
+ author: eyald
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.5.0
+name: batch_inference_v2
+platformVersion: 3.5.3
+spec:
+ extra_spec:
+ allow_empty_resources: true
+ build:
+ auto_build: false
+ with_mlrun: false
+ filename: batch_inference_v2.py
+ handler: infer
+ image: mlrun/mlrun
+ kind: job
+ requirements: null
+url: ''
+version: 2.5.0
diff --git a/functions/master/batch_inference_v2/2.5.0/src/requirements.txt b/functions/master/batch_inference_v2/2.5.0/src/requirements.txt
new file mode 100644
index 00000000..c9fd306e
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/src/requirements.txt
@@ -0,0 +1,5 @@
+numpy
+pandas
+scikit-learn
+plotly
+xgboost
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/src/test_batch_inference_v2.py b/functions/master/batch_inference_v2/2.5.0/src/test_batch_inference_v2.py
new file mode 100644
index 00000000..cd455b6d
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/src/test_batch_inference_v2.py
@@ -0,0 +1,238 @@
+# Copyright 2019 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+import json
+import os
+import pickle
+import uuid
+import numpy as np
+import pandas as pd
+import pytest
+from sklearn.datasets import make_classification
+from sklearn.tree import DecisionTreeClassifier
+import datetime
+from sklearn.model_selection import train_test_split
+from xgboost import XGBClassifier
+from mlrun.frameworks.sklearn import apply_mlrun
+from mlrun.projects import get_or_create_project
+import mlrun
+import mlrun.common.schemas
+from batch_inference_v2 import infer
+import shutil
+
+REQUIRED_ENV_VARS = [
+ "MLRUN_DBPATH",
+ "V3IO_USERNAME",
+ "V3IO_API",
+ "V3IO_ACCESS_KEY",
+]
+
+
+def _validate_environment_variables() -> bool:
+ """
+ Checks that all required Environment variables are set.
+ """
+ environment_keys = os.environ.keys()
+ return all(key in environment_keys for key in REQUIRED_ENV_VARS)
+
+
+def generate_data(n_samples: int = 5000, n_features: int = 20):
+ # Generate a classification data:
+ x, y = make_classification(n_samples=n_samples, n_features=n_features, n_classes=2)
+
+ # Split the data into a training set and a prediction set:
+ x_train, x_prediction = x[: n_samples // 2], x[n_samples // 2:]
+ y_train = y[: n_samples // 2]
+
+ # Randomly drift some features:
+ x_prediction += np.random.uniform(
+ low=2, high=4, size=x_train.shape
+ ) * np.random.randint(low=0, high=2, size=x_train.shape[1], dtype=int)
+
+ # Initialize dataframes:
+ features = [f"feature_{i}" for i in range(n_features)]
+ training_set = pd.DataFrame(data=x_train, columns=features)
+ training_set.insert(
+ loc=n_features, column="target_label", value=y_train, allow_duplicates=True
+ )
+ prediction_set = pd.DataFrame(data=x_prediction, columns=features)
+
+ return training_set, prediction_set
+
+
+def train(training_set: pd.DataFrame):
+ # Get the data into x, y:
+ labels = pd.DataFrame(training_set["target_label"])
+ training_set.drop(columns=["target_label"], inplace=True)
+
+ # Initialize a model:
+ model = DecisionTreeClassifier()
+
+ # Apply MLRun:
+ apply_mlrun(model=model, model_name="model")
+
+ # Train:
+ model.fit(training_set, labels)
+
+
+def assert_batch_predict(n_features, batch_inference_run):
+ # Check the logged results:
+ assert "batch_id" in batch_inference_run.status.results
+ assert "drift_metric" in batch_inference_run.status.results
+ assert batch_inference_run.status.results["drift_status"] is True
+
+ # Check that 3 artifacts were generated
+ assert len(batch_inference_run.status.artifacts) == 3
+
+ # Check drift table artifact url
+ assert (
+ batch_inference_run.artifact("drift_table_plot").artifact_url
+ == batch_inference_run.outputs["drift_table_plot"]
+ )
+
+ # Check the features drift results json:
+ drift_results_file = batch_inference_run.artifact("features_drift_results").local()
+ with open(drift_results_file, "r") as json_file:
+ drift_results = json.load(json_file)
+ assert len(drift_results) == n_features + 1
+
+
+@pytest.mark.skipif(
+ condition=not _validate_environment_variables(),
+ reason="Project's environment variables are not set",
+)
+def test_batch_predict():
+ project = get_or_create_project(
+ "batch-infer-test", context="./", user_project=True
+ )
+ # Configure test:
+ n_samples = 5000
+ n_features = 20
+
+ # Create the function and run:
+ test_function = mlrun.code_to_function(filename=__file__, kind="job")
+ generate_data_run = test_function.run(
+ handler="generate_data",
+ params={"n_samples": n_samples, "n_features": n_features},
+ returns=["training_set : dataset", "prediction_set : dataset"],
+ local=True,
+ )
+ train_run = test_function.run(
+ handler="train",
+ inputs={"training_set": generate_data_run.outputs["training_set"]},
+ local=True,
+ )
+
+ batch_predict_function = mlrun.import_function("function.yaml")
+ batch_inference_run = batch_predict_function.run(
+ handler="infer",
+ inputs={"dataset": generate_data_run.outputs["prediction_set"]},
+ params={
+ "model_path": train_run.outputs["model"],
+ "label_columns": "target_label",
+ "trigger_monitoring_job": True,
+ "perform_drift_analysis": True,
+ "model_endpoint_drift_threshold": 0.2,
+ "model_endpoint_possible_drift_threshold": 0.1,
+ },
+ local=True,
+ )
+
+ # Check the logged results:
+ assert_batch_predict(n_features=n_features, batch_inference_run=batch_inference_run)
+
+ # Clean resources
+ _delete_project(project=project.metadata.name)
+
+
+@pytest.mark.skipif(
+ condition=not _validate_environment_variables(),
+ reason="Project's environment variables are not set",
+)
+class TestBatchInferUnitTests:
+ @classmethod
+ def setup_class(cls):
+ cls.project_name = "batch-infer-v2-unit-test"
+ cls.infer_artifact_path = "./infer_test_result/"
+
+ def setup_method(self):
+ self.project = get_or_create_project(self.project_name)
+ current_datetime = datetime.datetime.now()
+ datetime_str = current_datetime.strftime("%Y%m%d_%H%M%S")
+ mlrun.runtimes.utils.global_context.set(None)
+ self.context = mlrun.get_or_create_ctx(datetime_str, project=self.project.metadata.name, upload_artifacts=True)
+ self.context.artifact_path = self.infer_artifact_path
+
+ def teardown_method(self):
+ mlrun.get_run_db().delete_project(
+ self.project.metadata.name,
+ deletion_strategy=mlrun.common.schemas.DeletionStrategy.cascade,
+ )
+ if os.path.exists(self.infer_artifact_path):
+ shutil.rmtree(self.infer_artifact_path)
+
+ def _get_model_endpoint_sample_set(self, sample_type, n_features: int = 20):
+ data = generate_data(n_samples=4, n_features=n_features)[0]
+ if sample_type == mlrun.DataItem:
+ artifact = self.project.log_dataset("infer_sample", df=data)
+ return artifact.to_dataitem()
+ elif sample_type == list:
+ return data.values.tolist()
+ elif sample_type == dict:
+ return data.to_dict(orient='list')
+ elif sample_type == pd.DataFrame:
+ return data
+ elif sample_type == np.ndarray:
+ return data.values
+
+ @pytest.mark.parametrize("sample_type", [mlrun.DataItem, list, dict, pd.DataFrame, np.ndarray])
+ def test_infer_sample_types(self, sample_type):
+ n_features = 10
+ training_set, prediction_set = generate_data(n_features=n_features)
+ clf = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective="binary:logistic")
+ x, y = prediction_set, training_set['target_label']
+ x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2, random_state=0)
+ clf.fit(x_train, y_train)
+ train_set_to_log = x_train.join(y_train)
+ model = self.project.log_model(f"model-{uuid.uuid4()}", body=pickle.dumps(clf),
+ model_file=f"model-{uuid.uuid4()}.pkl", framework="xgboost",
+ training_set=train_set_to_log, label_column="target_label")
+
+ dataset = self.project.log_dataset(f"dataset-{uuid.uuid4()}", df=x_test)
+ z_test = train_set_to_log * 5
+ model_endpoint_sample_set = self.project.log_dataset(f"model-endpoint-sample-set{uuid.uuid4()}", df=z_test)
+
+ sample = self._get_model_endpoint_sample_set(
+ sample_type=sample_type, n_features=n_features)
+ infer(context=self.context,
+ dataset=dataset.to_dataitem().as_df(), model_path=model.uri,
+ model_endpoint_sample_set=sample,
+ feature_columns=list(model_endpoint_sample_set.to_dataitem().as_df().columns),
+ label_columns="target_label",
+ model_endpoint_name=f"model-endpoint-name-{uuid.uuid4()}",
+ trigger_monitoring_job=True,
+ perform_drift_analysis=True,
+ model_endpoint_drift_threshold=0.7,
+ model_endpoint_possible_drift_threshold=0.5)
+ # a workaround until ML-4636 will be solved.
+ batch_inference_run = self.project.list_runs(name=self.context.name).to_objects()[0]
+ mlrun.get_run_db().update_run(updates={"status.state": "completed"}, uid=batch_inference_run.uid())
+ assert_batch_predict(n_features=n_features, batch_inference_run=batch_inference_run)
+
+
+def _delete_project(project: str):
+ mlrun.get_run_db().delete_project(
+ project,
+ deletion_strategy=mlrun.common.schemas.DeletionStrategy.cascading,
+ )
diff --git a/functions/master/batch_inference_v2/2.5.0/static/batch_inference_v2.html b/functions/master/batch_inference_v2/2.5.0/static/batch_inference_v2.html
new file mode 100644
index 00000000..e2d585c4
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/static/batch_inference_v2.html
@@ -0,0 +1,408 @@
+
+
+
+
+
+
+
+batch_inference_v2.batch_inference_v2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Source code for batch_inference_v2.batch_inference_v2
+# Copyright 2023 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from inspect import signature
+from typing import Any , Dict , List , Union , Optional
+import mlrun
+
+try :
+ import mlrun.model_monitoring.api
+except ModuleNotFoundError :
+ raise mlrun . errors . MLRunNotFoundError (
+ f "Please update your `mlrun` version to >=1.5.0 or use an "
+ f "older version of the batch inference function."
+ )
+
+import numpy as np
+import pandas as pd
+from mlrun.frameworks.auto_mlrun import AutoMLRun
+
+
+def _prepare_result_set ( x : pd . DataFrame , label_columns : List [ str ], y_pred : np . ndarray ) -> pd . DataFrame :
+ """
+ Set default label column names and validate given names to prepare the result set - a concatenation of the inputs
+ (x) and the model predictions (y_pred).
+
+ :param x: The inputs.
+ :param label_columns: A list of strings representing the target column names to add to the predictions. Default name
+ will be used in case the list is empty (predicted_label_{i}).
+ :param y_pred: The model predictions on the inputs.
+
+ :returns: The result set.
+
+ raises MLRunInvalidArgumentError: If the labels columns amount do not match the outputs or if one of the label
+ column already exists in the dataset.
+ """
+ # Prepare default target columns names if not provided:
+ prediction_columns_amount = 1 if len ( y_pred . shape ) == 1 else y_pred . shape [ 1 ]
+ if len ( label_columns ) == 0 :
+ # Add default label column names:
+ if prediction_columns_amount == 1 :
+ label_columns = [ "predicted_label" ]
+ else :
+ label_columns = [
+ f "predicted_label_ { i } " for i in range ( prediction_columns_amount )
+ ]
+
+ # Validate the label columns:
+ if prediction_columns_amount != len ( label_columns ):
+ # No equality between provided label column names and outputs amount:
+ raise mlrun . errors . MLRunInvalidArgumentError (
+ f "The number of predicted labels: { prediction_columns_amount } "
+ f "is not equal to the given label columns: { len ( label_columns ) } "
+ )
+ common_labels = set ( label_columns ) & set ( x . columns . tolist ())
+ if common_labels :
+ # Label column exist in the original inputs:
+ raise mlrun . errors . MLRunInvalidArgumentError (
+ f "The labels: { common_labels } are already existed in the given dataset."
+ )
+
+ return pd . concat (
+ [ x , pd . DataFrame ( y_pred , columns = label_columns , index = x . index )], axis = 1
+ )
+
+
+def _get_sample_set_statistics_parameters ( context : mlrun . MLClientCtx ,
+ model_endpoint_sample_set : Union [
+ mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray ],
+ model_artifact_feature_stats : dict ,
+ feature_columns : Optional [ List ],
+ drop_columns : Optional [ List ],
+ label_columns : Optional [ List ]) -> Dict [ str , Any ]:
+ statics_input_full_dict = dict ( sample_set = model_endpoint_sample_set ,
+ model_artifact_feature_stats = model_artifact_feature_stats ,
+ sample_set_columns = feature_columns ,
+ sample_set_drop_columns = drop_columns ,
+ sample_set_label_columns = label_columns )
+ get_sample_statics_function = mlrun . model_monitoring . api . get_sample_set_statistics
+ statics_function_input_dict = signature ( get_sample_statics_function ) . parameters
+ # As a result of changes to input parameters in the mlrun-get_sample_set_statistics function,
+ # we will now send only the parameters it expects.
+ statistics_input_filtered = { key : statics_input_full_dict [ key ] for key in statics_function_input_dict }
+ if len ( statistics_input_filtered ) != len ( statics_function_input_dict ):
+ context . logger . warning ( f "get_sample_set_statistics is in an older version; "
+ "some parameters will not be sent to the function."
+ f " Expected input: { list ( statics_function_input_dict . keys ()) } ,"
+ f " actual input: { list ( statistics_input_filtered . keys ()) } " )
+ return statistics_input_filtered
+
+
+[docs] def infer (
+
context : mlrun . MLClientCtx ,
+
dataset : Union [ mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray ],
+
model_path : Union [ str , mlrun . DataItem ],
+
drop_columns : Union [ str , List [ str ], int , List [ int ]] = None ,
+
label_columns : Union [ str , List [ str ]] = None ,
+
feature_columns : Union [ str , List [ str ]] = None ,
+
log_result_set : bool = True ,
+
result_set_name : str = "prediction" ,
+
batch_id : str = None ,
+
artifacts_tag : str = "" ,
+
# Drift analysis parameters
+
perform_drift_analysis : bool = None ,
+
trigger_monitoring_job : bool = False ,
+
batch_image_job : str = "mlrun/mlrun" ,
+
endpoint_id : str = "" ,
+
# The following model endpoint parameters are relevant only if:
+
# perform drift analysis is not disabled
+
# a new model endpoint record is going to be generated
+
model_endpoint_name : str = "batch-infer" ,
+
model_endpoint_drift_threshold : float = 0.7 ,
+
model_endpoint_possible_drift_threshold : float = 0.5 ,
+
model_endpoint_sample_set : Union [
+
mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray
+
] = None ,
+
** predict_kwargs : Dict [ str , Any ],
+
):
+
"""
+
Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
+
under the current project.
+
Can perform drift analysis between the sample set statistics stored in the model to the current input data. The
+
drift rule is the value per-feature mean of the TVD and Hellinger scores according to the thresholds configures
+
here. When performing drift analysis, this function either uses an existing model endpoint record or creates
+
a new one.
+
At the moment, this function is supported for `mlrun>=1.5.0` versions.
+
+
:param context: MLRun context.
+
:param dataset: The dataset to infer through the model. Provided as an input (DataItem)
+
that represents Dataset artifact / Feature vector URI.
+
If using MLRun SDK, `dataset` can also be provided as a list, dictionary or
+
numpy array.
+
:param model_path: Model store uri (should start with store://). Provided as an input (DataItem).
+
If using MLRun SDK, `model_path` can also be provided as a parameter (string).
+
To generate a valid model store URI, please log the model before running this function.
+
If `endpoint_id` of existing model endpoint is provided, make sure
+
that it has a similar model store path, otherwise the drift analysis
+
won't be triggered.
+
:param drop_columns: A string / integer or a list of strings / integers that represent the column names
+
/ indices to drop. When the dataset is a list or a numpy array this parameter must
+
be represented by integers.
+
:param label_columns: The target label(s) of the column(s) in the dataset for Regression or
+
Classification tasks. The label column can be accessed from the model object, or
+
the feature vector provided if available.
+
:param feature_columns: List of feature columns that will be used to build the dataframe when dataset is
+
from type list or numpy array.
+
:param log_result_set: Whether to log the result set - a DataFrame of the given inputs concatenated with
+
the predictions. Defaulted to True.
+
:param result_set_name: The db key to set name of the prediction result and the filename. Defaulted to
+
'prediction'.
+
:param batch_id: The ID of the given batch (inference dataset). If `None`, it will be generated.
+
Will be logged as a result of the run.
+
:param artifacts_tag: Tag to use for all the artifacts resulted from the function (result set and
+
model monitoring artifacts)
+
:param perform_drift_analysis: Whether to perform drift analysis between the sample set of the model object to the
+
dataset given. By default, None, which means it will perform drift analysis if the
+
model already has feature stats that are considered as a reference sample set.
+
Performing drift analysis on a new endpoint id will generate a new model endpoint
+
record. Please note that in order to trigger the drift analysis job, you need to
+
set `trigger_monitoring_job=True`. Otherwise, the drift analysis will be triggered
+
only as part the scheduled monitoring job (if exist in the current project) or
+
if triggered manually by the user.
+
:param trigger_monitoring_job: Whether to trigger the batch drift analysis after the infer job.
+
:param batch_image_job: The image that will be used to register the monitoring batch job if not exist.
+
By default, the image is mlrun/mlrun.
+
:param endpoint_id: Model endpoint unique ID. If `perform_drift_analysis` was set, the endpoint_id
+
will be used either to perform the analysis on existing model endpoint or to
+
generate a new model endpoint record.
+
:param model_endpoint_name: If a new model endpoint is generated, the model name will be presented under this
+
endpoint.
+
:param model_endpoint_drift_threshold: The threshold of which to mark drifts. Defaulted to 0.7.
+
:param model_endpoint_possible_drift_threshold: The threshold of which to mark possible drifts. Defaulted to 0.5.
+
:param model_endpoint_sample_set: A sample dataset to give to compare the inputs in the drift analysis.
+
Can be provided as an input (DataItem) or as a parameter (e.g. string, list, DataFrame).
+
The default chosen sample set will always be the one who is set in the model artifact itself.
+
+
raises MLRunInvalidArgumentError: if both `model_path` and `endpoint_id` are not provided
+
"""
+
+
# Loading the model:
+
context . logger . info ( f "Loading model..." )
+
if isinstance ( model_path , mlrun . DataItem ):
+
model_path = model_path . artifact_url
+
if not mlrun . datastore . is_store_uri ( model_path ):
+
raise mlrun . errors . MLRunInvalidArgumentError (
+
f "The provided model path ( { model_path } ) is invalid - should start with `store://`. "
+
f "Please make sure that you have logged the model using `project.log_model()` "
+
f "which generates a unique store uri for the logged model."
+
)
+
model_handler = AutoMLRun . load_model ( model_path = model_path , context = context )
+
+
if label_columns is None :
+
label_columns = [
+
output . name for output in model_handler . _model_artifact . spec . outputs
+
]
+
+
if feature_columns is None :
+
feature_columns = [
+
input . name for input in model_handler . _model_artifact . spec . inputs
+
]
+
+
# Get dataset by object, URL or by FeatureVector:
+
context . logger . info ( f "Loading data..." )
+
x , label_columns = mlrun . model_monitoring . api . read_dataset_as_dataframe (
+
dataset = dataset ,
+
feature_columns = feature_columns ,
+
label_columns = label_columns ,
+
drop_columns = drop_columns ,
+
)
+
+
# Predict:
+
context . logger . info ( f "Calculating prediction..." )
+
y_pred = model_handler . model . predict ( x , ** predict_kwargs )
+
+
# Prepare the result set:
+
result_set = _prepare_result_set ( x = x , label_columns = label_columns , y_pred = y_pred )
+
+
# Check for logging the result set:
+
if log_result_set :
+
mlrun . model_monitoring . api . log_result (
+
context = context ,
+
result_set_name = result_set_name ,
+
result_set = result_set ,
+
artifacts_tag = artifacts_tag ,
+
batch_id = batch_id ,
+
)
+
+
# Check for performing drift analysis
+
if (
+
perform_drift_analysis is None
+
and model_handler . _model_artifact . spec . feature_stats is not None
+
):
+
perform_drift_analysis = True
+
if perform_drift_analysis :
+
context . logger . info ( "Performing drift analysis..." )
+
# Get the sample set statistics (either from the sample set or from the statistics logged with the model)
+
statistics_input_filtered = _get_sample_set_statistics_parameters (
+
context = context ,
+
model_endpoint_sample_set = model_endpoint_sample_set ,
+
model_artifact_feature_stats = model_handler . _model_artifact . spec . feature_stats ,
+
feature_columns = feature_columns ,
+
drop_columns = drop_columns ,
+
label_columns = label_columns )
+
sample_set_statistics = mlrun . model_monitoring . api . get_sample_set_statistics ( ** statistics_input_filtered )
+
mlrun . model_monitoring . api . record_results (
+
project = context . project ,
+
context = context ,
+
endpoint_id = endpoint_id ,
+
model_path = model_path ,
+
model_endpoint_name = model_endpoint_name ,
+
infer_results_df = result_set . copy (),
+
sample_set_statistics = sample_set_statistics ,
+
drift_threshold = model_endpoint_drift_threshold ,
+
possible_drift_threshold = model_endpoint_possible_drift_threshold ,
+
artifacts_tag = artifacts_tag ,
+
trigger_monitoring_job = trigger_monitoring_job ,
+
default_batch_image = batch_image_job ,
+
)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/static/documentation.html b/functions/master/batch_inference_v2/2.5.0/static/documentation.html
new file mode 100644
index 00000000..7408f46a
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/static/documentation.html
@@ -0,0 +1,288 @@
+
+
+
+
+
+
+
+batch_inference_v2 package
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
batch_inference_v2 package
+
+
+
+
+
+
+batch_inference_v2 package
+
+
+batch_inference_v2.batch_inference_v2 module
+
+
+batch_inference_v2.batch_inference_v2. infer ( context : mlrun.execution.MLClientCtx , dataset : Union [ mlrun.datastore.base.DataItem , list , dict , pandas.core.frame.DataFrame , pandas.core.series.Series , numpy.ndarray ] , model_path : Union [ str , mlrun.datastore.base.DataItem ] , drop_columns : Optional [ Union [ str , List [ str ] , int , List [ int ] ] ] = None , label_columns : Optional [ Union [ str , List [ str ] ] ] = None , feature_columns : Optional [ Union [ str , List [ str ] ] ] = None , log_result_set : bool = True , result_set_name : str = 'prediction' , batch_id : Optional [ str ] = None , artifacts_tag : str = '' , perform_drift_analysis : Optional [ bool ] = None , trigger_monitoring_job : bool = False , batch_image_job : str = 'mlrun/mlrun' , endpoint_id : str = '' , model_endpoint_name : str = 'batch-infer' , model_endpoint_drift_threshold : float = 0.7 , model_endpoint_possible_drift_threshold : float = 0.5 , model_endpoint_sample_set : Optional [ Union [ mlrun.datastore.base.DataItem , list , dict , pandas.core.frame.DataFrame , pandas.core.series.Series , numpy.ndarray ] ] = None , ** predict_kwargs : Dict [ str , Any ] ) [source]
+Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
+under the current project.
+Can perform drift analysis between the sample set statistics stored in the model to the current input data. The
+drift rule is the value per-feature mean of the TVD and Hellinger scores according to the thresholds configures
+here. When performing drift analysis, this function either uses an existing model endpoint record or creates
+a new one.
+At the moment, this function is supported for mlrun>=1.5.0 versions.
+
+Parameters
+
+context – MLRun context.
+dataset – The dataset to infer through the model. Provided as an input (DataItem)
+that represents Dataset artifact / Feature vector URI.
+If using MLRun SDK, dataset can also be provided as a list, dictionary or
+numpy array.
+model_path – Model store uri (should start with store://). Provided as an input (DataItem).
+If using MLRun SDK, model_path can also be provided as a parameter (string).
+To generate a valid model store URI, please log the model before running this function.
+If endpoint_id of existing model endpoint is provided, make sure
+that it has a similar model store path, otherwise the drift analysis
+won’t be triggered.
+drop_columns – A string / integer or a list of strings / integers that represent the column names
+/ indices to drop. When the dataset is a list or a numpy array this parameter must
+be represented by integers.
+label_columns – The target label(s) of the column(s) in the dataset for Regression or
+Classification tasks. The label column can be accessed from the model object, or
+the feature vector provided if available.
+feature_columns – List of feature columns that will be used to build the dataframe when dataset is
+from type list or numpy array.
+log_result_set – Whether to log the result set - a DataFrame of the given inputs concatenated with
+the predictions. Defaulted to True.
+result_set_name – The db key to set name of the prediction result and the filename. Defaulted to
+‘prediction’.
+batch_id – The ID of the given batch (inference dataset). If None , it will be generated.
+Will be logged as a result of the run.
+artifacts_tag – Tag to use for all the artifacts resulted from the function (result set and
+model monitoring artifacts)
+perform_drift_analysis – Whether to perform drift analysis between the sample set of the model object to the
+dataset given. By default, None, which means it will perform drift analysis if the
+model already has feature stats that are considered as a reference sample set.
+Performing drift analysis on a new endpoint id will generate a new model endpoint
+record. Please note that in order to trigger the drift analysis job, you need to
+set trigger_monitoring_job=True . Otherwise, the drift analysis will be triggered
+only as part the scheduled monitoring job (if exist in the current project) or
+if triggered manually by the user.
+trigger_monitoring_job – Whether to trigger the batch drift analysis after the infer job.
+batch_image_job – The image that will be used to register the monitoring batch job if not exist.
+By default, the image is mlrun/mlrun.
+endpoint_id – Model endpoint unique ID. If perform_drift_analysis was set, the endpoint_id
+will be used either to perform the analysis on existing model endpoint or to
+generate a new model endpoint record.
+model_endpoint_name – If a new model endpoint is generated, the model name will be presented under this
+endpoint.
+model_endpoint_drift_threshold – The threshold of which to mark drifts. Defaulted to 0.7.
+model_endpoint_possible_drift_threshold – The threshold of which to mark possible drifts. Defaulted to 0.5.
+model_endpoint_sample_set – A sample dataset to give to compare the inputs in the drift analysis.
+Can be provided as an input (DataItem) or as a parameter (e.g. string, list, DataFrame).
+The default chosen sample set will always be the one who is set in the model artifact itself.
+
+
+
+raises MLRunInvalidArgumentError: if both model_path and endpoint_id are not provided
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/static/example.html b/functions/master/batch_inference_v2/2.5.0/static/example.html
new file mode 100644
index 00000000..6c20cccf
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/static/example.html
@@ -0,0 +1,2131 @@
+
+
+
+
+
+
+
+Batch Inference V2
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Toggle navigation sidebar
+
+
+
+
+Toggle in-page Table of Contents
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Batch Inference V2
+
+
+
+
+
+
+Batch Inference V2
+A function for inferring given input through a given model while producing a Result Set and performing Data Drift Analysis .
+In this notebook we will go over the function’s docs and outputs and see an end-to-end example of running it.
+
+Documentation
+Results Prediction
+Data Drift Analysis
+End-to-end Demo
+
+
+
+1. Documentation
+Perform a prediction on a given dataset with the given model. Can perform drift analysis between the sample set
+statistics stored in the model to the current input data. The drift rule is the value per-feature mean of the TVD
+and Hellinger scores according to the thresholds configures here. When performing drift analysis, this function
+either creates or update an existing model endpoint record (depends on the provided endpoint_id
).
+At the moment, this function is supported for mlrun>=1.5.0
versions.
+
+1.1. Parameters:
+
+1.1.1 Batch Infer Parameters:
+
+context : mlrun.MLClientCtx
+An MLRun context.
+
+dataset : Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray]
+The dataset to infer through the model.
+
+Can be passed in inputs
as a dataset artifact / Feature vector URI.
+Or, in parameters
as a list, dictionary or numpy array.
+
+
+model_path : Union[str, mlrun.DataItem]
+Model store uri (should start with store://). Provided as an input (DataItem). To generate a valid model store URI, please log the model before running this function. If endpoint_id
of existing model endpoint is provided, make sure that it has a similar model store path, otherwise the drift analysis won’t be triggered.
+
+drop_columns : Union[str, List[str], int, List[int]]
= None
+A string / integer or a list of strings / integers that represent the column names / indices to drop. When the dataset is a list or a numpy array this parameter must be represented by integers.
+
+label_columns : Union[str, List[str]]
= None
+The target label(s) of the column(s) in the dataset. These names will be used as the column names for the predictions. The label column can be accessed from the model object, or the feature vector provided if available. The default name is "predicted_label_i"
for the i
column.
+
+feature_columns : Union[str, List[str]]
= None
+List of feature columns that will be used to build the dataframe when dataset is
+from type list or numpy array.
+
+log_result_set : str
= True
+Whether to log the result set - a DataFrame of the given inputs concatenated with the predictions. Defaulted to True
.
+
+result_set_name : str
= "prediction"
+The db key to set name of the prediction result and the filename. Defaulted to "prediction"
.
+
+batch_id : str
= None
+The ID of the given batch (inference dataset). If None
, it will be generated. Will be logged as a result of the run.
+
+artifacts_tag : str
= ""
+Tag to use for all the artifacts resulted from the function. Defaulted to no tag.
+
+
+
+
+1.1.2 Drift Analysis Parameters:
+
+perform_drift_analysis : bool
= None
+Whether to perform drift analysis between the sample set of the model object to the
+dataset given. By default, None, which means it will perform drift analysis if the
+model already has feature stats that are considered as a reference sample set.
+Performing drift analysis on a new endpoint id will generate a new model endpoint
+record. Please note that in order to trigger the drift analysis job, you need to
+set trigger_monitoring_job=True
. Otherwise, the drift analysis will be triggered
+only as part the scheduled monitoring job (if exist in the current project) or
+if triggered manually by the user.
+
+trigger_monitoring_job : bool
= False
+Whether to trigger the batch drift analysis after the infer job.
+
+batch_image_job : str
= mlrun/mlrun
+The image that will be used for the monitoring batch job analysis. By default,
+the image is mlrun/mlrun
+
+endpoint_id : str
= ""
+Model endpoint unique ID. If perform_drift_analysis
was set, the endpoint_id
+will be used either to perform the analysis on existing model endpoint or to
+generate a new model endpoint record.
+
+
+
+
+1.1.3 New Model Endpoint Parameters:
+
+model_endpoint_name : str
= "batch-infer"
+If a new model endpoint is generated, the model name will be presented under this endpoint.
+
+model_endpoint_drift_threshold : float
= 0.7
+The threshold of which to mark drifts. Defaulted to 0.7.
+
+model_endpoint_possible_drift_threshold : float
= 0.5
+The threshold of which to mark possible drifts. Defaulted to 0.5.
+
+model_endpoint_sample_set : Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray]
= None
+A sample dataset to give to compare the inputs in the drift analysis. Can be provided as an input or as a parameter. The default chosen sample
+set will always be the one who is set in the model artifact itself.
+
+
+
+
+
+1.2. Outputs
+The outputs are split to two actions the functions can perform:
+
+For more details, see the next chapters.
+
+
+
+
+2. Results Prediction
+The result set is a concatenated dataset of the inputs ($X$) provided and the predictions ($Y$) yielded by the model, so it will be $X | Y$.
+For example, if the dataset
given as inputs was:
+
+
+x1
+x2
+x3
+x4
+x5
+
+
+
+…
+…
+…
+…
+…
+
+…
+…
+…
+…
+…
+
+…
+…
+…
+…
+…
+
+
+
+And the outputs yielded by the model’s prediction was:
+
+
+y1
+y2
+
+
+
+…
+…
+
+…
+…
+
+…
+…
+
+
+
+Then the result set will be:
+
+
+x1
+x2
+x3
+x4
+x5
+y1
+y2
+
+
+
+…
+…
+…
+…
+…
+…
+…
+
+…
+…
+…
+…
+…
+…
+…
+
+…
+…
+…
+…
+…
+…
+…
+
+
+
+In case the parameter log_result_set
is True
, the outputs of the results prediction will be:
+
+The result set as described above.
+The batch ID result - batch_id
: str
- a hashing result that is given by the user or generated randomly in case it was not provided to represent the batch that was being inferred.
+{
+ "batch_id" : "884a0cb00d8ae16d132dd8259aac29aa78f50a9245d0e4bd58cfbf77" ,
+}
+
+
+
+
+
+
+
+3. Data Drift Analysis
+The data drift analysis is done per feature using two distance measure metrics for probability distributions.
+Let us mark our sample set as $S$ and our inputs as $I$. We will look at one feature $x$ out of $n$ features. Assuming the histograms of feature $x$ is split into 20 bins: $b_1,b_2,…,b_{20}$, we will match the feature $x$ histogram of the inputs $I$ ($x_I$) into the same bins (meaning to $x_S$) and compare their distributions using:
+
+Total Variance Distance: $TVD(x_S,x_I) = \frac{1}{2}\sum_{b_1}^{b_{20}} {|x_S - x_I|}$
+Hellinger Distance: $H(x_S,x_I) = \sqrt{1-{\sum_{b_1}^{b_{20}}\sqrt{x_S \cdot x_I}}}$
+
+Our rule then is calculating for each $x\in S: \frac{H(x_S,x_I)+TVD(x_S,x_I)}{2} < $ given thresholds.
+The outputs of the analysis will be:
+
+
+
+
+Count
+
+Mean
+
+Std
+
+Min
+
+Max
+
+Tvd
+Hellinger
+Kld
+Histograms
+
+
+
+
+Sample
+Input
+Sample
+Input
+Sample
+Input
+Sample
+Input
+Sample
+Input
+
+
+
+
+
+x1
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+
+x2
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+
+x3
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+…
+
+
+
+
+Features drift results - A rule metric per feature dictionary is saved in a json file named "features_drift_results"
where each key is a feature and its value is the feature’s metric value: Dict[str, float]
+{
+ "x1" : 0.12 ,
+ "x2" : 0.345 ,
+ "x3" : 0.00678 ,
+ ...
+}
+
+
+
+In addition, two results are being added to summarize the drift analysis:
+
+drift_status
: bool
- A boolean value indicating whether a drift was found.
+drift_metric
: float
- The mean of all the features drift metric value (the rule above):
+for $n$ features and metric rule $M(x_S,x_I)=\frac{H(x_S,x_I)+TVD(x_S,x_I)}{2}$, drift_metric
$=\frac{1}{n}\sum_{x\in S}M(x_S,x_I)$
+
+{
+ "drift_status" : True ,
+ "drift_metric" : 0.81234
+}
+
+
+
+
+
+
+
+4. End-to-end Demo
+We will see an end-to-end example that follows the steps below:
+
+Generate data.
+Train a model.
+Infer data through the model using batch_predict
and review the outputs.
+
+
+4.1. Code review
+We are using a very simple example of training a decision tree on a binary classification problem. For that we wrote two functions:
+
+generate_data
- Generate a binary classification data. The data will be split into a training set and data for prediction . The data for prediction will be drifted in half of its features to showcase the plot later on.
+train
- Train a decision tree classifier on a given data.
+
+
+
+
+
> 2023-08-29 11:13:44,649 [warning] Failed resolving version info. Ignoring and using defaults
+> 2023-08-29 11:13:46,598 [warning] Server or client version is unstable. Assuming compatible: {'server_version': '0.0.0+image-test', 'client_version': '0.0.0+unstable'}
+> 2023-08-29 11:13:46,667 [info] Loading project from path: {'project_name': 'batch-infer-demo', 'path': './'}
+> 2023-08-29 11:14:02,192 [info] Project loaded successfully: {'project_name': 'batch-infer-demo', 'path': './', 'stored_in_db': True}
+
+
+
+
+
+
+
+
+
+
+4.2. Run the Example with MLRun
+First, we will prepare our MLRun functions:
+
+We will use mlrun.code_to_function
to turn this demo notebook into an MLRun function we can run.
+We will use mlrun.import_function
to import the batch_predict
function .
+
+
+
+
+
> 2023-08-29 11:14:04,182 [warning] Failed to add git metadata, ignore if path is not part of a git repo.: {'path': './', 'error': '/User/EYAL'}
+
+
+
+
+Now, we will follow the demo steps as discussed above:
+
+
+
+
> 2023-08-29 11:14:42,198 [warning] artifact/output path is not defined or is local and relative, artifacts will not be visible in the UI: {'output_path': './'}
+> 2023-08-29 11:14:42,198 [info] Storing function: {'name': 'batch-inference-demo-generate-data', 'uid': 'd04e9f978132472695774f01b2becb6c', 'db': None}
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+batch-infer-demo
+
+0
+Aug 29 11:14:42
+completed
+batch-inference-demo-generate-data
+v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-69ff7bc987-9fmj4
+
+
+
+training_set
prediction_set
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2023-08-29 11:14:44,943 [info] Run execution finished: {'status': 'completed', 'name': 'batch-inference-demo-generate-data'}
+> 2023-08-29 11:14:44,945 [warning] artifact/output path is not defined or is local and relative, artifacts will not be visible in the UI: {'output_path': './'}
+> 2023-08-29 11:14:44,946 [info] Storing function: {'name': 'batch-inference-demo-train', 'uid': 'c0a23b01a8ac4b36b78c6066780df84d', 'db': None}
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+batch-infer-demo
+
+0
+Aug 29 11:14:45
+completed
+batch-inference-demo-train
+v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-69ff7bc987-9fmj4
+training_set
+
+
+model
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2023-08-29 11:14:45,967 [info] Run execution finished: {'status': 'completed', 'name': 'batch-inference-demo-train'}
+> 2023-08-29 11:14:45,971 [warning] artifact/output path is not defined or is local and relative, artifacts will not be visible in the UI: {'output_path': './'}
+> 2023-08-29 11:14:45,971 [info] Storing function: {'name': 'batch-inference-demo-infer', 'uid': 'b4ff7a15a7594058ba3e5900546c8a4d', 'db': None}
+> 2023-08-29 11:14:46,230 [info] Loading model...
+> 2023-08-29 11:14:46,255 [info] Loading data...
+> 2023-08-29 11:14:46,264 [info] Calculating prediction...
+> 2023-08-29 11:14:46,268 [info] Logging result set (x | prediction)...
+> 2023-08-29 11:14:46,560 [info] Performing drift analysis...
+> 2023-08-29 11:14:48,232 [info] Storing function: {'name': 'model-monitoring-batch', 'uid': '54146baa72334a6aab0dc9d6ed3294b0', 'db': 'http://mlrun-api:8080'}
+> 2023-08-29 11:14:48,480 [info] Job is running in the background, pod: model-monitoring-batch-klkxx
+> 2023-08-29 11:15:03,762 [warning] Server or client version is unstable. Assuming compatible: {'server_version': '0.0.0+image-test', 'client_version': '0.0.0+image-test'}
+> 2023-08-29 11:15:03,907 [info] Initializing BatchProcessor: {'project': 'batch-infer-demo'}
+This will be deprecated in 1.3.0, and will be removed in 1.5.0
+divide by zero encountered in log
+> 2023-08-29 11:15:04,332 [info] Drift result: {'drift_result': defaultdict(<class 'dict'>, {'feature_5': {'tvd': 0.0434, 'hellinger': 0.05100089784945347, 'kld': 0.014494998206659872}, 'tvd_sum': 8.5102, 'tvd_mean': 0.405247619047619, 'hellinger_sum': 10.300052681268772, 'hellinger_mean': 0.49047869910803676, 'kld_sum': 62.6616191196174, 'kld_mean': 2.9838866247436857, 'feature_2': {'tvd': 0.02459999999999999, 'hellinger': 0.030899816438305312, 'kld': 0.006057604919573473}, 'feature_19': {'tvd': 0.7218000000000002, 'hellinger': 0.7922489156563376, 'kld': 5.537308189437186}, 'label': {'tvd': 0.24960000000000002, 'hellinger': 0.18384462140440389, 'kld': 0.27238393060366317}, 'feature_17': {'tvd': 0.647, 'hellinger': 0.798114529629571, 'kld': 4.721655573957096}, 'feature_16': {'tvd': 0.5, 'hellinger': 1.0, 'kld': 6.647696602384231}, 'feature_4': {'tvd': 0.652, 'hellinger': 0.7890180560465803, 'kld': 4.724331880103662}, 'feature_10': {'tvd': 0.6936, 'hellinger': 0.798649085236416, 'kld': 5.143133985824956}, 'feature_18': {'tvd': 0.029800000000000004, 'hellinger': 0.04016200720162751, 'kld': 0.010300448066673708}, 'feature_1': {'tvd': 0.6028, 'hellinger': 0.8034907163435347, 'kld': 4.375985111186623}, 'feature_0': {'tvd': 0.036800000000000006, 'hellinger': 0.038468796584326524, 'kld': 0.01082520912974786}, 'feature_12': {'tvd': 0.6426000000000001, 'hellinger': 0.7881935479078817, 'kld': 4.434165973058529}, 'feature_15': {'tvd': 0.05080000000000001, 'hellinger': 0.05278865255294484, 'kld': 0.02081902282461378}, 'feature_7': {'tvd': 0.6878, 'hellinger': 0.7901987054573444, 'kld': 5.043243793527386}, 'feature_3': {'tvd': 0.035600000000000014, 'hellinger': 0.04663589029042092, 'kld': 0.014301909461766606}, 'feature_14': {'tvd': 0.04439999999999999, 'hellinger': 0.06309191719567614, 'kld': 0.021311623053023344}, 'feature_9': {'tvd': 0.0424, 'hellinger': 0.05342675000294549, 'kld': 0.020325699772498724}, 'feature_8': {'tvd': 0.6944, 'hellinger': 0.7972137555552585, 'kld': 5.385980028089341}, 'feature_11': {'tvd': 0.7078, 'hellinger': 0.7934880907740085, 'kld': 5.3956608599070055}, 'feature_13': {'tvd': 0.6986, 'hellinger': 0.8067455940744085, 'kld': 5.650553956005931}, 'feature_6': {'tvd': 0.7043999999999999, 'hellinger': 0.7823723350673265, 'kld': 5.211082720097231}})}
+> 2023-08-29 11:15:04,333 [info] Drift status: {'endpoint_id': '80daa6376087b987a2e8d97b4850772fee6ff503', 'drift_status': 'DRIFT_DETECTED', 'drift_measure': 0.4478631590778279}
+> 2023-08-29 11:15:04,345 [warning] Could not write drift measures to TSDB: {'err': Error("cannot call API - write error: backend Write failed: failed to create adapter: No TSDB schema file found at 'v3io-webapi:8081/users/pipelines/batch-infer-demo/model-endpoints/events/'."), 'tsdb_path': 'pipelines/batch-infer-demo/model-endpoints/events/', 'endpoint': '80daa6376087b987a2e8d97b4850772fee6ff503'}
+> 2023-08-29 11:15:04,345 [info] Done updating drift measures: {'endpoint_id': '80daa6376087b987a2e8d97b4850772fee6ff503'}
+> 2023-08-29 11:15:04,451 [info] Run execution finished: {'status': 'completed', 'name': 'model-monitoring-batch'}
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+batch-infer-demo
+
+0
+Aug 29 11:15:03
+completed
+model-monitoring-batch
+v3io_user=iguazio
kind=job
owner=iguazio
mlrun/client_version=0.0.0+unstable
mlrun/client_python_version=3.9.16
host=model-monitoring-batch-klkxx
+
+model_endpoints=['80daa6376087b987a2e8d97b4850772fee6ff503']
batch_intervals_dict={'minutes': 0, 'hours': 1, 'days': 0}
+
+
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2023-08-29 11:15:06,630 [info] Run execution finished: {'status': 'completed', 'name': 'model-monitoring-batch'}
+
+
+
/User/.pythonlibs/mlrun-base/lib/python3.9/site-packages/mlrun/model_monitoring/features_drift_table.py:359: RuntimeWarning:
+
+invalid value encountered in true_divide
+
+
+
+
+
+
+
+
+
+project
+uid
+iter
+start
+state
+name
+labels
+inputs
+parameters
+results
+artifacts
+
+
+
+
+batch-infer-demo
+
+0
+Aug 29 11:14:46
+completed
+batch-inference-demo-infer
+v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-69ff7bc987-9fmj4
+dataset
+model_path=store://artifacts/batch-infer-demo/model:c0a23b01a8ac4b36b78c6066780df84d
label_columns=label
trigger_monitoring_job=True
perform_drift_analysis=True
model_endpoint_drift_threshold=0.2
model_endpoint_possible_drift_threshold=0.1
batch_image_job=eyaligu/mlrun-api:image-test
+batch_id=3d5f6aa8a2d63cc0e84ebd95a0bc0000979a0989bbf4c211651a4e2a
drift_status=True
drift_metric=0.4478631590778279
+prediction
drift_table_plot
features_drift_results
+
+
+
+
+
+
+
+
+
+
+
> to track results use the .show() or .logs() methods or click here to open in UI > 2023-08-29 11:15:08,835 [info] Run execution finished: {'status': 'completed', 'name': 'batch-inference-demo-infer'}
+
+
+
+
+
+
+4.3. Review Outputs
+We will review the outputs as explained in the notebook above.
+
+4.3.1. Results Prediction
+First we will showcase the Result Set . As we didn’t send any name, it’s default name will be "prediction"
:
+
+
+
+
+
+
+
+
+
+feature_0
+feature_1
+feature_2
+feature_3
+feature_4
+feature_5
+feature_6
+feature_7
+feature_8
+feature_9
+...
+feature_11
+feature_12
+feature_13
+feature_14
+feature_15
+feature_16
+feature_17
+feature_18
+feature_19
+label
+
+
+
+
+0
+-0.839322
+1.333380
+0.096353
+-1.406629
+2.400648
+-1.290373
+3.977797
+3.313780
+5.283433
+-1.052645
+...
+2.453055
+3.461347
+2.907938
+-0.101736
+0.525861
+3.303174
+2.662573
+-0.156935
+3.249469
+0
+
+
+1
+-1.396684
+2.160555
+-2.079091
+-0.202079
+2.884480
+2.034316
+4.885637
+4.221477
+2.573911
+0.180173
+...
+4.962888
+1.372881
+2.562159
+0.662939
+-0.805594
+3.533896
+3.790616
+-0.154599
+4.930846
+0
+
+
+2
+1.040872
+5.255454
+-0.147940
+0.294196
+0.597649
+-1.235295
+4.313004
+5.238071
+5.605235
+0.012568
+...
+2.174434
+3.278299
+3.462563
+-0.409624
+0.322454
+4.029577
+2.600332
+-1.107307
+2.887775
+0
+
+
+3
+0.997923
+2.140354
+-0.010764
+0.354853
+1.915891
+-1.041988
+2.193550
+3.467318
+2.996250
+0.242412
+...
+3.236173
+2.916559
+4.634331
+-0.348694
+-2.413849
+2.261911
+1.594445
+-0.301463
+2.758082
+0
+
+
+4
+0.201835
+2.702231
+0.350186
+1.007252
+3.745162
+1.618354
+5.198454
+4.954427
+4.045311
+-0.155478
+...
+3.502037
+5.419818
+0.721887
+0.780405
+-1.332553
+2.386323
+3.399030
+0.805458
+5.311518
+0
+
+
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+...
+
+
+2495
+-1.612271
+1.136322
+0.439253
+-1.661940
+2.503822
+-0.445082
+2.862625
+2.228701
+3.714258
+-1.834704
+...
+3.293596
+5.575856
+4.126424
+0.011100
+-0.096880
+3.031544
+1.944827
+-0.927567
+4.226295
+0
+
+
+2496
+0.266415
+3.206542
+-0.116758
+0.445226
+3.721457
+0.407119
+2.387406
+1.687102
+2.824435
+1.165571
+...
+3.934637
+1.732800
+2.574786
+0.529199
+-0.287021
+3.898641
+0.147049
+1.544828
+2.825104
+0
+
+
+2497
+-0.326930
+2.356003
+0.174470
+-0.050694
+3.098816
+0.469552
+3.528227
+1.894595
+3.937233
+-0.107356
+...
+1.889425
+3.963069
+2.947138
+-0.626888
+-0.797704
+3.755991
+2.711294
+1.180842
+4.045224
+0
+
+
+2498
+0.153820
+3.246263
+0.519227
+0.920204
+3.802444
+1.531671
+2.902433
+3.815808
+2.586090
+-1.919927
+...
+2.679366
+2.824765
+3.152592
+-0.303761
+1.058759
+3.185221
+3.995456
+0.490862
+2.338864
+0
+
+
+2499
+-1.521514
+3.773368
+-0.685662
+0.175765
+3.599282
+2.990228
+1.918675
+4.382931
+5.108156
+0.764052
+...
+4.139320
+1.933803
+2.970427
+-0.553020
+0.483961
+2.124600
+2.598879
+-0.444126
+2.429726
+0
+
+
+
+
2500 rows × 21 columns
+
+
+
+
+4.3.2. Data Drift Analysis
+Second we will review the data drift table plot and the drift results:
+
+
+
+
+
{'batch_id': '3d5f6aa8a2d63cc0e84ebd95a0bc0000979a0989bbf4c211651a4e2a',
+ 'drift_status': True,
+ 'drift_metric': 0.4478631590778279}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/static/function.html b/functions/master/batch_inference_v2/2.5.0/static/function.html
new file mode 100644
index 00000000..50b6cd8d
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/static/function.html
@@ -0,0 +1,184 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+kind: job
+metadata:
+ name: batch-inference-v2
+ tag: ''
+ hash: cfe7a24a5d05a7d6b9f03d119d9f2661e48db0f5
+ project: ''
+ labels:
+ author: eyald
+ categories:
+ - utils
+ - data-analysis
+ - monitoring
+spec:
+ command: ''
+ args: []
+ image: mlrun/mlrun
+ build:
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAyMyBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCgpmcm9tIGluc3BlY3QgaW1wb3J0IHNpZ25hdHVyZQpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBEaWN0LCBMaXN0LCBVbmlvbgppbXBvcnQgbWxydW4KCnRyeToKICAgIGltcG9ydCBtbHJ1bi5tb2RlbF9tb25pdG9yaW5nLmFwaQpleGNlcHQgTW9kdWxlTm90Rm91bmRFcnJvcjoKICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bk5vdEZvdW5kRXJyb3IoCiAgICAgICAgZiJQbGVhc2UgdXBkYXRlIHlvdXIgYG1scnVuYCB2ZXJzaW9uIHRvID49MS41LjAgb3IgdXNlIGFuICIKICAgICAgICBmIm9sZGVyIHZlcnNpb24gb2YgdGhlIGJhdGNoIGluZmVyZW5jZSBmdW5jdGlvbi4iCiAgICApCgppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZApmcm9tIG1scnVuLmZyYW1ld29ya3MuYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgoKZGVmIF9wcmVwYXJlX3Jlc3VsdF9zZXQoCiAgICAgICAgeDogcGQuRGF0YUZyYW1lLCBsYWJlbF9jb2x1bW5zOiBMaXN0W3N0cl0sIHlfcHJlZDogbnAubmRhcnJheQopIC0+IHBkLkRhdGFGcmFtZToKICAgICIiIgogICAgU2V0IGRlZmF1bHQgbGFiZWwgY29sdW1uIG5hbWVzIGFuZCB2YWxpZGF0ZSBnaXZlbiBuYW1lcyB0byBwcmVwYXJlIHRoZSByZXN1bHQgc2V0IC0gYSBjb25jYXRlbmF0aW9uIG9mIHRoZSBpbnB1dHMKICAgICh4KSBhbmQgdGhlIG1vZGVsIHByZWRpY3Rpb25zICh5X3ByZWQpLgoKICAgIDpwYXJhbSB4OiAgICAgICAgICAgICBUaGUgaW5wdXRzLgogICAgOnBhcmFtIGxhYmVsX2NvbHVtbnM6IEEgbGlzdCBvZiBzdHJpbmdzIHJlcHJlc2VudGluZyB0aGUgdGFyZ2V0IGNvbHVtbiBuYW1lcyB0byBhZGQgdG8gdGhlIHByZWRpY3Rpb25zLiBEZWZhdWx0IG5hbWUKICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgaW4gY2FzZSB0aGUgbGlzdCBpcyBlbXB0eSAocHJlZGljdGVkX2xhYmVsX3tpfSkuCiAgICA6cGFyYW0geV9wcmVkOiAgICAgICAgVGhlIG1vZGVsIHByZWRpY3Rpb25zIG9uIHRoZSBpbnB1dHMuCgogICAgOnJldHVybnM6IFRoZSByZXN1bHQgc2V0LgoKICAgIHJhaXNlcyBNTFJ1bkludmFsaWRBcmd1bWVudEVycm9yOiBJZiB0aGUgbGFiZWxzIGNvbHVtbnMgYW1vdW50IGRvIG5vdCBtYXRjaCB0aGUgb3V0cHV0cyBvciBpZiBvbmUgb2YgdGhlIGxhYmVsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbHVtbiBhbHJlYWR5IGV4aXN0cyBpbiB0aGUgZGF0YXNldC4KICAgICIiIgogICAgIyBQcmVwYXJlIGRlZmF1bHQgdGFyZ2V0IGNvbHVtbnMgbmFtZXMgaWYgbm90IHByb3ZpZGVkOgogICAgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9IDEgaWYgbGVuKHlfcHJlZC5zaGFwZSkgPT0gMSBlbHNlIHlfcHJlZC5zaGFwZVsxXQogICAgaWYgbGVuKGxhYmVsX2NvbHVtbnMpID09IDA6CiAgICAgICAgIyBBZGQgZGVmYXVsdCBsYWJlbCBjb2x1bW4gbmFtZXM6CiAgICAgICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9PSAxOgogICAgICAgICAgICBsYWJlbF9jb2x1bW5zID0gWyJwcmVkaWN0ZWRfbGFiZWwiXQogICAgICAgIGVsc2U6CiAgICAgICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgICAgICBmInByZWRpY3RlZF9sYWJlbF97aX0iIGZvciBpIGluIHJhbmdlKHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQpCiAgICAgICAgICAgIF0KCiAgICAjIFZhbGlkYXRlIHRoZSBsYWJlbCBjb2x1bW5zOgogICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCAhPSBsZW4obGFiZWxfY29sdW1ucyk6CiAgICAgICAgIyBObyBlcXVhbGl0eSBiZXR3ZWVuIHByb3ZpZGVkIGxhYmVsIGNvbHVtbiBuYW1lcyBhbmQgb3V0cHV0cyBhbW91bnQ6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIG51bWJlciBvZiBwcmVkaWN0ZWQgbGFiZWxzOiB7cHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudH0gIgogICAgICAgICAgICBmImlzIG5vdCBlcXVhbCB0byB0aGUgZ2l2ZW4gbGFiZWwgY29sdW1uczoge2xlbihsYWJlbF9jb2x1bW5zKX0iCiAgICAgICAgKQogICAgY29tbW9uX2xhYmVscyA9IHNldChsYWJlbF9jb2x1bW5zKSAmIHNldCh4LmNvbHVtbnMudG9saXN0KCkpCiAgICBpZiBjb21tb25fbGFiZWxzOgogICAgICAgICMgTGFiZWwgY29sdW1uIGV4aXN0IGluIHRoZSBvcmlnaW5hbCBpbnB1dHM6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIGxhYmVsczoge2NvbW1vbl9sYWJlbHN9IGFyZSBhbHJlYWR5IGV4aXN0ZWQgaW4gdGhlIGdpdmVuIGRhdGFzZXQuIgogICAgICAgICkKCiAgICByZXR1cm4gcGQuY29uY2F0KAogICAgICAgIFt4LCBwZC5EYXRhRnJhbWUoeV9wcmVkLCBjb2x1bW5zPWxhYmVsX2NvbHVtbnMsIGluZGV4PXguaW5kZXgpXSwgYXhpcz0xCiAgICApCgoKZGVmIF9nZXRfZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljc19wYXJhbWV0ZXJzKGNvbnRleHQsIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQsIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlX2NvbHVtbnMsIGRyb3BfY29sdW1ucywgbGFiZWxfY29sdW1ucyk6CiAgICBzdGF0aWNzX2lucHV0X2Z1bGxfZGljdCA9IGRpY3Qoc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHM9bW9kZWxfYXJ0aWZhY3RfZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2NvbHVtbnM9ZmVhdHVyZV9jb2x1bW5zLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhbXBsZV9zZXRfZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2xhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucykKICAgIGdldF9zYW1wbGVfc3RhdGljc19mdW5jdGlvbiA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MKICAgIHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCA9IHNpZ25hdHVyZShnZXRfc2FtcGxlX3N0YXRpY3NfZnVuY3Rpb24pLnBhcmFtZXRlcnMKICAgICMgIEFzIGEgcmVzdWx0IG9mIGNoYW5nZXMgdG8gaW5wdXQgcGFyYW1ldGVycyBpbiB0aGUgbWxydW4tZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBmdW5jdGlvbiwKICAgICMgIHdlIHdpbGwgbm93IHNlbmQgb25seSB0aGUgcGFyYW1ldGVycyBpdCBleHBlY3RzLgogICAgc3RhdGljc19pbnB1dF9maWx0ZXJlZCA9IHtrZXk6IHN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0W2tleV0gZm9yIGtleSBpbiBzdGF0aWNzX2Z1bmN0aW9uX2lucHV0X2RpY3R9CiAgICBpZiBsZW4oc3RhdGljc19pbnB1dF9maWx0ZXJlZCkgIT0gbGVuKHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCk6CiAgICAgICAgY29udGV4dC5sb2dnZXIud2FybmluZygiZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBpcyBpbiBhbiBvbGRlciB2ZXJzaW9uOyAiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAic29tZSBwYXJhbWV0ZXJzIHdpbGwgbm90IGJlIHNlbnQgdG8gdGhlIGZ1bmN0aW9uLiIpCiAgICByZXR1cm4gc3RhdGljc19pbnB1dF9maWx0ZXJlZAoKCmRlZiBpbmZlcigKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogVW5pb25bbWxydW4uRGF0YUl0ZW0sIGxpc3QsIGRpY3QsIHBkLkRhdGFGcmFtZSwgcGQuU2VyaWVzLCBucC5uZGFycmF5XSwKICAgIG1vZGVsX3BhdGg6IFVuaW9uW3N0ciwgbWxydW4uRGF0YUl0ZW1dLAogICAgZHJvcF9jb2x1bW5zOiBVbmlvbltzdHIsIExpc3Rbc3RyXSwgaW50LCBMaXN0W2ludF1dID0gTm9uZSwKICAgIGxhYmVsX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBmZWF0dXJlX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBsb2dfcmVzdWx0X3NldDogYm9vbCA9IFRydWUsCiAgICByZXN1bHRfc2V0X25hbWU6IHN0ciA9ICJwcmVkaWN0aW9uIiwKICAgIGJhdGNoX2lkOiBzdHIgPSBOb25lLAogICAgYXJ0aWZhY3RzX3RhZzogc3RyID0gIiIsCiAgICAjIERyaWZ0IGFuYWx5c2lzIHBhcmFtZXRlcnMKICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6IGJvb2wgPSBOb25lLAogICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYjogYm9vbCA9IEZhbHNlLAogICAgYmF0Y2hfaW1hZ2Vfam9iOiBzdHIgPSAibWxydW4vbWxydW4iLAogICAgZW5kcG9pbnRfaWQ6IHN0ciA9ICIiLAogICAgIyBUaGUgZm9sbG93aW5nIG1vZGVsIGVuZHBvaW50IHBhcmFtZXRlcnMgYXJlIHJlbGV2YW50IG9ubHkgaWY6CiAgICAjIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaXMgbm90IGRpc2FibGVkCiAgICAjIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZCBpcyBnb2luZyB0byBiZSBnZW5lcmF0ZWQKICAgIG1vZGVsX2VuZHBvaW50X25hbWU6IHN0ciA9ICJiYXRjaC1pbmZlciIsCiAgICBtb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQ6IGZsb2F0ID0gMC43LAogICAgbW9kZWxfZW5kcG9pbnRfcG9zc2libGVfZHJpZnRfdGhyZXNob2xkOiBmbG9hdCA9IDAuNSwKICAgIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQ6IFVuaW9uWwogICAgICAgIG1scnVuLkRhdGFJdGVtLCBsaXN0LCBkaWN0LCBwZC5EYXRhRnJhbWUsIHBkLlNlcmllcywgbnAubmRhcnJheQogICAgXSA9IE5vbmUsCiAgICAqKnByZWRpY3Rfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSwKKToKICAgICIiIgogICAgUGVyZm9ybSBhIHByZWRpY3Rpb24gb24gYSBnaXZlbiBkYXRhc2V0IHdpdGggdGhlIGdpdmVuIG1vZGVsLiBQbGVhc2UgbWFrZSBzdXJlIHRoYXQgeW91IGhhdmUgYWxyZWFkeSBsb2dnZWQgdGhlIG1vZGVsCiAgICB1bmRlciB0aGUgY3VycmVudCBwcm9qZWN0LgogICAgQ2FuIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgYmV0d2VlbiB0aGUgc2FtcGxlIHNldCBzdGF0aXN0aWNzIHN0b3JlZCBpbiB0aGUgbW9kZWwgdG8gdGhlIGN1cnJlbnQgaW5wdXQgZGF0YS4gVGhlCiAgICBkcmlmdCBydWxlIGlzIHRoZSB2YWx1ZSBwZXItZmVhdHVyZSBtZWFuIG9mIHRoZSBUVkQgYW5kIEhlbGxpbmdlciBzY29yZXMgYWNjb3JkaW5nIHRvIHRoZSB0aHJlc2hvbGRzIGNvbmZpZ3VyZXMKICAgIGhlcmUuIFdoZW4gcGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcywgdGhpcyBmdW5jdGlvbiBlaXRoZXIgdXNlcyBhbiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCByZWNvcmQgb3IgY3JlYXRlcwogICAgYSBuZXcgb25lLgogICAgQXQgdGhlIG1vbWVudCwgdGhpcyBmdW5jdGlvbiBpcyBzdXBwb3J0ZWQgZm9yIGBtbHJ1bj49MS41LjBgIHZlcnNpb25zLgoKICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQuCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byBpbmZlciB0aHJvdWdoIHRoZSBtb2RlbC4gUHJvdmlkZWQgYXMgYW4gaW5wdXQgKERhdGFJdGVtKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhhdCByZXByZXNlbnRzIERhdGFzZXQgYXJ0aWZhY3QgLyBGZWF0dXJlIHZlY3RvciBVUkkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBkYXRhc2V0YCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIGxpc3QsIGRpY3Rpb25hcnkgb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bXB5IGFycmF5LgogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTW9kZWwgc3RvcmUgdXJpIChzaG91bGQgc3RhcnQgd2l0aCBzdG9yZTovLykuIFByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBtb2RlbF9wYXRoYCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIHBhcmFtZXRlciAoc3RyaW5nKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRvIGdlbmVyYXRlIGEgdmFsaWQgbW9kZWwgc3RvcmUgVVJJLCBwbGVhc2UgbG9nIHRoZSBtb2RlbCBiZWZvcmUgcnVubmluZyB0aGlzIGZ1bmN0aW9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgYGVuZHBvaW50X2lkYCBvZiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCBpcyBwcm92aWRlZCwgbWFrZSBzdXJlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGF0IGl0IGhhcyBhIHNpbWlsYXIgbW9kZWwgc3RvcmUgcGF0aCwgb3RoZXJ3aXNlIHRoZSBkcmlmdCBhbmFseXNpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29uJ3QgYmUgdHJpZ2dlcmVkLgogICAgOnBhcmFtIGRyb3BfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICAgQSBzdHJpbmcgLyBpbnRlZ2VyIG9yIGEgbGlzdCBvZiBzdHJpbmdzIC8gaW50ZWdlcnMgdGhhdCByZXByZXNlbnQgdGhlIGNvbHVtbiBuYW1lcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLyBpbmRpY2VzIHRvIGRyb3AuIFdoZW4gdGhlIGRhdGFzZXQgaXMgYSBsaXN0IG9yIGEgbnVtcHkgYXJyYXkgdGhpcyBwYXJhbWV0ZXIgbXVzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmUgcmVwcmVzZW50ZWQgYnkgaW50ZWdlcnMuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQgZm9yIFJlZ3Jlc3Npb24gb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENsYXNzaWZpY2F0aW9uIHRhc2tzLiBUaGUgbGFiZWwgY29sdW1uIGNhbiBiZSBhY2Nlc3NlZCBmcm9tIHRoZSBtb2RlbCBvYmplY3QsIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgZmVhdHVyZSB2ZWN0b3IgcHJvdmlkZWQgaWYgYXZhaWxhYmxlLgogICAgOnBhcmFtIGZlYXR1cmVfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgTGlzdCBvZiBmZWF0dXJlIGNvbHVtbnMgdGhhdCB3aWxsIGJlIHVzZWQgdG8gYnVpbGQgdGhlIGRhdGFmcmFtZSB3aGVuIGRhdGFzZXQgaXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZyb20gdHlwZSBsaXN0IG9yIG51bXB5IGFycmF5LgogICAgOnBhcmFtIGxvZ19yZXN1bHRfc2V0OiAgICAgICAgICAgICAgICAgICAgICAgICAgV2hldGhlciB0byBsb2cgdGhlIHJlc3VsdCBzZXQgLSBhIERhdGFGcmFtZSBvZiB0aGUgZ2l2ZW4gaW5wdXRzIGNvbmNhdGVuYXRlZCB3aXRoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgcHJlZGljdGlvbnMuIERlZmF1bHRlZCB0byBUcnVlLgogICAgOnBhcmFtIHJlc3VsdF9zZXRfbmFtZTogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRiIGtleSB0byBzZXQgbmFtZSBvZiB0aGUgcHJlZGljdGlvbiByZXN1bHQgYW5kIHRoZSBmaWxlbmFtZS4gRGVmYXVsdGVkIHRvCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAncHJlZGljdGlvbicuCiAgICA6cGFyYW0gYmF0Y2hfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgSUQgb2YgdGhlIGdpdmVuIGJhdGNoIChpbmZlcmVuY2UgZGF0YXNldCkuIElmIGBOb25lYCwgaXQgd2lsbCBiZSBnZW5lcmF0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaWxsIGJlIGxvZ2dlZCBhcyBhIHJlc3VsdCBvZiB0aGUgcnVuLgogICAgOnBhcmFtIGFydGlmYWN0c190YWc6ICAgICAgICAgICAgICAgICAgICAgICAgICAgVGFnIHRvIHVzZSBmb3IgYWxsIHRoZSBhcnRpZmFjdHMgcmVzdWx0ZWQgZnJvbSB0aGUgZnVuY3Rpb24gKHJlc3VsdCBzZXQgYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBtb25pdG9yaW5nIGFydGlmYWN0cykKICAgIDpwYXJhbSBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOiAgICAgICAgICAgICAgICAgIFdoZXRoZXIgdG8gcGVyZm9ybSBkcmlmdCBhbmFseXNpcyBiZXR3ZWVuIHRoZSBzYW1wbGUgc2V0IG9mIHRoZSBtb2RlbCBvYmplY3QgdG8gdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhc2V0IGdpdmVuLiBCeSBkZWZhdWx0LCBOb25lLCB3aGljaCBtZWFucyBpdCB3aWxsIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaWYgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBhbHJlYWR5IGhhcyBmZWF0dXJlIHN0YXRzIHRoYXQgYXJlIGNvbnNpZGVyZWQgYXMgYSByZWZlcmVuY2Ugc2FtcGxlIHNldC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMgb24gYSBuZXcgZW5kcG9pbnQgaWQgd2lsbCBnZW5lcmF0ZSBhIG5ldyBtb2RlbCBlbmRwb2ludAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb3JkLiBQbGVhc2Ugbm90ZSB0aGF0IGluIG9yZGVyIHRvIHRyaWdnZXIgdGhlIGRyaWZ0IGFuYWx5c2lzIGpvYiwgeW91IG5lZWQgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNldCBgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj1UcnVlYC4gT3RoZXJ3aXNlLCB0aGUgZHJpZnQgYW5hbHlzaXMgd2lsbCBiZSB0cmlnZ2VyZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkgYXMgcGFydCB0aGUgc2NoZWR1bGVkIG1vbml0b3Jpbmcgam9iIChpZiBleGlzdCBpbiB0aGUgY3VycmVudCBwcm9qZWN0KSBvcgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWYgdHJpZ2dlcmVkIG1hbnVhbGx5IGJ5IHRoZSB1c2VyLgogICAgOnBhcmFtIHRyaWdnZXJfbW9uaXRvcmluZ19qb2I6ICAgICAgICAgICAgICAgICAgV2hldGhlciB0byB0cmlnZ2VyIHRoZSBiYXRjaCBkcmlmdCBhbmFseXNpcyBhZnRlciB0aGUgaW5mZXIgam9iLgogICAgOnBhcmFtIGJhdGNoX2ltYWdlX2pvYjogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGltYWdlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIHJlZ2lzdGVyIHRoZSBtb25pdG9yaW5nIGJhdGNoIGpvYiBpZiBub3QgZXhpc3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCeSBkZWZhdWx0LCB0aGUgaW1hZ2UgaXMgbWxydW4vbWxydW4uCiAgICA6cGFyYW0gZW5kcG9pbnRfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNb2RlbCBlbmRwb2ludCB1bmlxdWUgSUQuIElmIGBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzYCB3YXMgc2V0LCB0aGUgZW5kcG9pbnRfaWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdpbGwgYmUgdXNlZCBlaXRoZXIgdG8gcGVyZm9ybSB0aGUgYW5hbHlzaXMgb24gZXhpc3RpbmcgbW9kZWwgZW5kcG9pbnQgb3IgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVyYXRlIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZC4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9uYW1lOiAgICAgICAgICAgICAgICAgICAgIElmIGEgbmV3IG1vZGVsIGVuZHBvaW50IGlzIGdlbmVyYXRlZCwgdGhlIG1vZGVsIG5hbWUgd2lsbCBiZSBwcmVzZW50ZWQgdW5kZXIgdGhpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kcG9pbnQuCiAgICA6cGFyYW0gbW9kZWxfZW5kcG9pbnRfZHJpZnRfdGhyZXNob2xkOiAgICAgICAgICBUaGUgdGhyZXNob2xkIG9mIHdoaWNoIHRvIG1hcmsgZHJpZnRzLiBEZWZhdWx0ZWQgdG8gMC43LgogICAgOnBhcmFtIG1vZGVsX2VuZHBvaW50X3Bvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZDogVGhlIHRocmVzaG9sZCBvZiB3aGljaCB0byBtYXJrIHBvc3NpYmxlIGRyaWZ0cy4gRGVmYXVsdGVkIHRvIDAuNS4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0OiAgICAgICAgICAgICAgIEEgc2FtcGxlIGRhdGFzZXQgdG8gZ2l2ZSB0byBjb21wYXJlIHRoZSBpbnB1dHMgaW4gdGhlIGRyaWZ0IGFuYWx5c2lzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkgb3IgYXMgYSBwYXJhbWV0ZXIgKGUuZy4gc3RyaW5nLCBsaXN0LCBEYXRhRnJhbWUpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRlZmF1bHQgY2hvc2VuIHNhbXBsZSBzZXQgd2lsbCBhbHdheXMgYmUgdGhlIG9uZSB3aG8gaXMgc2V0IGluIHRoZSBtb2RlbCBhcnRpZmFjdCBpdHNlbGYuCgogICAgcmFpc2VzIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IGlmIGJvdGggYG1vZGVsX3BhdGhgIGFuZCBgZW5kcG9pbnRfaWRgIGFyZSBub3QgcHJvdmlkZWQKICAgICIiIgoKICAgICMgTG9hZGluZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiTG9hZGluZyBtb2RlbC4uLiIpCiAgICBpZiBpc2luc3RhbmNlKG1vZGVsX3BhdGgsIG1scnVuLkRhdGFJdGVtKToKICAgICAgICBtb2RlbF9wYXRoID0gbW9kZWxfcGF0aC5hcnRpZmFjdF91cmwKICAgIGlmIG5vdCBtbHJ1bi5kYXRhc3RvcmUuaXNfc3RvcmVfdXJpKG1vZGVsX3BhdGgpOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBwcm92aWRlZCBtb2RlbCBwYXRoICh7bW9kZWxfcGF0aH0pIGlzIGludmFsaWQgLSBzaG91bGQgc3RhcnQgd2l0aCBgc3RvcmU6Ly9gLiAiCiAgICAgICAgICAgIGYiUGxlYXNlIG1ha2Ugc3VyZSB0aGF0IHlvdSBoYXZlIGxvZ2dlZCB0aGUgbW9kZWwgdXNpbmcgYHByb2plY3QubG9nX21vZGVsKClgICIKICAgICAgICAgICAgZiJ3aGljaCBnZW5lcmF0ZXMgYSB1bmlxdWUgc3RvcmUgdXJpIGZvciB0aGUgbG9nZ2VkIG1vZGVsLiIKICAgICAgICApCiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgaWYgbGFiZWxfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgIG91dHB1dC5uYW1lIGZvciBvdXRwdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5vdXRwdXRzCiAgICAgICAgXQoKICAgIGlmIGZlYXR1cmVfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGZlYXR1cmVfY29sdW1ucyA9IFsKICAgICAgICAgICAgaW5wdXQubmFtZSBmb3IgaW5wdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5pbnB1dHMKICAgICAgICBdCgogICAgIyBHZXQgZGF0YXNldCBieSBvYmplY3QsIFVSTCBvciBieSBGZWF0dXJlVmVjdG9yOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmIkxvYWRpbmcgZGF0YS4uLiIpCiAgICB4LCBsYWJlbF9jb2x1bW5zID0gbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkucmVhZF9kYXRhc2V0X2FzX2RhdGFmcmFtZSgKICAgICAgICBkYXRhc2V0PWRhdGFzZXQsCiAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX2NvbHVtbnMsCiAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICkKCiAgICAjIFByZWRpY3Q6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiQ2FsY3VsYXRpbmcgcHJlZGljdGlvbi4uLiIpCiAgICB5X3ByZWQgPSBtb2RlbF9oYW5kbGVyLm1vZGVsLnByZWRpY3QoeCwgKipwcmVkaWN0X2t3YXJncykKCiAgICAjIFByZXBhcmUgdGhlIHJlc3VsdCBzZXQ6CiAgICByZXN1bHRfc2V0ID0gX3ByZXBhcmVfcmVzdWx0X3NldCh4PXgsIGxhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucywgeV9wcmVkPXlfcHJlZCkKCiAgICAjIENoZWNrIGZvciBsb2dnaW5nIHRoZSByZXN1bHQgc2V0OgogICAgaWYgbG9nX3Jlc3VsdF9zZXQ6CiAgICAgICAgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkubG9nX3Jlc3VsdCgKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICByZXN1bHRfc2V0X25hbWU9cmVzdWx0X3NldF9uYW1lLAogICAgICAgICAgICByZXN1bHRfc2V0PXJlc3VsdF9zZXQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgYmF0Y2hfaWQ9YmF0Y2hfaWQsCiAgICAgICAgKQoKICAgICMgQ2hlY2sgZm9yIHBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMKICAgIGlmICgKICAgICAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyBpcyBOb25lCiAgICAgICAgICAgIGFuZCBtb2RlbF9oYW5kbGVyLl9tb2RlbF9hcnRpZmFjdC5zcGVjLmZlYXR1cmVfc3RhdHMgaXMgbm90IE5vbmUKICAgICk6CiAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyA9IFRydWUKICAgIGlmIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiUGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcy4uLiIpCiAgICAgICAgIyBHZXQgdGhlIHNhbXBsZSBzZXQgc3RhdGlzdGljcyAoZWl0aGVyIGZyb20gdGhlIHNhbXBsZSBzZXQgb3IgZnJvbSB0aGUgc3RhdGlzdGljcyBsb2dnZWQgd2l0aCB0aGUgbW9kZWwpCiAgICAgICAgc3RhdGljc19pbnB1dF9mdWxsX2RpY3QgPSBkaWN0KGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWxfZW5kcG9pbnRfc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9hcnRpZmFjdF9mZWF0dXJlX3N0YXRzPW1vZGVsX2hhbmRsZXIuX21vZGVsX2FydGlmYWN0LnNwZWMuZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxfY29sdW1ucz1sYWJlbF9jb2x1bW5zKQogICAgICAgIHN0YXRpY3NfaW5wdXRfZmlsdGVyZWQgPSBfZ2V0X2dldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3NfcGFyYW1ldGVycygqKnN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0KQogICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcyA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MoKipzdGF0aWNzX2lucHV0X2ZpbHRlcmVkKQogICAgICAgIG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLnJlY29yZF9yZXN1bHRzKAogICAgICAgICAgICBwcm9qZWN0PWNvbnRleHQucHJvamVjdCwKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBlbmRwb2ludF9pZD1lbmRwb2ludF9pZCwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICBtb2RlbF9lbmRwb2ludF9uYW1lPW1vZGVsX2VuZHBvaW50X25hbWUsCiAgICAgICAgICAgIGluZmVyX3Jlc3VsdHNfZGY9cmVzdWx0X3NldC5jb3B5KCksCiAgICAgICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcz1zYW1wbGVfc2V0X3N0YXRpc3RpY3MsCiAgICAgICAgICAgIGRyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIHBvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9wb3NzaWJsZV9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj10cmlnZ2VyX21vbml0b3Jpbmdfam9iLAogICAgICAgICAgICBkZWZhdWx0X2JhdGNoX2ltYWdlPWJhdGNoX2ltYWdlX2pvYiwKICAgICAgICApCg==
+ commands: []
+ code_origin: ''
+ origin_filename: ''
+ with_mlrun: false
+ auto_build: false
+ requirements: []
+ entry_points:
+ infer:
+ name: infer
+ doc: 'Perform a prediction on a given dataset with the given model. Please make
+ sure that you have already logged the model
+
+ under the current project.
+
+ Can perform drift analysis between the sample set statistics stored in the
+ model to the current input data. The
+
+ drift rule is the value per-feature mean of the TVD and Hellinger scores according
+ to the thresholds configures
+
+ here. When performing drift analysis, this function either uses an existing
+ model endpoint record or creates
+
+ a new one.
+
+ At the moment, this function is supported for `mlrun>=1.5.0` versions.'
+ parameters:
+ - name: context
+ type: MLClientCtx
+ doc: MLRun context.
+ - name: dataset
+ type: Union[DataItem, list, dict, DataFrame, Series, ndarray]
+ doc: The dataset to infer through the model. Provided as an input (DataItem)
+ that represents Dataset artifact / Feature vector URI. If using MLRun SDK,
+ `dataset` can also be provided as a list, dictionary or numpy array.
+ - name: model_path
+ type: Union[str, DataItem]
+ doc: Model store uri (should start with store://). Provided as an input (DataItem).
+ If using MLRun SDK, `model_path` can also be provided as a parameter (string).
+ To generate a valid model store URI, please log the model before running
+ this function. If `endpoint_id` of existing model endpoint is provided,
+ make sure that it has a similar model store path, otherwise the drift analysis
+ won't be triggered.
+ - name: drop_columns
+ type: Union[str, List[str], int, List[int]]
+ doc: A string / integer or a list of strings / integers that represent the
+ column names / indices to drop. When the dataset is a list or a numpy array
+ this parameter must be represented by integers.
+ default: null
+ - name: label_columns
+ type: Union[str, List[str]]
+ doc: The target label(s) of the column(s) in the dataset for Regression or
+ Classification tasks. The label column can be accessed from the model object,
+ or the feature vector provided if available.
+ default: null
+ - name: feature_columns
+ type: Union[str, List[str]]
+ doc: List of feature columns that will be used to build the dataframe when
+ dataset is from type list or numpy array.
+ default: null
+ - name: log_result_set
+ type: bool
+ doc: Whether to log the result set - a DataFrame of the given inputs concatenated
+ with the predictions. Defaulted to True.
+ default: true
+ - name: result_set_name
+ type: str
+ doc: The db key to set name of the prediction result and the filename. Defaulted
+ to 'prediction'.
+ default: prediction
+ - name: batch_id
+ type: str
+ doc: The ID of the given batch (inference dataset). If `None`, it will be
+ generated. Will be logged as a result of the run.
+ default: null
+ - name: artifacts_tag
+ type: str
+ doc: Tag to use for all the artifacts resulted from the function (result set
+ and model monitoring artifacts)
+ default: ''
+ - name: perform_drift_analysis
+ type: bool
+ doc: Whether to perform drift analysis between the sample set of the model
+ object to the dataset given. By default, None, which means it will perform
+ drift analysis if the model already has feature stats that are considered
+ as a reference sample set. Performing drift analysis on a new endpoint id
+ will generate a new model endpoint record. Please note that in order to
+ trigger the drift analysis job, you need to set `trigger_monitoring_job=True`.
+ Otherwise, the drift analysis will be triggered only as part the scheduled
+ monitoring job (if exist in the current project) or if triggered manually
+ by the user.
+ default: null
+ - name: trigger_monitoring_job
+ type: bool
+ doc: Whether to trigger the batch drift analysis after the infer job.
+ default: false
+ - name: batch_image_job
+ type: str
+ doc: The image that will be used to register the monitoring batch job if not
+ exist. By default, the image is mlrun/mlrun.
+ default: mlrun/mlrun
+ - name: endpoint_id
+ type: str
+ doc: Model endpoint unique ID. If `perform_drift_analysis` was set, the endpoint_id
+ will be used either to perform the analysis on existing model endpoint or
+ to generate a new model endpoint record.
+ default: ''
+ - name: model_endpoint_name
+ type: str
+ doc: If a new model endpoint is generated, the model name will be presented
+ under this endpoint.
+ default: batch-infer
+ - name: model_endpoint_drift_threshold
+ type: float
+ doc: The threshold of which to mark drifts. Defaulted to 0.7.
+ default: 0.7
+ - name: model_endpoint_possible_drift_threshold
+ type: float
+ doc: The threshold of which to mark possible drifts. Defaulted to 0.5.
+ default: 0.5
+ - name: model_endpoint_sample_set
+ type: Union[DataItem, list, dict, DataFrame, Series, ndarray]
+ doc: A sample dataset to give to compare the inputs in the drift analysis.
+ Can be provided as an input (DataItem) or as a parameter (e.g. string, list,
+ DataFrame). The default chosen sample set will always be the one who is
+ set in the model artifact itself.
+ default: null
+ outputs: []
+ lineno: 97
+ has_varargs: false
+ has_kwargs: true
+ description: Batch inference (also knows as prediction) for the common ML frameworks
+ (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.
+ default_handler: infer
+ disable_auto_mount: false
+ allow_empty_resources: true
+ clone_target_dir: ''
+ env: []
+ priority_class_name: ''
+ preemption_mode: prevent
+ affinity: null
+ tolerations: null
+ security_context: {}
+verbose: false
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/static/item.html b/functions/master/batch_inference_v2/2.5.0/static/item.html
new file mode 100644
index 00000000..45f9c1c8
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/static/item.html
@@ -0,0 +1,54 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+apiVersion: v1
+categories:
+- utils
+- data-analysis
+- monitoring
+description: Batch inference (also knows as prediction) for the common ML frameworks
+ (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.
+doc: ''
+example: batch_inference_v2.ipynb
+generationDate: 2023-08-07:12-25
+hidden: false
+icon: ''
+labels:
+ author: eyald
+maintainers: []
+marketplaceType: ''
+mlrunVersion: 1.5.0
+name: batch_inference_v2
+platformVersion: 3.5.3
+spec:
+ extra_spec:
+ allow_empty_resources: true
+ build:
+ auto_build: false
+ with_mlrun: false
+ filename: batch_inference_v2.py
+ handler: infer
+ image: mlrun/mlrun
+ kind: job
+ requirements: null
+url: ''
+version: 2.5.0
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/2.5.0/static/source.html b/functions/master/batch_inference_v2/2.5.0/static/source.html
new file mode 100644
index 00000000..100c0c6d
--- /dev/null
+++ b/functions/master/batch_inference_v2/2.5.0/static/source.html
@@ -0,0 +1,290 @@
+
+
+
+
+
+
+
+
+
+
+ Source
+
+
+
+
+
+
+# Copyright 2023 Iguazio
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from inspect import signature
+from typing import Any, Dict, List, Union, Optional
+import mlrun
+
+try:
+ import mlrun.model_monitoring.api
+except ModuleNotFoundError:
+ raise mlrun.errors.MLRunNotFoundError(
+ f"Please update your `mlrun` version to >=1.5.0 or use an "
+ f"older version of the batch inference function."
+ )
+
+import numpy as np
+import pandas as pd
+from mlrun.frameworks.auto_mlrun import AutoMLRun
+
+
+def _prepare_result_set(x: pd.DataFrame, label_columns: List[str], y_pred: np.ndarray) -> pd.DataFrame:
+ """
+ Set default label column names and validate given names to prepare the result set - a concatenation of the inputs
+ (x) and the model predictions (y_pred).
+
+ :param x: The inputs.
+ :param label_columns: A list of strings representing the target column names to add to the predictions. Default name
+ will be used in case the list is empty (predicted_label_{i}).
+ :param y_pred: The model predictions on the inputs.
+
+ :returns: The result set.
+
+ raises MLRunInvalidArgumentError: If the labels columns amount do not match the outputs or if one of the label
+ column already exists in the dataset.
+ """
+ # Prepare default target columns names if not provided:
+ prediction_columns_amount = 1 if len(y_pred.shape) == 1 else y_pred.shape[1]
+ if len(label_columns) == 0:
+ # Add default label column names:
+ if prediction_columns_amount == 1:
+ label_columns = ["predicted_label"]
+ else:
+ label_columns = [
+ f"predicted_label_{i}" for i in range(prediction_columns_amount)
+ ]
+
+ # Validate the label columns:
+ if prediction_columns_amount != len(label_columns):
+ # No equality between provided label column names and outputs amount:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The number of predicted labels: {prediction_columns_amount} "
+ f"is not equal to the given label columns: {len(label_columns)}"
+ )
+ common_labels = set(label_columns) & set(x.columns.tolist())
+ if common_labels:
+ # Label column exist in the original inputs:
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The labels: {common_labels} are already existed in the given dataset."
+ )
+
+ return pd.concat(
+ [x, pd.DataFrame(y_pred, columns=label_columns, index=x.index)], axis=1
+ )
+
+
+def _get_sample_set_statistics_parameters(context: mlrun.MLClientCtx,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_artifact_feature_stats: dict,
+ feature_columns: Optional[List],
+ drop_columns: Optional[List],
+ label_columns: Optional[List]) -> Dict[str, Any]:
+ statics_input_full_dict = dict(sample_set=model_endpoint_sample_set,
+ model_artifact_feature_stats=model_artifact_feature_stats,
+ sample_set_columns=feature_columns,
+ sample_set_drop_columns=drop_columns,
+ sample_set_label_columns=label_columns)
+ get_sample_statics_function = mlrun.model_monitoring.api.get_sample_set_statistics
+ statics_function_input_dict = signature(get_sample_statics_function).parameters
+ # As a result of changes to input parameters in the mlrun-get_sample_set_statistics function,
+ # we will now send only the parameters it expects.
+ statistics_input_filtered = {key: statics_input_full_dict[key] for key in statics_function_input_dict}
+ if len(statistics_input_filtered) != len(statics_function_input_dict):
+ context.logger.warning(f"get_sample_set_statistics is in an older version; "
+ "some parameters will not be sent to the function."
+ f" Expected input: {list(statics_function_input_dict.keys())},"
+ f" actual input: {list(statistics_input_filtered.keys())}")
+ return statistics_input_filtered
+
+
+def infer(
+ context: mlrun.MLClientCtx,
+ dataset: Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_path: Union[str, mlrun.DataItem],
+ drop_columns: Union[str, List[str], int, List[int]] = None,
+ label_columns: Union[str, List[str]] = None,
+ feature_columns: Union[str, List[str]] = None,
+ log_result_set: bool = True,
+ result_set_name: str = "prediction",
+ batch_id: str = None,
+ artifacts_tag: str = "",
+ # Drift analysis parameters
+ perform_drift_analysis: bool = None,
+ trigger_monitoring_job: bool = False,
+ batch_image_job: str = "mlrun/mlrun",
+ endpoint_id: str = "",
+ # The following model endpoint parameters are relevant only if:
+ # perform drift analysis is not disabled
+ # a new model endpoint record is going to be generated
+ model_endpoint_name: str = "batch-infer",
+ model_endpoint_drift_threshold: float = 0.7,
+ model_endpoint_possible_drift_threshold: float = 0.5,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray
+ ] = None,
+ **predict_kwargs: Dict[str, Any],
+):
+ """
+ Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
+ under the current project.
+ Can perform drift analysis between the sample set statistics stored in the model to the current input data. The
+ drift rule is the value per-feature mean of the TVD and Hellinger scores according to the thresholds configures
+ here. When performing drift analysis, this function either uses an existing model endpoint record or creates
+ a new one.
+ At the moment, this function is supported for `mlrun>=1.5.0` versions.
+
+ :param context: MLRun context.
+ :param dataset: The dataset to infer through the model. Provided as an input (DataItem)
+ that represents Dataset artifact / Feature vector URI.
+ If using MLRun SDK, `dataset` can also be provided as a list, dictionary or
+ numpy array.
+ :param model_path: Model store uri (should start with store://). Provided as an input (DataItem).
+ If using MLRun SDK, `model_path` can also be provided as a parameter (string).
+ To generate a valid model store URI, please log the model before running this function.
+ If `endpoint_id` of existing model endpoint is provided, make sure
+ that it has a similar model store path, otherwise the drift analysis
+ won't be triggered.
+ :param drop_columns: A string / integer or a list of strings / integers that represent the column names
+ / indices to drop. When the dataset is a list or a numpy array this parameter must
+ be represented by integers.
+ :param label_columns: The target label(s) of the column(s) in the dataset for Regression or
+ Classification tasks. The label column can be accessed from the model object, or
+ the feature vector provided if available.
+ :param feature_columns: List of feature columns that will be used to build the dataframe when dataset is
+ from type list or numpy array.
+ :param log_result_set: Whether to log the result set - a DataFrame of the given inputs concatenated with
+ the predictions. Defaulted to True.
+ :param result_set_name: The db key to set name of the prediction result and the filename. Defaulted to
+ 'prediction'.
+ :param batch_id: The ID of the given batch (inference dataset). If `None`, it will be generated.
+ Will be logged as a result of the run.
+ :param artifacts_tag: Tag to use for all the artifacts resulted from the function (result set and
+ model monitoring artifacts)
+ :param perform_drift_analysis: Whether to perform drift analysis between the sample set of the model object to the
+ dataset given. By default, None, which means it will perform drift analysis if the
+ model already has feature stats that are considered as a reference sample set.
+ Performing drift analysis on a new endpoint id will generate a new model endpoint
+ record. Please note that in order to trigger the drift analysis job, you need to
+ set `trigger_monitoring_job=True`. Otherwise, the drift analysis will be triggered
+ only as part the scheduled monitoring job (if exist in the current project) or
+ if triggered manually by the user.
+ :param trigger_monitoring_job: Whether to trigger the batch drift analysis after the infer job.
+ :param batch_image_job: The image that will be used to register the monitoring batch job if not exist.
+ By default, the image is mlrun/mlrun.
+ :param endpoint_id: Model endpoint unique ID. If `perform_drift_analysis` was set, the endpoint_id
+ will be used either to perform the analysis on existing model endpoint or to
+ generate a new model endpoint record.
+ :param model_endpoint_name: If a new model endpoint is generated, the model name will be presented under this
+ endpoint.
+ :param model_endpoint_drift_threshold: The threshold of which to mark drifts. Defaulted to 0.7.
+ :param model_endpoint_possible_drift_threshold: The threshold of which to mark possible drifts. Defaulted to 0.5.
+ :param model_endpoint_sample_set: A sample dataset to give to compare the inputs in the drift analysis.
+ Can be provided as an input (DataItem) or as a parameter (e.g. string, list, DataFrame).
+ The default chosen sample set will always be the one who is set in the model artifact itself.
+
+ raises MLRunInvalidArgumentError: if both `model_path` and `endpoint_id` are not provided
+ """
+
+ # Loading the model:
+ context.logger.info(f"Loading model...")
+ if isinstance(model_path, mlrun.DataItem):
+ model_path = model_path.artifact_url
+ if not mlrun.datastore.is_store_uri(model_path):
+ raise mlrun.errors.MLRunInvalidArgumentError(
+ f"The provided model path ({model_path}) is invalid - should start with `store://`. "
+ f"Please make sure that you have logged the model using `project.log_model()` "
+ f"which generates a unique store uri for the logged model."
+ )
+ model_handler = AutoMLRun.load_model(model_path=model_path, context=context)
+
+ if label_columns is None:
+ label_columns = [
+ output.name for output in model_handler._model_artifact.spec.outputs
+ ]
+
+ if feature_columns is None:
+ feature_columns = [
+ input.name for input in model_handler._model_artifact.spec.inputs
+ ]
+
+ # Get dataset by object, URL or by FeatureVector:
+ context.logger.info(f"Loading data...")
+ x, label_columns = mlrun.model_monitoring.api.read_dataset_as_dataframe(
+ dataset=dataset,
+ feature_columns=feature_columns,
+ label_columns=label_columns,
+ drop_columns=drop_columns,
+ )
+
+ # Predict:
+ context.logger.info(f"Calculating prediction...")
+ y_pred = model_handler.model.predict(x, **predict_kwargs)
+
+ # Prepare the result set:
+ result_set = _prepare_result_set(x=x, label_columns=label_columns, y_pred=y_pred)
+
+ # Check for logging the result set:
+ if log_result_set:
+ mlrun.model_monitoring.api.log_result(
+ context=context,
+ result_set_name=result_set_name,
+ result_set=result_set,
+ artifacts_tag=artifacts_tag,
+ batch_id=batch_id,
+ )
+
+ # Check for performing drift analysis
+ if (
+ perform_drift_analysis is None
+ and model_handler._model_artifact.spec.feature_stats is not None
+ ):
+ perform_drift_analysis = True
+ if perform_drift_analysis:
+ context.logger.info("Performing drift analysis...")
+ # Get the sample set statistics (either from the sample set or from the statistics logged with the model)
+ statistics_input_filtered = _get_sample_set_statistics_parameters(
+ context=context,
+ model_endpoint_sample_set=model_endpoint_sample_set,
+ model_artifact_feature_stats=model_handler._model_artifact.spec.feature_stats,
+ feature_columns=feature_columns,
+ drop_columns=drop_columns,
+ label_columns=label_columns)
+ sample_set_statistics = mlrun.model_monitoring.api.get_sample_set_statistics(**statistics_input_filtered)
+ mlrun.model_monitoring.api.record_results(
+ project=context.project,
+ context=context,
+ endpoint_id=endpoint_id,
+ model_path=model_path,
+ model_endpoint_name=model_endpoint_name,
+ infer_results_df=result_set.copy(),
+ sample_set_statistics=sample_set_statistics,
+ drift_threshold=model_endpoint_drift_threshold,
+ possible_drift_threshold=model_endpoint_possible_drift_threshold,
+ artifacts_tag=artifacts_tag,
+ trigger_monitoring_job=trigger_monitoring_job,
+ default_batch_image=batch_image_job,
+ )
+
+
+
+
+
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/latest/src/batch_inference_v2.py b/functions/master/batch_inference_v2/latest/src/batch_inference_v2.py
index 1272f3f5..1d4d9ec7 100644
--- a/functions/master/batch_inference_v2/latest/src/batch_inference_v2.py
+++ b/functions/master/batch_inference_v2/latest/src/batch_inference_v2.py
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-from typing import Any, Dict, List, Union
-
+from inspect import signature
+from typing import Any, Dict, List, Union, Optional
import mlrun
try:
@@ -24,15 +24,12 @@
f"older version of the batch inference function."
)
-
import numpy as np
import pandas as pd
from mlrun.frameworks.auto_mlrun import AutoMLRun
-def _prepare_result_set(
- x: pd.DataFrame, label_columns: List[str], y_pred: np.ndarray
-) -> pd.DataFrame:
+def _prepare_result_set(x: pd.DataFrame, label_columns: List[str], y_pred: np.ndarray) -> pd.DataFrame:
"""
Set default label column names and validate given names to prepare the result set - a concatenation of the inputs
(x) and the model predictions (y_pred).
@@ -77,32 +74,57 @@ def _prepare_result_set(
)
+def _get_sample_set_statistics_parameters(context: mlrun.MLClientCtx,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_artifact_feature_stats: dict,
+ feature_columns: Optional[List],
+ drop_columns: Optional[List],
+ label_columns: Optional[List]) -> Dict[str, Any]:
+ statics_input_full_dict = dict(sample_set=model_endpoint_sample_set,
+ model_artifact_feature_stats=model_artifact_feature_stats,
+ sample_set_columns=feature_columns,
+ sample_set_drop_columns=drop_columns,
+ sample_set_label_columns=label_columns)
+ get_sample_statics_function = mlrun.model_monitoring.api.get_sample_set_statistics
+ statics_function_input_dict = signature(get_sample_statics_function).parameters
+ # As a result of changes to input parameters in the mlrun-get_sample_set_statistics function,
+ # we will now send only the parameters it expects.
+ statistics_input_filtered = {key: statics_input_full_dict[key] for key in statics_function_input_dict}
+ if len(statistics_input_filtered) != len(statics_function_input_dict):
+ context.logger.warning(f"get_sample_set_statistics is in an older version; "
+ "some parameters will not be sent to the function."
+ f" Expected input: {list(statics_function_input_dict.keys())},"
+ f" actual input: {list(statistics_input_filtered.keys())}")
+ return statistics_input_filtered
+
+
def infer(
- context: mlrun.MLClientCtx,
- dataset: Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
- model_path: Union[str, mlrun.DataItem],
- drop_columns: Union[str, List[str], int, List[int]] = None,
- label_columns: Union[str, List[str]] = None,
- feature_columns: Union[str, List[str]] = None,
- log_result_set: bool = True,
- result_set_name: str = "prediction",
- batch_id: str = None,
- artifacts_tag: str = "",
- # Drift analysis parameters
- perform_drift_analysis: bool = None,
- trigger_monitoring_job: bool = False,
- batch_image_job: str = "mlrun/mlrun",
- endpoint_id: str = "",
- # The following model endpoint parameters are relevant only if:
- # perform drift analysis is not disabled
- # a new model endpoint record is going to be generated
- model_endpoint_name: str = "batch-infer",
- model_endpoint_drift_threshold: float = 0.7,
- model_endpoint_possible_drift_threshold: float = 0.5,
- model_endpoint_sample_set: Union[
- mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray
- ] = None,
- **predict_kwargs: Dict[str, Any],
+ context: mlrun.MLClientCtx,
+ dataset: Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_path: Union[str, mlrun.DataItem],
+ drop_columns: Union[str, List[str], int, List[int]] = None,
+ label_columns: Union[str, List[str]] = None,
+ feature_columns: Union[str, List[str]] = None,
+ log_result_set: bool = True,
+ result_set_name: str = "prediction",
+ batch_id: str = None,
+ artifacts_tag: str = "",
+ # Drift analysis parameters
+ perform_drift_analysis: bool = None,
+ trigger_monitoring_job: bool = False,
+ batch_image_job: str = "mlrun/mlrun",
+ endpoint_id: str = "",
+ # The following model endpoint parameters are relevant only if:
+ # perform drift analysis is not disabled
+ # a new model endpoint record is going to be generated
+ model_endpoint_name: str = "batch-infer",
+ model_endpoint_drift_threshold: float = 0.7,
+ model_endpoint_possible_drift_threshold: float = 0.5,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray
+ ] = None,
+ **predict_kwargs: Dict[str, Any],
):
"""
Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
@@ -215,17 +237,21 @@ def infer(
# Check for performing drift analysis
if (
- perform_drift_analysis is None
- and model_handler._model_artifact.spec.feature_stats is not None
+ perform_drift_analysis is None
+ and model_handler._model_artifact.spec.feature_stats is not None
):
perform_drift_analysis = True
if perform_drift_analysis:
context.logger.info("Performing drift analysis...")
# Get the sample set statistics (either from the sample set or from the statistics logged with the model)
- sample_set_statistics = mlrun.model_monitoring.api.get_sample_set_statistics(
- sample_set=model_endpoint_sample_set,
+ statistics_input_filtered = _get_sample_set_statistics_parameters(
+ context=context,
+ model_endpoint_sample_set=model_endpoint_sample_set,
model_artifact_feature_stats=model_handler._model_artifact.spec.feature_stats,
- )
+ feature_columns=feature_columns,
+ drop_columns=drop_columns,
+ label_columns=label_columns)
+ sample_set_statistics = mlrun.model_monitoring.api.get_sample_set_statistics(**statistics_input_filtered)
mlrun.model_monitoring.api.record_results(
project=context.project,
context=context,
diff --git a/functions/master/batch_inference_v2/latest/src/function.yaml b/functions/master/batch_inference_v2/latest/src/function.yaml
index 01c77400..653346c0 100644
--- a/functions/master/batch_inference_v2/latest/src/function.yaml
+++ b/functions/master/batch_inference_v2/latest/src/function.yaml
@@ -2,7 +2,7 @@ kind: job
metadata:
name: batch-inference-v2
tag: ''
- hash: dc06b60eca23e504d353cfae3b925e81718193e7
+ hash: cfe7a24a5d05a7d6b9f03d119d9f2661e48db0f5
project: ''
labels:
author: eyald
@@ -15,7 +15,7 @@ spec:
args: []
image: mlrun/mlrun
build:
- functionSourceCode: IyBDb3B5cmlnaHQgMjAyMyBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCgpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBEaWN0LCBMaXN0LCBVbmlvbgoKaW1wb3J0IG1scnVuCgp0cnk6CiAgICBpbXBvcnQgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkKZXhjZXB0IE1vZHVsZU5vdEZvdW5kRXJyb3I6CiAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5Ob3RGb3VuZEVycm9yKAogICAgICAgIGYiUGxlYXNlIHVwZGF0ZSB5b3VyIGBtbHJ1bmAgdmVyc2lvbiB0byA+PTEuNS4wIG9yIHVzZSBhbiAiCiAgICAgICAgZiJvbGRlciB2ZXJzaW9uIG9mIHRoZSBiYXRjaCBpbmZlcmVuY2UgZnVuY3Rpb24uIgogICAgKQoKCmltcG9ydCBudW1weSBhcyBucAppbXBvcnQgcGFuZGFzIGFzIHBkCmZyb20gbWxydW4uZnJhbWV3b3Jrcy5hdXRvX21scnVuIGltcG9ydCBBdXRvTUxSdW4KCgpkZWYgX3ByZXBhcmVfcmVzdWx0X3NldCgKICAgIHg6IHBkLkRhdGFGcmFtZSwgbGFiZWxfY29sdW1uczogTGlzdFtzdHJdLCB5X3ByZWQ6IG5wLm5kYXJyYXkKKSAtPiBwZC5EYXRhRnJhbWU6CiAgICAiIiIKICAgIFNldCBkZWZhdWx0IGxhYmVsIGNvbHVtbiBuYW1lcyBhbmQgdmFsaWRhdGUgZ2l2ZW4gbmFtZXMgdG8gcHJlcGFyZSB0aGUgcmVzdWx0IHNldCAtIGEgY29uY2F0ZW5hdGlvbiBvZiB0aGUgaW5wdXRzCiAgICAoeCkgYW5kIHRoZSBtb2RlbCBwcmVkaWN0aW9ucyAoeV9wcmVkKS4KCiAgICA6cGFyYW0geDogICAgICAgICAgICAgVGhlIGlucHV0cy4KICAgIDpwYXJhbSBsYWJlbF9jb2x1bW5zOiBBIGxpc3Qgb2Ygc3RyaW5ncyByZXByZXNlbnRpbmcgdGhlIHRhcmdldCBjb2x1bW4gbmFtZXMgdG8gYWRkIHRvIHRoZSBwcmVkaWN0aW9ucy4gRGVmYXVsdCBuYW1lCiAgICAgICAgICAgICAgICAgICAgICAgICAgd2lsbCBiZSB1c2VkIGluIGNhc2UgdGhlIGxpc3QgaXMgZW1wdHkgKHByZWRpY3RlZF9sYWJlbF97aX0pLgogICAgOnBhcmFtIHlfcHJlZDogICAgICAgIFRoZSBtb2RlbCBwcmVkaWN0aW9ucyBvbiB0aGUgaW5wdXRzLgoKICAgIDpyZXR1cm5zOiBUaGUgcmVzdWx0IHNldC4KCiAgICByYWlzZXMgTUxSdW5JbnZhbGlkQXJndW1lbnRFcnJvcjogSWYgdGhlIGxhYmVscyBjb2x1bW5zIGFtb3VudCBkbyBub3QgbWF0Y2ggdGhlIG91dHB1dHMgb3IgaWYgb25lIG9mIHRoZSBsYWJlbAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW4gYWxyZWFkeSBleGlzdHMgaW4gdGhlIGRhdGFzZXQuCiAgICAiIiIKICAgICMgUHJlcGFyZSBkZWZhdWx0IHRhcmdldCBjb2x1bW5zIG5hbWVzIGlmIG5vdCBwcm92aWRlZDoKICAgIHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQgPSAxIGlmIGxlbih5X3ByZWQuc2hhcGUpID09IDEgZWxzZSB5X3ByZWQuc2hhcGVbMV0KICAgIGlmIGxlbihsYWJlbF9jb2x1bW5zKSA9PSAwOgogICAgICAgICMgQWRkIGRlZmF1bHQgbGFiZWwgY29sdW1uIG5hbWVzOgogICAgICAgIGlmIHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQgPT0gMToKICAgICAgICAgICAgbGFiZWxfY29sdW1ucyA9IFsicHJlZGljdGVkX2xhYmVsIl0KICAgICAgICBlbHNlOgogICAgICAgICAgICBsYWJlbF9jb2x1bW5zID0gWwogICAgICAgICAgICAgICAgZiJwcmVkaWN0ZWRfbGFiZWxfe2l9IiBmb3IgaSBpbiByYW5nZShwcmVkaWN0aW9uX2NvbHVtbnNfYW1vdW50KQogICAgICAgICAgICBdCgogICAgIyBWYWxpZGF0ZSB0aGUgbGFiZWwgY29sdW1uczoKICAgIGlmIHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQgIT0gbGVuKGxhYmVsX2NvbHVtbnMpOgogICAgICAgICMgTm8gZXF1YWxpdHkgYmV0d2VlbiBwcm92aWRlZCBsYWJlbCBjb2x1bW4gbmFtZXMgYW5kIG91dHB1dHMgYW1vdW50OgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBudW1iZXIgb2YgcHJlZGljdGVkIGxhYmVsczoge3ByZWRpY3Rpb25fY29sdW1uc19hbW91bnR9ICIKICAgICAgICAgICAgZiJpcyBub3QgZXF1YWwgdG8gdGhlIGdpdmVuIGxhYmVsIGNvbHVtbnM6IHtsZW4obGFiZWxfY29sdW1ucyl9IgogICAgICAgICkKICAgIGNvbW1vbl9sYWJlbHMgPSBzZXQobGFiZWxfY29sdW1ucykgJiBzZXQoeC5jb2x1bW5zLnRvbGlzdCgpKQogICAgaWYgY29tbW9uX2xhYmVsczoKICAgICAgICAjIExhYmVsIGNvbHVtbiBleGlzdCBpbiB0aGUgb3JpZ2luYWwgaW5wdXRzOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBsYWJlbHM6IHtjb21tb25fbGFiZWxzfSBhcmUgYWxyZWFkeSBleGlzdGVkIGluIHRoZSBnaXZlbiBkYXRhc2V0LiIKICAgICAgICApCgogICAgcmV0dXJuIHBkLmNvbmNhdCgKICAgICAgICBbeCwgcGQuRGF0YUZyYW1lKHlfcHJlZCwgY29sdW1ucz1sYWJlbF9jb2x1bW5zLCBpbmRleD14LmluZGV4KV0sIGF4aXM9MQogICAgKQoKCmRlZiBpbmZlcigKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogVW5pb25bbWxydW4uRGF0YUl0ZW0sIGxpc3QsIGRpY3QsIHBkLkRhdGFGcmFtZSwgcGQuU2VyaWVzLCBucC5uZGFycmF5XSwKICAgIG1vZGVsX3BhdGg6IFVuaW9uW3N0ciwgbWxydW4uRGF0YUl0ZW1dLAogICAgZHJvcF9jb2x1bW5zOiBVbmlvbltzdHIsIExpc3Rbc3RyXSwgaW50LCBMaXN0W2ludF1dID0gTm9uZSwKICAgIGxhYmVsX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBmZWF0dXJlX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBsb2dfcmVzdWx0X3NldDogYm9vbCA9IFRydWUsCiAgICByZXN1bHRfc2V0X25hbWU6IHN0ciA9ICJwcmVkaWN0aW9uIiwKICAgIGJhdGNoX2lkOiBzdHIgPSBOb25lLAogICAgYXJ0aWZhY3RzX3RhZzogc3RyID0gIiIsCiAgICAjIERyaWZ0IGFuYWx5c2lzIHBhcmFtZXRlcnMKICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6IGJvb2wgPSBOb25lLAogICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYjogYm9vbCA9IEZhbHNlLAogICAgYmF0Y2hfaW1hZ2Vfam9iOiBzdHIgPSAibWxydW4vbWxydW4iLAogICAgZW5kcG9pbnRfaWQ6IHN0ciA9ICIiLAogICAgIyBUaGUgZm9sbG93aW5nIG1vZGVsIGVuZHBvaW50IHBhcmFtZXRlcnMgYXJlIHJlbGV2YW50IG9ubHkgaWY6CiAgICAjIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaXMgbm90IGRpc2FibGVkCiAgICAjIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZCBpcyBnb2luZyB0byBiZSBnZW5lcmF0ZWQKICAgIG1vZGVsX2VuZHBvaW50X25hbWU6IHN0ciA9ICJiYXRjaC1pbmZlciIsCiAgICBtb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQ6IGZsb2F0ID0gMC43LAogICAgbW9kZWxfZW5kcG9pbnRfcG9zc2libGVfZHJpZnRfdGhyZXNob2xkOiBmbG9hdCA9IDAuNSwKICAgIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQ6IFVuaW9uWwogICAgICAgIG1scnVuLkRhdGFJdGVtLCBsaXN0LCBkaWN0LCBwZC5EYXRhRnJhbWUsIHBkLlNlcmllcywgbnAubmRhcnJheQogICAgXSA9IE5vbmUsCiAgICAqKnByZWRpY3Rfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSwKKToKICAgICIiIgogICAgUGVyZm9ybSBhIHByZWRpY3Rpb24gb24gYSBnaXZlbiBkYXRhc2V0IHdpdGggdGhlIGdpdmVuIG1vZGVsLiBQbGVhc2UgbWFrZSBzdXJlIHRoYXQgeW91IGhhdmUgYWxyZWFkeSBsb2dnZWQgdGhlIG1vZGVsCiAgICB1bmRlciB0aGUgY3VycmVudCBwcm9qZWN0LgogICAgQ2FuIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgYmV0d2VlbiB0aGUgc2FtcGxlIHNldCBzdGF0aXN0aWNzIHN0b3JlZCBpbiB0aGUgbW9kZWwgdG8gdGhlIGN1cnJlbnQgaW5wdXQgZGF0YS4gVGhlCiAgICBkcmlmdCBydWxlIGlzIHRoZSB2YWx1ZSBwZXItZmVhdHVyZSBtZWFuIG9mIHRoZSBUVkQgYW5kIEhlbGxpbmdlciBzY29yZXMgYWNjb3JkaW5nIHRvIHRoZSB0aHJlc2hvbGRzIGNvbmZpZ3VyZXMKICAgIGhlcmUuIFdoZW4gcGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcywgdGhpcyBmdW5jdGlvbiBlaXRoZXIgdXNlcyBhbiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCByZWNvcmQgb3IgY3JlYXRlcwogICAgYSBuZXcgb25lLgogICAgQXQgdGhlIG1vbWVudCwgdGhpcyBmdW5jdGlvbiBpcyBzdXBwb3J0ZWQgZm9yIGBtbHJ1bj49MS41LjBgIHZlcnNpb25zLgoKICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQuCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byBpbmZlciB0aHJvdWdoIHRoZSBtb2RlbC4gUHJvdmlkZWQgYXMgYW4gaW5wdXQgKERhdGFJdGVtKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhhdCByZXByZXNlbnRzIERhdGFzZXQgYXJ0aWZhY3QgLyBGZWF0dXJlIHZlY3RvciBVUkkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBkYXRhc2V0YCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIGxpc3QsIGRpY3Rpb25hcnkgb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bXB5IGFycmF5LgogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTW9kZWwgc3RvcmUgdXJpIChzaG91bGQgc3RhcnQgd2l0aCBzdG9yZTovLykuIFByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBtb2RlbF9wYXRoYCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIHBhcmFtZXRlciAoc3RyaW5nKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRvIGdlbmVyYXRlIGEgdmFsaWQgbW9kZWwgc3RvcmUgVVJJLCBwbGVhc2UgbG9nIHRoZSBtb2RlbCBiZWZvcmUgcnVubmluZyB0aGlzIGZ1bmN0aW9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgYGVuZHBvaW50X2lkYCBvZiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCBpcyBwcm92aWRlZCwgbWFrZSBzdXJlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGF0IGl0IGhhcyBhIHNpbWlsYXIgbW9kZWwgc3RvcmUgcGF0aCwgb3RoZXJ3aXNlIHRoZSBkcmlmdCBhbmFseXNpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29uJ3QgYmUgdHJpZ2dlcmVkLgogICAgOnBhcmFtIGRyb3BfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICAgQSBzdHJpbmcgLyBpbnRlZ2VyIG9yIGEgbGlzdCBvZiBzdHJpbmdzIC8gaW50ZWdlcnMgdGhhdCByZXByZXNlbnQgdGhlIGNvbHVtbiBuYW1lcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLyBpbmRpY2VzIHRvIGRyb3AuIFdoZW4gdGhlIGRhdGFzZXQgaXMgYSBsaXN0IG9yIGEgbnVtcHkgYXJyYXkgdGhpcyBwYXJhbWV0ZXIgbXVzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmUgcmVwcmVzZW50ZWQgYnkgaW50ZWdlcnMuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQgZm9yIFJlZ3Jlc3Npb24gb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENsYXNzaWZpY2F0aW9uIHRhc2tzLiBUaGUgbGFiZWwgY29sdW1uIGNhbiBiZSBhY2Nlc3NlZCBmcm9tIHRoZSBtb2RlbCBvYmplY3QsIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgZmVhdHVyZSB2ZWN0b3IgcHJvdmlkZWQgaWYgYXZhaWxhYmxlLgogICAgOnBhcmFtIGZlYXR1cmVfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgTGlzdCBvZiBmZWF0dXJlIGNvbHVtbnMgdGhhdCB3aWxsIGJlIHVzZWQgdG8gYnVpbGQgdGhlIGRhdGFmcmFtZSB3aGVuIGRhdGFzZXQgaXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZyb20gdHlwZSBsaXN0IG9yIG51bXB5IGFycmF5LgogICAgOnBhcmFtIGxvZ19yZXN1bHRfc2V0OiAgICAgICAgICAgICAgICAgICAgICAgICAgV2hldGhlciB0byBsb2cgdGhlIHJlc3VsdCBzZXQgLSBhIERhdGFGcmFtZSBvZiB0aGUgZ2l2ZW4gaW5wdXRzIGNvbmNhdGVuYXRlZCB3aXRoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgcHJlZGljdGlvbnMuIERlZmF1bHRlZCB0byBUcnVlLgogICAgOnBhcmFtIHJlc3VsdF9zZXRfbmFtZTogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRiIGtleSB0byBzZXQgbmFtZSBvZiB0aGUgcHJlZGljdGlvbiByZXN1bHQgYW5kIHRoZSBmaWxlbmFtZS4gRGVmYXVsdGVkIHRvCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAncHJlZGljdGlvbicuCiAgICA6cGFyYW0gYmF0Y2hfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgSUQgb2YgdGhlIGdpdmVuIGJhdGNoIChpbmZlcmVuY2UgZGF0YXNldCkuIElmIGBOb25lYCwgaXQgd2lsbCBiZSBnZW5lcmF0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaWxsIGJlIGxvZ2dlZCBhcyBhIHJlc3VsdCBvZiB0aGUgcnVuLgogICAgOnBhcmFtIGFydGlmYWN0c190YWc6ICAgICAgICAgICAgICAgICAgICAgICAgICAgVGFnIHRvIHVzZSBmb3IgYWxsIHRoZSBhcnRpZmFjdHMgcmVzdWx0ZWQgZnJvbSB0aGUgZnVuY3Rpb24gKHJlc3VsdCBzZXQgYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBtb25pdG9yaW5nIGFydGlmYWN0cykKICAgIDpwYXJhbSBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOiAgICAgICAgICAgICAgICAgIFdoZXRoZXIgdG8gcGVyZm9ybSBkcmlmdCBhbmFseXNpcyBiZXR3ZWVuIHRoZSBzYW1wbGUgc2V0IG9mIHRoZSBtb2RlbCBvYmplY3QgdG8gdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhc2V0IGdpdmVuLiBCeSBkZWZhdWx0LCBOb25lLCB3aGljaCBtZWFucyBpdCB3aWxsIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaWYgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBhbHJlYWR5IGhhcyBmZWF0dXJlIHN0YXRzIHRoYXQgYXJlIGNvbnNpZGVyZWQgYXMgYSByZWZlcmVuY2Ugc2FtcGxlIHNldC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMgb24gYSBuZXcgZW5kcG9pbnQgaWQgd2lsbCBnZW5lcmF0ZSBhIG5ldyBtb2RlbCBlbmRwb2ludAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb3JkLiBQbGVhc2Ugbm90ZSB0aGF0IGluIG9yZGVyIHRvIHRyaWdnZXIgdGhlIGRyaWZ0IGFuYWx5c2lzIGpvYiwgeW91IG5lZWQgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNldCBgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj1UcnVlYC4gT3RoZXJ3aXNlLCB0aGUgZHJpZnQgYW5hbHlzaXMgd2lsbCBiZSB0cmlnZ2VyZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkgYXMgcGFydCB0aGUgc2NoZWR1bGVkIG1vbml0b3Jpbmcgam9iIChpZiBleGlzdCBpbiB0aGUgY3VycmVudCBwcm9qZWN0KSBvcgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWYgdHJpZ2dlcmVkIG1hbnVhbGx5IGJ5IHRoZSB1c2VyLgogICAgOnBhcmFtIHRyaWdnZXJfbW9uaXRvcmluZ19qb2I6ICAgICAgICAgICAgICAgICAgV2hldGhlciB0byB0cmlnZ2VyIHRoZSBiYXRjaCBkcmlmdCBhbmFseXNpcyBhZnRlciB0aGUgaW5mZXIgam9iLgogICAgOnBhcmFtIGJhdGNoX2ltYWdlX2pvYjogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGltYWdlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIHJlZ2lzdGVyIHRoZSBtb25pdG9yaW5nIGJhdGNoIGpvYiBpZiBub3QgZXhpc3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCeSBkZWZhdWx0LCB0aGUgaW1hZ2UgaXMgbWxydW4vbWxydW4uCiAgICA6cGFyYW0gZW5kcG9pbnRfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNb2RlbCBlbmRwb2ludCB1bmlxdWUgSUQuIElmIGBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzYCB3YXMgc2V0LCB0aGUgZW5kcG9pbnRfaWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdpbGwgYmUgdXNlZCBlaXRoZXIgdG8gcGVyZm9ybSB0aGUgYW5hbHlzaXMgb24gZXhpc3RpbmcgbW9kZWwgZW5kcG9pbnQgb3IgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVyYXRlIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZC4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9uYW1lOiAgICAgICAgICAgICAgICAgICAgIElmIGEgbmV3IG1vZGVsIGVuZHBvaW50IGlzIGdlbmVyYXRlZCwgdGhlIG1vZGVsIG5hbWUgd2lsbCBiZSBwcmVzZW50ZWQgdW5kZXIgdGhpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kcG9pbnQuCiAgICA6cGFyYW0gbW9kZWxfZW5kcG9pbnRfZHJpZnRfdGhyZXNob2xkOiAgICAgICAgICBUaGUgdGhyZXNob2xkIG9mIHdoaWNoIHRvIG1hcmsgZHJpZnRzLiBEZWZhdWx0ZWQgdG8gMC43LgogICAgOnBhcmFtIG1vZGVsX2VuZHBvaW50X3Bvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZDogVGhlIHRocmVzaG9sZCBvZiB3aGljaCB0byBtYXJrIHBvc3NpYmxlIGRyaWZ0cy4gRGVmYXVsdGVkIHRvIDAuNS4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0OiAgICAgICAgICAgICAgIEEgc2FtcGxlIGRhdGFzZXQgdG8gZ2l2ZSB0byBjb21wYXJlIHRoZSBpbnB1dHMgaW4gdGhlIGRyaWZ0IGFuYWx5c2lzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkgb3IgYXMgYSBwYXJhbWV0ZXIgKGUuZy4gc3RyaW5nLCBsaXN0LCBEYXRhRnJhbWUpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRlZmF1bHQgY2hvc2VuIHNhbXBsZSBzZXQgd2lsbCBhbHdheXMgYmUgdGhlIG9uZSB3aG8gaXMgc2V0IGluIHRoZSBtb2RlbCBhcnRpZmFjdCBpdHNlbGYuCgogICAgcmFpc2VzIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IGlmIGJvdGggYG1vZGVsX3BhdGhgIGFuZCBgZW5kcG9pbnRfaWRgIGFyZSBub3QgcHJvdmlkZWQKICAgICIiIgoKICAgICMgTG9hZGluZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiTG9hZGluZyBtb2RlbC4uLiIpCiAgICBpZiBpc2luc3RhbmNlKG1vZGVsX3BhdGgsIG1scnVuLkRhdGFJdGVtKToKICAgICAgICBtb2RlbF9wYXRoID0gbW9kZWxfcGF0aC5hcnRpZmFjdF91cmwKICAgIGlmIG5vdCBtbHJ1bi5kYXRhc3RvcmUuaXNfc3RvcmVfdXJpKG1vZGVsX3BhdGgpOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBwcm92aWRlZCBtb2RlbCBwYXRoICh7bW9kZWxfcGF0aH0pIGlzIGludmFsaWQgLSBzaG91bGQgc3RhcnQgd2l0aCBgc3RvcmU6Ly9gLiAiCiAgICAgICAgICAgIGYiUGxlYXNlIG1ha2Ugc3VyZSB0aGF0IHlvdSBoYXZlIGxvZ2dlZCB0aGUgbW9kZWwgdXNpbmcgYHByb2plY3QubG9nX21vZGVsKClgICIKICAgICAgICAgICAgZiJ3aGljaCBnZW5lcmF0ZXMgYSB1bmlxdWUgc3RvcmUgdXJpIGZvciB0aGUgbG9nZ2VkIG1vZGVsLiIKICAgICAgICApCiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgaWYgbGFiZWxfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgIG91dHB1dC5uYW1lIGZvciBvdXRwdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5vdXRwdXRzCiAgICAgICAgXQoKICAgIGlmIGZlYXR1cmVfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGZlYXR1cmVfY29sdW1ucyA9IFsKICAgICAgICAgICAgaW5wdXQubmFtZSBmb3IgaW5wdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5pbnB1dHMKICAgICAgICBdCgogICAgIyBHZXQgZGF0YXNldCBieSBvYmplY3QsIFVSTCBvciBieSBGZWF0dXJlVmVjdG9yOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmIkxvYWRpbmcgZGF0YS4uLiIpCiAgICB4LCBsYWJlbF9jb2x1bW5zID0gbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkucmVhZF9kYXRhc2V0X2FzX2RhdGFmcmFtZSgKICAgICAgICBkYXRhc2V0PWRhdGFzZXQsCiAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX2NvbHVtbnMsCiAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICkKCiAgICAjIFByZWRpY3Q6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiQ2FsY3VsYXRpbmcgcHJlZGljdGlvbi4uLiIpCiAgICB5X3ByZWQgPSBtb2RlbF9oYW5kbGVyLm1vZGVsLnByZWRpY3QoeCwgKipwcmVkaWN0X2t3YXJncykKCiAgICAjIFByZXBhcmUgdGhlIHJlc3VsdCBzZXQ6CiAgICByZXN1bHRfc2V0ID0gX3ByZXBhcmVfcmVzdWx0X3NldCh4PXgsIGxhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucywgeV9wcmVkPXlfcHJlZCkKCiAgICAjIENoZWNrIGZvciBsb2dnaW5nIHRoZSByZXN1bHQgc2V0OgogICAgaWYgbG9nX3Jlc3VsdF9zZXQ6CiAgICAgICAgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkubG9nX3Jlc3VsdCgKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICByZXN1bHRfc2V0X25hbWU9cmVzdWx0X3NldF9uYW1lLAogICAgICAgICAgICByZXN1bHRfc2V0PXJlc3VsdF9zZXQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgYmF0Y2hfaWQ9YmF0Y2hfaWQsCiAgICAgICAgKQoKICAgICMgQ2hlY2sgZm9yIHBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMKICAgIGlmICgKICAgICAgICBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzIGlzIE5vbmUKICAgICAgICBhbmQgbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5mZWF0dXJlX3N0YXRzIGlzIG5vdCBOb25lCiAgICApOgogICAgICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXMgPSBUcnVlCiAgICBpZiBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOgogICAgICAgIGNvbnRleHQubG9nZ2VyLmluZm8oIlBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMuLi4iKQogICAgICAgICMgR2V0IHRoZSBzYW1wbGUgc2V0IHN0YXRpc3RpY3MgKGVpdGhlciBmcm9tIHRoZSBzYW1wbGUgc2V0IG9yIGZyb20gdGhlIHN0YXRpc3RpY3MgbG9nZ2VkIHdpdGggdGhlIG1vZGVsKQogICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcyA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MoCiAgICAgICAgICAgIHNhbXBsZV9zZXQ9bW9kZWxfZW5kcG9pbnRfc2FtcGxlX3NldCwKICAgICAgICAgICAgbW9kZWxfYXJ0aWZhY3RfZmVhdHVyZV9zdGF0cz1tb2RlbF9oYW5kbGVyLl9tb2RlbF9hcnRpZmFjdC5zcGVjLmZlYXR1cmVfc3RhdHMsCiAgICAgICAgKQogICAgICAgIG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLnJlY29yZF9yZXN1bHRzKAogICAgICAgICAgICBwcm9qZWN0PWNvbnRleHQucHJvamVjdCwKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBlbmRwb2ludF9pZD1lbmRwb2ludF9pZCwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICBtb2RlbF9lbmRwb2ludF9uYW1lPW1vZGVsX2VuZHBvaW50X25hbWUsCiAgICAgICAgICAgIGluZmVyX3Jlc3VsdHNfZGY9cmVzdWx0X3NldC5jb3B5KCksCiAgICAgICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcz1zYW1wbGVfc2V0X3N0YXRpc3RpY3MsCiAgICAgICAgICAgIGRyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIHBvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9wb3NzaWJsZV9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj10cmlnZ2VyX21vbml0b3Jpbmdfam9iLAogICAgICAgICAgICBkZWZhdWx0X2JhdGNoX2ltYWdlPWJhdGNoX2ltYWdlX2pvYiwKICAgICAgICApCg==
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAyMyBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCgpmcm9tIGluc3BlY3QgaW1wb3J0IHNpZ25hdHVyZQpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBEaWN0LCBMaXN0LCBVbmlvbgppbXBvcnQgbWxydW4KCnRyeToKICAgIGltcG9ydCBtbHJ1bi5tb2RlbF9tb25pdG9yaW5nLmFwaQpleGNlcHQgTW9kdWxlTm90Rm91bmRFcnJvcjoKICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bk5vdEZvdW5kRXJyb3IoCiAgICAgICAgZiJQbGVhc2UgdXBkYXRlIHlvdXIgYG1scnVuYCB2ZXJzaW9uIHRvID49MS41LjAgb3IgdXNlIGFuICIKICAgICAgICBmIm9sZGVyIHZlcnNpb24gb2YgdGhlIGJhdGNoIGluZmVyZW5jZSBmdW5jdGlvbi4iCiAgICApCgppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZApmcm9tIG1scnVuLmZyYW1ld29ya3MuYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgoKZGVmIF9wcmVwYXJlX3Jlc3VsdF9zZXQoCiAgICAgICAgeDogcGQuRGF0YUZyYW1lLCBsYWJlbF9jb2x1bW5zOiBMaXN0W3N0cl0sIHlfcHJlZDogbnAubmRhcnJheQopIC0+IHBkLkRhdGFGcmFtZToKICAgICIiIgogICAgU2V0IGRlZmF1bHQgbGFiZWwgY29sdW1uIG5hbWVzIGFuZCB2YWxpZGF0ZSBnaXZlbiBuYW1lcyB0byBwcmVwYXJlIHRoZSByZXN1bHQgc2V0IC0gYSBjb25jYXRlbmF0aW9uIG9mIHRoZSBpbnB1dHMKICAgICh4KSBhbmQgdGhlIG1vZGVsIHByZWRpY3Rpb25zICh5X3ByZWQpLgoKICAgIDpwYXJhbSB4OiAgICAgICAgICAgICBUaGUgaW5wdXRzLgogICAgOnBhcmFtIGxhYmVsX2NvbHVtbnM6IEEgbGlzdCBvZiBzdHJpbmdzIHJlcHJlc2VudGluZyB0aGUgdGFyZ2V0IGNvbHVtbiBuYW1lcyB0byBhZGQgdG8gdGhlIHByZWRpY3Rpb25zLiBEZWZhdWx0IG5hbWUKICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgaW4gY2FzZSB0aGUgbGlzdCBpcyBlbXB0eSAocHJlZGljdGVkX2xhYmVsX3tpfSkuCiAgICA6cGFyYW0geV9wcmVkOiAgICAgICAgVGhlIG1vZGVsIHByZWRpY3Rpb25zIG9uIHRoZSBpbnB1dHMuCgogICAgOnJldHVybnM6IFRoZSByZXN1bHQgc2V0LgoKICAgIHJhaXNlcyBNTFJ1bkludmFsaWRBcmd1bWVudEVycm9yOiBJZiB0aGUgbGFiZWxzIGNvbHVtbnMgYW1vdW50IGRvIG5vdCBtYXRjaCB0aGUgb3V0cHV0cyBvciBpZiBvbmUgb2YgdGhlIGxhYmVsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbHVtbiBhbHJlYWR5IGV4aXN0cyBpbiB0aGUgZGF0YXNldC4KICAgICIiIgogICAgIyBQcmVwYXJlIGRlZmF1bHQgdGFyZ2V0IGNvbHVtbnMgbmFtZXMgaWYgbm90IHByb3ZpZGVkOgogICAgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9IDEgaWYgbGVuKHlfcHJlZC5zaGFwZSkgPT0gMSBlbHNlIHlfcHJlZC5zaGFwZVsxXQogICAgaWYgbGVuKGxhYmVsX2NvbHVtbnMpID09IDA6CiAgICAgICAgIyBBZGQgZGVmYXVsdCBsYWJlbCBjb2x1bW4gbmFtZXM6CiAgICAgICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9PSAxOgogICAgICAgICAgICBsYWJlbF9jb2x1bW5zID0gWyJwcmVkaWN0ZWRfbGFiZWwiXQogICAgICAgIGVsc2U6CiAgICAgICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgICAgICBmInByZWRpY3RlZF9sYWJlbF97aX0iIGZvciBpIGluIHJhbmdlKHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQpCiAgICAgICAgICAgIF0KCiAgICAjIFZhbGlkYXRlIHRoZSBsYWJlbCBjb2x1bW5zOgogICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCAhPSBsZW4obGFiZWxfY29sdW1ucyk6CiAgICAgICAgIyBObyBlcXVhbGl0eSBiZXR3ZWVuIHByb3ZpZGVkIGxhYmVsIGNvbHVtbiBuYW1lcyBhbmQgb3V0cHV0cyBhbW91bnQ6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIG51bWJlciBvZiBwcmVkaWN0ZWQgbGFiZWxzOiB7cHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudH0gIgogICAgICAgICAgICBmImlzIG5vdCBlcXVhbCB0byB0aGUgZ2l2ZW4gbGFiZWwgY29sdW1uczoge2xlbihsYWJlbF9jb2x1bW5zKX0iCiAgICAgICAgKQogICAgY29tbW9uX2xhYmVscyA9IHNldChsYWJlbF9jb2x1bW5zKSAmIHNldCh4LmNvbHVtbnMudG9saXN0KCkpCiAgICBpZiBjb21tb25fbGFiZWxzOgogICAgICAgICMgTGFiZWwgY29sdW1uIGV4aXN0IGluIHRoZSBvcmlnaW5hbCBpbnB1dHM6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIGxhYmVsczoge2NvbW1vbl9sYWJlbHN9IGFyZSBhbHJlYWR5IGV4aXN0ZWQgaW4gdGhlIGdpdmVuIGRhdGFzZXQuIgogICAgICAgICkKCiAgICByZXR1cm4gcGQuY29uY2F0KAogICAgICAgIFt4LCBwZC5EYXRhRnJhbWUoeV9wcmVkLCBjb2x1bW5zPWxhYmVsX2NvbHVtbnMsIGluZGV4PXguaW5kZXgpXSwgYXhpcz0xCiAgICApCgoKZGVmIF9nZXRfZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljc19wYXJhbWV0ZXJzKGNvbnRleHQsIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQsIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlX2NvbHVtbnMsIGRyb3BfY29sdW1ucywgbGFiZWxfY29sdW1ucyk6CiAgICBzdGF0aWNzX2lucHV0X2Z1bGxfZGljdCA9IGRpY3Qoc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHM9bW9kZWxfYXJ0aWZhY3RfZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2NvbHVtbnM9ZmVhdHVyZV9jb2x1bW5zLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhbXBsZV9zZXRfZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2xhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucykKICAgIGdldF9zYW1wbGVfc3RhdGljc19mdW5jdGlvbiA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MKICAgIHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCA9IHNpZ25hdHVyZShnZXRfc2FtcGxlX3N0YXRpY3NfZnVuY3Rpb24pLnBhcmFtZXRlcnMKICAgICMgIEFzIGEgcmVzdWx0IG9mIGNoYW5nZXMgdG8gaW5wdXQgcGFyYW1ldGVycyBpbiB0aGUgbWxydW4tZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBmdW5jdGlvbiwKICAgICMgIHdlIHdpbGwgbm93IHNlbmQgb25seSB0aGUgcGFyYW1ldGVycyBpdCBleHBlY3RzLgogICAgc3RhdGljc19pbnB1dF9maWx0ZXJlZCA9IHtrZXk6IHN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0W2tleV0gZm9yIGtleSBpbiBzdGF0aWNzX2Z1bmN0aW9uX2lucHV0X2RpY3R9CiAgICBpZiBsZW4oc3RhdGljc19pbnB1dF9maWx0ZXJlZCkgIT0gbGVuKHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCk6CiAgICAgICAgY29udGV4dC5sb2dnZXIud2FybmluZygiZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBpcyBpbiBhbiBvbGRlciB2ZXJzaW9uOyAiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAic29tZSBwYXJhbWV0ZXJzIHdpbGwgbm90IGJlIHNlbnQgdG8gdGhlIGZ1bmN0aW9uLiIpCiAgICByZXR1cm4gc3RhdGljc19pbnB1dF9maWx0ZXJlZAoKCmRlZiBpbmZlcigKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogVW5pb25bbWxydW4uRGF0YUl0ZW0sIGxpc3QsIGRpY3QsIHBkLkRhdGFGcmFtZSwgcGQuU2VyaWVzLCBucC5uZGFycmF5XSwKICAgIG1vZGVsX3BhdGg6IFVuaW9uW3N0ciwgbWxydW4uRGF0YUl0ZW1dLAogICAgZHJvcF9jb2x1bW5zOiBVbmlvbltzdHIsIExpc3Rbc3RyXSwgaW50LCBMaXN0W2ludF1dID0gTm9uZSwKICAgIGxhYmVsX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBmZWF0dXJlX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBsb2dfcmVzdWx0X3NldDogYm9vbCA9IFRydWUsCiAgICByZXN1bHRfc2V0X25hbWU6IHN0ciA9ICJwcmVkaWN0aW9uIiwKICAgIGJhdGNoX2lkOiBzdHIgPSBOb25lLAogICAgYXJ0aWZhY3RzX3RhZzogc3RyID0gIiIsCiAgICAjIERyaWZ0IGFuYWx5c2lzIHBhcmFtZXRlcnMKICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6IGJvb2wgPSBOb25lLAogICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYjogYm9vbCA9IEZhbHNlLAogICAgYmF0Y2hfaW1hZ2Vfam9iOiBzdHIgPSAibWxydW4vbWxydW4iLAogICAgZW5kcG9pbnRfaWQ6IHN0ciA9ICIiLAogICAgIyBUaGUgZm9sbG93aW5nIG1vZGVsIGVuZHBvaW50IHBhcmFtZXRlcnMgYXJlIHJlbGV2YW50IG9ubHkgaWY6CiAgICAjIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaXMgbm90IGRpc2FibGVkCiAgICAjIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZCBpcyBnb2luZyB0byBiZSBnZW5lcmF0ZWQKICAgIG1vZGVsX2VuZHBvaW50X25hbWU6IHN0ciA9ICJiYXRjaC1pbmZlciIsCiAgICBtb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQ6IGZsb2F0ID0gMC43LAogICAgbW9kZWxfZW5kcG9pbnRfcG9zc2libGVfZHJpZnRfdGhyZXNob2xkOiBmbG9hdCA9IDAuNSwKICAgIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQ6IFVuaW9uWwogICAgICAgIG1scnVuLkRhdGFJdGVtLCBsaXN0LCBkaWN0LCBwZC5EYXRhRnJhbWUsIHBkLlNlcmllcywgbnAubmRhcnJheQogICAgXSA9IE5vbmUsCiAgICAqKnByZWRpY3Rfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSwKKToKICAgICIiIgogICAgUGVyZm9ybSBhIHByZWRpY3Rpb24gb24gYSBnaXZlbiBkYXRhc2V0IHdpdGggdGhlIGdpdmVuIG1vZGVsLiBQbGVhc2UgbWFrZSBzdXJlIHRoYXQgeW91IGhhdmUgYWxyZWFkeSBsb2dnZWQgdGhlIG1vZGVsCiAgICB1bmRlciB0aGUgY3VycmVudCBwcm9qZWN0LgogICAgQ2FuIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgYmV0d2VlbiB0aGUgc2FtcGxlIHNldCBzdGF0aXN0aWNzIHN0b3JlZCBpbiB0aGUgbW9kZWwgdG8gdGhlIGN1cnJlbnQgaW5wdXQgZGF0YS4gVGhlCiAgICBkcmlmdCBydWxlIGlzIHRoZSB2YWx1ZSBwZXItZmVhdHVyZSBtZWFuIG9mIHRoZSBUVkQgYW5kIEhlbGxpbmdlciBzY29yZXMgYWNjb3JkaW5nIHRvIHRoZSB0aHJlc2hvbGRzIGNvbmZpZ3VyZXMKICAgIGhlcmUuIFdoZW4gcGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcywgdGhpcyBmdW5jdGlvbiBlaXRoZXIgdXNlcyBhbiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCByZWNvcmQgb3IgY3JlYXRlcwogICAgYSBuZXcgb25lLgogICAgQXQgdGhlIG1vbWVudCwgdGhpcyBmdW5jdGlvbiBpcyBzdXBwb3J0ZWQgZm9yIGBtbHJ1bj49MS41LjBgIHZlcnNpb25zLgoKICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQuCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byBpbmZlciB0aHJvdWdoIHRoZSBtb2RlbC4gUHJvdmlkZWQgYXMgYW4gaW5wdXQgKERhdGFJdGVtKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhhdCByZXByZXNlbnRzIERhdGFzZXQgYXJ0aWZhY3QgLyBGZWF0dXJlIHZlY3RvciBVUkkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBkYXRhc2V0YCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIGxpc3QsIGRpY3Rpb25hcnkgb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bXB5IGFycmF5LgogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTW9kZWwgc3RvcmUgdXJpIChzaG91bGQgc3RhcnQgd2l0aCBzdG9yZTovLykuIFByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBtb2RlbF9wYXRoYCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIHBhcmFtZXRlciAoc3RyaW5nKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRvIGdlbmVyYXRlIGEgdmFsaWQgbW9kZWwgc3RvcmUgVVJJLCBwbGVhc2UgbG9nIHRoZSBtb2RlbCBiZWZvcmUgcnVubmluZyB0aGlzIGZ1bmN0aW9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgYGVuZHBvaW50X2lkYCBvZiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCBpcyBwcm92aWRlZCwgbWFrZSBzdXJlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGF0IGl0IGhhcyBhIHNpbWlsYXIgbW9kZWwgc3RvcmUgcGF0aCwgb3RoZXJ3aXNlIHRoZSBkcmlmdCBhbmFseXNpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29uJ3QgYmUgdHJpZ2dlcmVkLgogICAgOnBhcmFtIGRyb3BfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICAgQSBzdHJpbmcgLyBpbnRlZ2VyIG9yIGEgbGlzdCBvZiBzdHJpbmdzIC8gaW50ZWdlcnMgdGhhdCByZXByZXNlbnQgdGhlIGNvbHVtbiBuYW1lcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLyBpbmRpY2VzIHRvIGRyb3AuIFdoZW4gdGhlIGRhdGFzZXQgaXMgYSBsaXN0IG9yIGEgbnVtcHkgYXJyYXkgdGhpcyBwYXJhbWV0ZXIgbXVzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmUgcmVwcmVzZW50ZWQgYnkgaW50ZWdlcnMuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQgZm9yIFJlZ3Jlc3Npb24gb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENsYXNzaWZpY2F0aW9uIHRhc2tzLiBUaGUgbGFiZWwgY29sdW1uIGNhbiBiZSBhY2Nlc3NlZCBmcm9tIHRoZSBtb2RlbCBvYmplY3QsIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgZmVhdHVyZSB2ZWN0b3IgcHJvdmlkZWQgaWYgYXZhaWxhYmxlLgogICAgOnBhcmFtIGZlYXR1cmVfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgTGlzdCBvZiBmZWF0dXJlIGNvbHVtbnMgdGhhdCB3aWxsIGJlIHVzZWQgdG8gYnVpbGQgdGhlIGRhdGFmcmFtZSB3aGVuIGRhdGFzZXQgaXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZyb20gdHlwZSBsaXN0IG9yIG51bXB5IGFycmF5LgogICAgOnBhcmFtIGxvZ19yZXN1bHRfc2V0OiAgICAgICAgICAgICAgICAgICAgICAgICAgV2hldGhlciB0byBsb2cgdGhlIHJlc3VsdCBzZXQgLSBhIERhdGFGcmFtZSBvZiB0aGUgZ2l2ZW4gaW5wdXRzIGNvbmNhdGVuYXRlZCB3aXRoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgcHJlZGljdGlvbnMuIERlZmF1bHRlZCB0byBUcnVlLgogICAgOnBhcmFtIHJlc3VsdF9zZXRfbmFtZTogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRiIGtleSB0byBzZXQgbmFtZSBvZiB0aGUgcHJlZGljdGlvbiByZXN1bHQgYW5kIHRoZSBmaWxlbmFtZS4gRGVmYXVsdGVkIHRvCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAncHJlZGljdGlvbicuCiAgICA6cGFyYW0gYmF0Y2hfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgSUQgb2YgdGhlIGdpdmVuIGJhdGNoIChpbmZlcmVuY2UgZGF0YXNldCkuIElmIGBOb25lYCwgaXQgd2lsbCBiZSBnZW5lcmF0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaWxsIGJlIGxvZ2dlZCBhcyBhIHJlc3VsdCBvZiB0aGUgcnVuLgogICAgOnBhcmFtIGFydGlmYWN0c190YWc6ICAgICAgICAgICAgICAgICAgICAgICAgICAgVGFnIHRvIHVzZSBmb3IgYWxsIHRoZSBhcnRpZmFjdHMgcmVzdWx0ZWQgZnJvbSB0aGUgZnVuY3Rpb24gKHJlc3VsdCBzZXQgYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBtb25pdG9yaW5nIGFydGlmYWN0cykKICAgIDpwYXJhbSBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOiAgICAgICAgICAgICAgICAgIFdoZXRoZXIgdG8gcGVyZm9ybSBkcmlmdCBhbmFseXNpcyBiZXR3ZWVuIHRoZSBzYW1wbGUgc2V0IG9mIHRoZSBtb2RlbCBvYmplY3QgdG8gdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhc2V0IGdpdmVuLiBCeSBkZWZhdWx0LCBOb25lLCB3aGljaCBtZWFucyBpdCB3aWxsIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaWYgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBhbHJlYWR5IGhhcyBmZWF0dXJlIHN0YXRzIHRoYXQgYXJlIGNvbnNpZGVyZWQgYXMgYSByZWZlcmVuY2Ugc2FtcGxlIHNldC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMgb24gYSBuZXcgZW5kcG9pbnQgaWQgd2lsbCBnZW5lcmF0ZSBhIG5ldyBtb2RlbCBlbmRwb2ludAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb3JkLiBQbGVhc2Ugbm90ZSB0aGF0IGluIG9yZGVyIHRvIHRyaWdnZXIgdGhlIGRyaWZ0IGFuYWx5c2lzIGpvYiwgeW91IG5lZWQgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNldCBgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj1UcnVlYC4gT3RoZXJ3aXNlLCB0aGUgZHJpZnQgYW5hbHlzaXMgd2lsbCBiZSB0cmlnZ2VyZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkgYXMgcGFydCB0aGUgc2NoZWR1bGVkIG1vbml0b3Jpbmcgam9iIChpZiBleGlzdCBpbiB0aGUgY3VycmVudCBwcm9qZWN0KSBvcgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWYgdHJpZ2dlcmVkIG1hbnVhbGx5IGJ5IHRoZSB1c2VyLgogICAgOnBhcmFtIHRyaWdnZXJfbW9uaXRvcmluZ19qb2I6ICAgICAgICAgICAgICAgICAgV2hldGhlciB0byB0cmlnZ2VyIHRoZSBiYXRjaCBkcmlmdCBhbmFseXNpcyBhZnRlciB0aGUgaW5mZXIgam9iLgogICAgOnBhcmFtIGJhdGNoX2ltYWdlX2pvYjogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGltYWdlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIHJlZ2lzdGVyIHRoZSBtb25pdG9yaW5nIGJhdGNoIGpvYiBpZiBub3QgZXhpc3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCeSBkZWZhdWx0LCB0aGUgaW1hZ2UgaXMgbWxydW4vbWxydW4uCiAgICA6cGFyYW0gZW5kcG9pbnRfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNb2RlbCBlbmRwb2ludCB1bmlxdWUgSUQuIElmIGBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzYCB3YXMgc2V0LCB0aGUgZW5kcG9pbnRfaWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdpbGwgYmUgdXNlZCBlaXRoZXIgdG8gcGVyZm9ybSB0aGUgYW5hbHlzaXMgb24gZXhpc3RpbmcgbW9kZWwgZW5kcG9pbnQgb3IgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVyYXRlIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZC4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9uYW1lOiAgICAgICAgICAgICAgICAgICAgIElmIGEgbmV3IG1vZGVsIGVuZHBvaW50IGlzIGdlbmVyYXRlZCwgdGhlIG1vZGVsIG5hbWUgd2lsbCBiZSBwcmVzZW50ZWQgdW5kZXIgdGhpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kcG9pbnQuCiAgICA6cGFyYW0gbW9kZWxfZW5kcG9pbnRfZHJpZnRfdGhyZXNob2xkOiAgICAgICAgICBUaGUgdGhyZXNob2xkIG9mIHdoaWNoIHRvIG1hcmsgZHJpZnRzLiBEZWZhdWx0ZWQgdG8gMC43LgogICAgOnBhcmFtIG1vZGVsX2VuZHBvaW50X3Bvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZDogVGhlIHRocmVzaG9sZCBvZiB3aGljaCB0byBtYXJrIHBvc3NpYmxlIGRyaWZ0cy4gRGVmYXVsdGVkIHRvIDAuNS4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0OiAgICAgICAgICAgICAgIEEgc2FtcGxlIGRhdGFzZXQgdG8gZ2l2ZSB0byBjb21wYXJlIHRoZSBpbnB1dHMgaW4gdGhlIGRyaWZ0IGFuYWx5c2lzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkgb3IgYXMgYSBwYXJhbWV0ZXIgKGUuZy4gc3RyaW5nLCBsaXN0LCBEYXRhRnJhbWUpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRlZmF1bHQgY2hvc2VuIHNhbXBsZSBzZXQgd2lsbCBhbHdheXMgYmUgdGhlIG9uZSB3aG8gaXMgc2V0IGluIHRoZSBtb2RlbCBhcnRpZmFjdCBpdHNlbGYuCgogICAgcmFpc2VzIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IGlmIGJvdGggYG1vZGVsX3BhdGhgIGFuZCBgZW5kcG9pbnRfaWRgIGFyZSBub3QgcHJvdmlkZWQKICAgICIiIgoKICAgICMgTG9hZGluZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiTG9hZGluZyBtb2RlbC4uLiIpCiAgICBpZiBpc2luc3RhbmNlKG1vZGVsX3BhdGgsIG1scnVuLkRhdGFJdGVtKToKICAgICAgICBtb2RlbF9wYXRoID0gbW9kZWxfcGF0aC5hcnRpZmFjdF91cmwKICAgIGlmIG5vdCBtbHJ1bi5kYXRhc3RvcmUuaXNfc3RvcmVfdXJpKG1vZGVsX3BhdGgpOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBwcm92aWRlZCBtb2RlbCBwYXRoICh7bW9kZWxfcGF0aH0pIGlzIGludmFsaWQgLSBzaG91bGQgc3RhcnQgd2l0aCBgc3RvcmU6Ly9gLiAiCiAgICAgICAgICAgIGYiUGxlYXNlIG1ha2Ugc3VyZSB0aGF0IHlvdSBoYXZlIGxvZ2dlZCB0aGUgbW9kZWwgdXNpbmcgYHByb2plY3QubG9nX21vZGVsKClgICIKICAgICAgICAgICAgZiJ3aGljaCBnZW5lcmF0ZXMgYSB1bmlxdWUgc3RvcmUgdXJpIGZvciB0aGUgbG9nZ2VkIG1vZGVsLiIKICAgICAgICApCiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgaWYgbGFiZWxfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgIG91dHB1dC5uYW1lIGZvciBvdXRwdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5vdXRwdXRzCiAgICAgICAgXQoKICAgIGlmIGZlYXR1cmVfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGZlYXR1cmVfY29sdW1ucyA9IFsKICAgICAgICAgICAgaW5wdXQubmFtZSBmb3IgaW5wdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5pbnB1dHMKICAgICAgICBdCgogICAgIyBHZXQgZGF0YXNldCBieSBvYmplY3QsIFVSTCBvciBieSBGZWF0dXJlVmVjdG9yOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmIkxvYWRpbmcgZGF0YS4uLiIpCiAgICB4LCBsYWJlbF9jb2x1bW5zID0gbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkucmVhZF9kYXRhc2V0X2FzX2RhdGFmcmFtZSgKICAgICAgICBkYXRhc2V0PWRhdGFzZXQsCiAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX2NvbHVtbnMsCiAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICkKCiAgICAjIFByZWRpY3Q6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiQ2FsY3VsYXRpbmcgcHJlZGljdGlvbi4uLiIpCiAgICB5X3ByZWQgPSBtb2RlbF9oYW5kbGVyLm1vZGVsLnByZWRpY3QoeCwgKipwcmVkaWN0X2t3YXJncykKCiAgICAjIFByZXBhcmUgdGhlIHJlc3VsdCBzZXQ6CiAgICByZXN1bHRfc2V0ID0gX3ByZXBhcmVfcmVzdWx0X3NldCh4PXgsIGxhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucywgeV9wcmVkPXlfcHJlZCkKCiAgICAjIENoZWNrIGZvciBsb2dnaW5nIHRoZSByZXN1bHQgc2V0OgogICAgaWYgbG9nX3Jlc3VsdF9zZXQ6CiAgICAgICAgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkubG9nX3Jlc3VsdCgKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICByZXN1bHRfc2V0X25hbWU9cmVzdWx0X3NldF9uYW1lLAogICAgICAgICAgICByZXN1bHRfc2V0PXJlc3VsdF9zZXQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgYmF0Y2hfaWQ9YmF0Y2hfaWQsCiAgICAgICAgKQoKICAgICMgQ2hlY2sgZm9yIHBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMKICAgIGlmICgKICAgICAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyBpcyBOb25lCiAgICAgICAgICAgIGFuZCBtb2RlbF9oYW5kbGVyLl9tb2RlbF9hcnRpZmFjdC5zcGVjLmZlYXR1cmVfc3RhdHMgaXMgbm90IE5vbmUKICAgICk6CiAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyA9IFRydWUKICAgIGlmIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiUGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcy4uLiIpCiAgICAgICAgIyBHZXQgdGhlIHNhbXBsZSBzZXQgc3RhdGlzdGljcyAoZWl0aGVyIGZyb20gdGhlIHNhbXBsZSBzZXQgb3IgZnJvbSB0aGUgc3RhdGlzdGljcyBsb2dnZWQgd2l0aCB0aGUgbW9kZWwpCiAgICAgICAgc3RhdGljc19pbnB1dF9mdWxsX2RpY3QgPSBkaWN0KGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWxfZW5kcG9pbnRfc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9hcnRpZmFjdF9mZWF0dXJlX3N0YXRzPW1vZGVsX2hhbmRsZXIuX21vZGVsX2FydGlmYWN0LnNwZWMuZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxfY29sdW1ucz1sYWJlbF9jb2x1bW5zKQogICAgICAgIHN0YXRpY3NfaW5wdXRfZmlsdGVyZWQgPSBfZ2V0X2dldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3NfcGFyYW1ldGVycygqKnN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0KQogICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcyA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MoKipzdGF0aWNzX2lucHV0X2ZpbHRlcmVkKQogICAgICAgIG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLnJlY29yZF9yZXN1bHRzKAogICAgICAgICAgICBwcm9qZWN0PWNvbnRleHQucHJvamVjdCwKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBlbmRwb2ludF9pZD1lbmRwb2ludF9pZCwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICBtb2RlbF9lbmRwb2ludF9uYW1lPW1vZGVsX2VuZHBvaW50X25hbWUsCiAgICAgICAgICAgIGluZmVyX3Jlc3VsdHNfZGY9cmVzdWx0X3NldC5jb3B5KCksCiAgICAgICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcz1zYW1wbGVfc2V0X3N0YXRpc3RpY3MsCiAgICAgICAgICAgIGRyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIHBvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9wb3NzaWJsZV9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj10cmlnZ2VyX21vbml0b3Jpbmdfam9iLAogICAgICAgICAgICBkZWZhdWx0X2JhdGNoX2ltYWdlPWJhdGNoX2ltYWdlX2pvYiwKICAgICAgICApCg==
commands: []
code_origin: ''
origin_filename: ''
@@ -144,7 +144,7 @@ spec:
set in the model artifact itself.
default: null
outputs: []
- lineno: 80
+ lineno: 97
has_varargs: false
has_kwargs: true
description: Batch inference (also knows as prediction) for the common ML frameworks
diff --git a/functions/master/batch_inference_v2/latest/src/item.yaml b/functions/master/batch_inference_v2/latest/src/item.yaml
index c07a383e..292f3424 100644
--- a/functions/master/batch_inference_v2/latest/src/item.yaml
+++ b/functions/master/batch_inference_v2/latest/src/item.yaml
@@ -29,4 +29,4 @@ spec:
kind: job
requirements: null
url: ''
-version: 2.4.0
+version: 2.5.0
diff --git a/functions/master/batch_inference_v2/latest/src/requirements.txt b/functions/master/batch_inference_v2/latest/src/requirements.txt
index c120cd84..c9fd306e 100644
--- a/functions/master/batch_inference_v2/latest/src/requirements.txt
+++ b/functions/master/batch_inference_v2/latest/src/requirements.txt
@@ -1,4 +1,5 @@
numpy
pandas
scikit-learn
-plotly
\ No newline at end of file
+plotly
+xgboost
\ No newline at end of file
diff --git a/functions/master/batch_inference_v2/latest/src/test_batch_inference_v2.py b/functions/master/batch_inference_v2/latest/src/test_batch_inference_v2.py
index cc247a29..cd455b6d 100644
--- a/functions/master/batch_inference_v2/latest/src/test_batch_inference_v2.py
+++ b/functions/master/batch_inference_v2/latest/src/test_batch_inference_v2.py
@@ -14,15 +14,22 @@
#
import json
import os
-
-import mlrun
-import mlrun.common.schemas
+import pickle
+import uuid
import numpy as np
import pandas as pd
import pytest
-from mlrun.frameworks.sklearn import apply_mlrun
from sklearn.datasets import make_classification
from sklearn.tree import DecisionTreeClassifier
+import datetime
+from sklearn.model_selection import train_test_split
+from xgboost import XGBClassifier
+from mlrun.frameworks.sklearn import apply_mlrun
+from mlrun.projects import get_or_create_project
+import mlrun
+import mlrun.common.schemas
+from batch_inference_v2 import infer
+import shutil
REQUIRED_ENV_VARS = [
"MLRUN_DBPATH",
@@ -45,7 +52,7 @@ def generate_data(n_samples: int = 5000, n_features: int = 20):
x, y = make_classification(n_samples=n_samples, n_features=n_features, n_classes=2)
# Split the data into a training set and a prediction set:
- x_train, x_prediction = x[: n_samples // 2], x[n_samples // 2 :]
+ x_train, x_prediction = x[: n_samples // 2], x[n_samples // 2:]
y_train = y[: n_samples // 2]
# Randomly drift some features:
@@ -79,15 +86,36 @@ def train(training_set: pd.DataFrame):
model.fit(training_set, labels)
+def assert_batch_predict(n_features, batch_inference_run):
+ # Check the logged results:
+ assert "batch_id" in batch_inference_run.status.results
+ assert "drift_metric" in batch_inference_run.status.results
+ assert batch_inference_run.status.results["drift_status"] is True
+
+ # Check that 3 artifacts were generated
+ assert len(batch_inference_run.status.artifacts) == 3
+
+ # Check drift table artifact url
+ assert (
+ batch_inference_run.artifact("drift_table_plot").artifact_url
+ == batch_inference_run.outputs["drift_table_plot"]
+ )
+
+ # Check the features drift results json:
+ drift_results_file = batch_inference_run.artifact("features_drift_results").local()
+ with open(drift_results_file, "r") as json_file:
+ drift_results = json.load(json_file)
+ assert len(drift_results) == n_features + 1
+
+
@pytest.mark.skipif(
condition=not _validate_environment_variables(),
reason="Project's environment variables are not set",
)
def test_batch_predict():
- project = mlrun.get_or_create_project(
+ project = get_or_create_project(
"batch-infer-test", context="./", user_project=True
)
-
# Configure test:
n_samples = 5000
n_features = 20
@@ -112,38 +140,97 @@ def test_batch_predict():
inputs={"dataset": generate_data_run.outputs["prediction_set"]},
params={
"model_path": train_run.outputs["model"],
- "label_columns": "label",
+ "label_columns": "target_label",
"trigger_monitoring_job": True,
"perform_drift_analysis": True,
"model_endpoint_drift_threshold": 0.2,
"model_endpoint_possible_drift_threshold": 0.1,
},
+ local=True,
)
# Check the logged results:
- assert "batch_id" in batch_inference_run.status.results
- assert "drift_metric" in batch_inference_run.status.results
- assert batch_inference_run.status.results["drift_status"] is True
-
- # Check that 3 artifacts were generated
- assert len(batch_inference_run.status.artifacts) == 3
-
- # Check drift table artifact url
- assert (
- batch_inference_run.artifact("drift_table_plot").artifact_url
- == batch_inference_run.outputs["drift_table_plot"]
- )
-
- # Check the features drift results json:
- drift_results_file = batch_inference_run.artifact("features_drift_results").local()
- with open(drift_results_file, "r") as json_file:
- drift_results = json.load(json_file)
- assert len(drift_results) == n_features + 1
+ assert_batch_predict(n_features=n_features, batch_inference_run=batch_inference_run)
# Clean resources
_delete_project(project=project.metadata.name)
+@pytest.mark.skipif(
+ condition=not _validate_environment_variables(),
+ reason="Project's environment variables are not set",
+)
+class TestBatchInferUnitTests:
+ @classmethod
+ def setup_class(cls):
+ cls.project_name = "batch-infer-v2-unit-test"
+ cls.infer_artifact_path = "./infer_test_result/"
+
+ def setup_method(self):
+ self.project = get_or_create_project(self.project_name)
+ current_datetime = datetime.datetime.now()
+ datetime_str = current_datetime.strftime("%Y%m%d_%H%M%S")
+ mlrun.runtimes.utils.global_context.set(None)
+ self.context = mlrun.get_or_create_ctx(datetime_str, project=self.project.metadata.name, upload_artifacts=True)
+ self.context.artifact_path = self.infer_artifact_path
+
+ def teardown_method(self):
+ mlrun.get_run_db().delete_project(
+ self.project.metadata.name,
+ deletion_strategy=mlrun.common.schemas.DeletionStrategy.cascade,
+ )
+ if os.path.exists(self.infer_artifact_path):
+ shutil.rmtree(self.infer_artifact_path)
+
+ def _get_model_endpoint_sample_set(self, sample_type, n_features: int = 20):
+ data = generate_data(n_samples=4, n_features=n_features)[0]
+ if sample_type == mlrun.DataItem:
+ artifact = self.project.log_dataset("infer_sample", df=data)
+ return artifact.to_dataitem()
+ elif sample_type == list:
+ return data.values.tolist()
+ elif sample_type == dict:
+ return data.to_dict(orient='list')
+ elif sample_type == pd.DataFrame:
+ return data
+ elif sample_type == np.ndarray:
+ return data.values
+
+ @pytest.mark.parametrize("sample_type", [mlrun.DataItem, list, dict, pd.DataFrame, np.ndarray])
+ def test_infer_sample_types(self, sample_type):
+ n_features = 10
+ training_set, prediction_set = generate_data(n_features=n_features)
+ clf = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective="binary:logistic")
+ x, y = prediction_set, training_set['target_label']
+ x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2, random_state=0)
+ clf.fit(x_train, y_train)
+ train_set_to_log = x_train.join(y_train)
+ model = self.project.log_model(f"model-{uuid.uuid4()}", body=pickle.dumps(clf),
+ model_file=f"model-{uuid.uuid4()}.pkl", framework="xgboost",
+ training_set=train_set_to_log, label_column="target_label")
+
+ dataset = self.project.log_dataset(f"dataset-{uuid.uuid4()}", df=x_test)
+ z_test = train_set_to_log * 5
+ model_endpoint_sample_set = self.project.log_dataset(f"model-endpoint-sample-set{uuid.uuid4()}", df=z_test)
+
+ sample = self._get_model_endpoint_sample_set(
+ sample_type=sample_type, n_features=n_features)
+ infer(context=self.context,
+ dataset=dataset.to_dataitem().as_df(), model_path=model.uri,
+ model_endpoint_sample_set=sample,
+ feature_columns=list(model_endpoint_sample_set.to_dataitem().as_df().columns),
+ label_columns="target_label",
+ model_endpoint_name=f"model-endpoint-name-{uuid.uuid4()}",
+ trigger_monitoring_job=True,
+ perform_drift_analysis=True,
+ model_endpoint_drift_threshold=0.7,
+ model_endpoint_possible_drift_threshold=0.5)
+ # a workaround until ML-4636 will be solved.
+ batch_inference_run = self.project.list_runs(name=self.context.name).to_objects()[0]
+ mlrun.get_run_db().update_run(updates={"status.state": "completed"}, uid=batch_inference_run.uid())
+ assert_batch_predict(n_features=n_features, batch_inference_run=batch_inference_run)
+
+
def _delete_project(project: str):
mlrun.get_run_db().delete_project(
project,
diff --git a/functions/master/batch_inference_v2/latest/static/batch_inference_v2.html b/functions/master/batch_inference_v2/latest/static/batch_inference_v2.html
index 5a7b7067..e2d585c4 100644
--- a/functions/master/batch_inference_v2/latest/static/batch_inference_v2.html
+++ b/functions/master/batch_inference_v2/latest/static/batch_inference_v2.html
@@ -128,8 +128,8 @@ Source code for batch_inference_v2.batch_inference_v2 # See the License for the specific language governing permissions and
# limitations under the License.
-
from typing import Any , Dict , List , Union
-
+
from inspect import signature
+
from typing import Any , Dict , List , Union , Optional
import mlrun
try :
@@ -140,15 +140,12 @@
Source code for batch_inference_v2.batch_inference_v2 f
"older version of the batch inference function."
)
-
import numpy as np
import pandas as pd
from mlrun.frameworks.auto_mlrun import AutoMLRun
-
def _prepare_result_set (
-
x : pd . DataFrame , label_columns : List [ str ], y_pred : np . ndarray
-
) -> pd . DataFrame :
+
def _prepare_result_set ( x : pd . DataFrame , label_columns : List [ str ], y_pred : np . ndarray ) -> pd . DataFrame :
"""
Set default label column names and validate given names to prepare the result set - a concatenation of the inputs
(x) and the model predictions (y_pred).
@@ -193,32 +190,57 @@
Source code for batch_inference_v2.batch_inference_v2 )
+
def _get_sample_set_statistics_parameters ( context : mlrun . MLClientCtx ,
+
model_endpoint_sample_set : Union [
+
mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray ],
+
model_artifact_feature_stats : dict ,
+
feature_columns : Optional [ List ],
+
drop_columns : Optional [ List ],
+
label_columns : Optional [ List ]) -> Dict [ str , Any ]:
+
statics_input_full_dict = dict ( sample_set = model_endpoint_sample_set ,
+
model_artifact_feature_stats = model_artifact_feature_stats ,
+
sample_set_columns = feature_columns ,
+
sample_set_drop_columns = drop_columns ,
+
sample_set_label_columns = label_columns )
+
get_sample_statics_function = mlrun . model_monitoring . api . get_sample_set_statistics
+
statics_function_input_dict = signature ( get_sample_statics_function ) . parameters
+
# As a result of changes to input parameters in the mlrun-get_sample_set_statistics function,
+
# we will now send only the parameters it expects.
+
statistics_input_filtered = { key : statics_input_full_dict [ key ] for key in statics_function_input_dict }
+
if len ( statistics_input_filtered ) != len ( statics_function_input_dict ):
+
context . logger . warning ( f "get_sample_set_statistics is in an older version; "
+
"some parameters will not be sent to the function."
+
f " Expected input: { list ( statics_function_input_dict . keys ()) } ,"
+
f " actual input: { list ( statistics_input_filtered . keys ()) } " )
+
return statistics_input_filtered
+
+
[docs] def infer (
-
context : mlrun . MLClientCtx ,
-
dataset : Union [ mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray ],
-
model_path : Union [ str , mlrun . DataItem ],
-
drop_columns : Union [ str , List [ str ], int , List [ int ]] = None ,
-
label_columns : Union [ str , List [ str ]] = None ,
-
feature_columns : Union [ str , List [ str ]] = None ,
-
log_result_set : bool = True ,
-
result_set_name : str = "prediction" ,
-
batch_id : str = None ,
-
artifacts_tag : str = "" ,
-
# Drift analysis parameters
-
perform_drift_analysis : bool = None ,
-
trigger_monitoring_job : bool = False ,
-
batch_image_job : str = "mlrun/mlrun" ,
-
endpoint_id : str = "" ,
-
# The following model endpoint parameters are relevant only if:
-
# perform drift analysis is not disabled
-
# a new model endpoint record is going to be generated
-
model_endpoint_name : str = "batch-infer" ,
-
model_endpoint_drift_threshold : float = 0.7 ,
-
model_endpoint_possible_drift_threshold : float = 0.5 ,
-
model_endpoint_sample_set : Union [
-
mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray
-
] = None ,
-
** predict_kwargs : Dict [ str , Any ],
+
context : mlrun . MLClientCtx ,
+
dataset : Union [ mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray ],
+
model_path : Union [ str , mlrun . DataItem ],
+
drop_columns : Union [ str , List [ str ], int , List [ int ]] = None ,
+
label_columns : Union [ str , List [ str ]] = None ,
+
feature_columns : Union [ str , List [ str ]] = None ,
+
log_result_set : bool = True ,
+
result_set_name : str = "prediction" ,
+
batch_id : str = None ,
+
artifacts_tag : str = "" ,
+
# Drift analysis parameters
+
perform_drift_analysis : bool = None ,
+
trigger_monitoring_job : bool = False ,
+
batch_image_job : str = "mlrun/mlrun" ,
+
endpoint_id : str = "" ,
+
# The following model endpoint parameters are relevant only if:
+
# perform drift analysis is not disabled
+
# a new model endpoint record is going to be generated
+
model_endpoint_name : str = "batch-infer" ,
+
model_endpoint_drift_threshold : float = 0.7 ,
+
model_endpoint_possible_drift_threshold : float = 0.5 ,
+
model_endpoint_sample_set : Union [
+
mlrun . DataItem , list , dict , pd . DataFrame , pd . Series , np . ndarray
+
] = None ,
+
** predict_kwargs : Dict [ str , Any ],
):
"""
Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
@@ -331,17 +353,21 @@
Source code for batch_inference_v2.batch_inference_v2 # Check for performing drift analysis
if (
- perform_drift_analysis is None
- and model_handler . _model_artifact . spec . feature_stats is not None
+ perform_drift_analysis is None
+ and model_handler . _model_artifact . spec . feature_stats is not None
):
perform_drift_analysis = True
if perform_drift_analysis :
context . logger . info ( "Performing drift analysis..." )
# Get the sample set statistics (either from the sample set or from the statistics logged with the model)
- sample_set_statistics = mlrun . model_monitoring . api . get_sample_set_statistics (
- sample_set = model_endpoint_sample_set ,
+ statistics_input_filtered = _get_sample_set_statistics_parameters (
+ context = context ,
+ model_endpoint_sample_set = model_endpoint_sample_set ,
model_artifact_feature_stats = model_handler . _model_artifact . spec . feature_stats ,
- )
+ feature_columns = feature_columns ,
+ drop_columns = drop_columns ,
+ label_columns = label_columns )
+ sample_set_statistics = mlrun . model_monitoring . api . get_sample_set_statistics ( ** statistics_input_filtered )
mlrun . model_monitoring . api . record_results (
project = context . project ,
context = context ,
diff --git a/functions/master/batch_inference_v2/latest/static/function.html b/functions/master/batch_inference_v2/latest/static/function.html
index f63be1cc..50b6cd8d 100644
--- a/functions/master/batch_inference_v2/latest/static/function.html
+++ b/functions/master/batch_inference_v2/latest/static/function.html
@@ -19,7 +19,7 @@
metadata:
name: batch-inference-v2
tag: ''
- hash: dc06b60eca23e504d353cfae3b925e81718193e7
+ hash: cfe7a24a5d05a7d6b9f03d119d9f2661e48db0f5
project: ''
labels:
author: eyald
@@ -32,7 +32,7 @@
args: []
image: mlrun/mlrun
build:
- functionSourceCode: IyBDb3B5cmlnaHQgMjAyMyBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCgpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBEaWN0LCBMaXN0LCBVbmlvbgoKaW1wb3J0IG1scnVuCgp0cnk6CiAgICBpbXBvcnQgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkKZXhjZXB0IE1vZHVsZU5vdEZvdW5kRXJyb3I6CiAgICByYWlzZSBtbHJ1bi5lcnJvcnMuTUxSdW5Ob3RGb3VuZEVycm9yKAogICAgICAgIGYiUGxlYXNlIHVwZGF0ZSB5b3VyIGBtbHJ1bmAgdmVyc2lvbiB0byA+PTEuNS4wIG9yIHVzZSBhbiAiCiAgICAgICAgZiJvbGRlciB2ZXJzaW9uIG9mIHRoZSBiYXRjaCBpbmZlcmVuY2UgZnVuY3Rpb24uIgogICAgKQoKCmltcG9ydCBudW1weSBhcyBucAppbXBvcnQgcGFuZGFzIGFzIHBkCmZyb20gbWxydW4uZnJhbWV3b3Jrcy5hdXRvX21scnVuIGltcG9ydCBBdXRvTUxSdW4KCgpkZWYgX3ByZXBhcmVfcmVzdWx0X3NldCgKICAgIHg6IHBkLkRhdGFGcmFtZSwgbGFiZWxfY29sdW1uczogTGlzdFtzdHJdLCB5X3ByZWQ6IG5wLm5kYXJyYXkKKSAtPiBwZC5EYXRhRnJhbWU6CiAgICAiIiIKICAgIFNldCBkZWZhdWx0IGxhYmVsIGNvbHVtbiBuYW1lcyBhbmQgdmFsaWRhdGUgZ2l2ZW4gbmFtZXMgdG8gcHJlcGFyZSB0aGUgcmVzdWx0IHNldCAtIGEgY29uY2F0ZW5hdGlvbiBvZiB0aGUgaW5wdXRzCiAgICAoeCkgYW5kIHRoZSBtb2RlbCBwcmVkaWN0aW9ucyAoeV9wcmVkKS4KCiAgICA6cGFyYW0geDogICAgICAgICAgICAgVGhlIGlucHV0cy4KICAgIDpwYXJhbSBsYWJlbF9jb2x1bW5zOiBBIGxpc3Qgb2Ygc3RyaW5ncyByZXByZXNlbnRpbmcgdGhlIHRhcmdldCBjb2x1bW4gbmFtZXMgdG8gYWRkIHRvIHRoZSBwcmVkaWN0aW9ucy4gRGVmYXVsdCBuYW1lCiAgICAgICAgICAgICAgICAgICAgICAgICAgd2lsbCBiZSB1c2VkIGluIGNhc2UgdGhlIGxpc3QgaXMgZW1wdHkgKHByZWRpY3RlZF9sYWJlbF97aX0pLgogICAgOnBhcmFtIHlfcHJlZDogICAgICAgIFRoZSBtb2RlbCBwcmVkaWN0aW9ucyBvbiB0aGUgaW5wdXRzLgoKICAgIDpyZXR1cm5zOiBUaGUgcmVzdWx0IHNldC4KCiAgICByYWlzZXMgTUxSdW5JbnZhbGlkQXJndW1lbnRFcnJvcjogSWYgdGhlIGxhYmVscyBjb2x1bW5zIGFtb3VudCBkbyBub3QgbWF0Y2ggdGhlIG91dHB1dHMgb3IgaWYgb25lIG9mIHRoZSBsYWJlbAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW4gYWxyZWFkeSBleGlzdHMgaW4gdGhlIGRhdGFzZXQuCiAgICAiIiIKICAgICMgUHJlcGFyZSBkZWZhdWx0IHRhcmdldCBjb2x1bW5zIG5hbWVzIGlmIG5vdCBwcm92aWRlZDoKICAgIHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQgPSAxIGlmIGxlbih5X3ByZWQuc2hhcGUpID09IDEgZWxzZSB5X3ByZWQuc2hhcGVbMV0KICAgIGlmIGxlbihsYWJlbF9jb2x1bW5zKSA9PSAwOgogICAgICAgICMgQWRkIGRlZmF1bHQgbGFiZWwgY29sdW1uIG5hbWVzOgogICAgICAgIGlmIHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQgPT0gMToKICAgICAgICAgICAgbGFiZWxfY29sdW1ucyA9IFsicHJlZGljdGVkX2xhYmVsIl0KICAgICAgICBlbHNlOgogICAgICAgICAgICBsYWJlbF9jb2x1bW5zID0gWwogICAgICAgICAgICAgICAgZiJwcmVkaWN0ZWRfbGFiZWxfe2l9IiBmb3IgaSBpbiByYW5nZShwcmVkaWN0aW9uX2NvbHVtbnNfYW1vdW50KQogICAgICAgICAgICBdCgogICAgIyBWYWxpZGF0ZSB0aGUgbGFiZWwgY29sdW1uczoKICAgIGlmIHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQgIT0gbGVuKGxhYmVsX2NvbHVtbnMpOgogICAgICAgICMgTm8gZXF1YWxpdHkgYmV0d2VlbiBwcm92aWRlZCBsYWJlbCBjb2x1bW4gbmFtZXMgYW5kIG91dHB1dHMgYW1vdW50OgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBudW1iZXIgb2YgcHJlZGljdGVkIGxhYmVsczoge3ByZWRpY3Rpb25fY29sdW1uc19hbW91bnR9ICIKICAgICAgICAgICAgZiJpcyBub3QgZXF1YWwgdG8gdGhlIGdpdmVuIGxhYmVsIGNvbHVtbnM6IHtsZW4obGFiZWxfY29sdW1ucyl9IgogICAgICAgICkKICAgIGNvbW1vbl9sYWJlbHMgPSBzZXQobGFiZWxfY29sdW1ucykgJiBzZXQoeC5jb2x1bW5zLnRvbGlzdCgpKQogICAgaWYgY29tbW9uX2xhYmVsczoKICAgICAgICAjIExhYmVsIGNvbHVtbiBleGlzdCBpbiB0aGUgb3JpZ2luYWwgaW5wdXRzOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBsYWJlbHM6IHtjb21tb25fbGFiZWxzfSBhcmUgYWxyZWFkeSBleGlzdGVkIGluIHRoZSBnaXZlbiBkYXRhc2V0LiIKICAgICAgICApCgogICAgcmV0dXJuIHBkLmNvbmNhdCgKICAgICAgICBbeCwgcGQuRGF0YUZyYW1lKHlfcHJlZCwgY29sdW1ucz1sYWJlbF9jb2x1bW5zLCBpbmRleD14LmluZGV4KV0sIGF4aXM9MQogICAgKQoKCmRlZiBpbmZlcigKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogVW5pb25bbWxydW4uRGF0YUl0ZW0sIGxpc3QsIGRpY3QsIHBkLkRhdGFGcmFtZSwgcGQuU2VyaWVzLCBucC5uZGFycmF5XSwKICAgIG1vZGVsX3BhdGg6IFVuaW9uW3N0ciwgbWxydW4uRGF0YUl0ZW1dLAogICAgZHJvcF9jb2x1bW5zOiBVbmlvbltzdHIsIExpc3Rbc3RyXSwgaW50LCBMaXN0W2ludF1dID0gTm9uZSwKICAgIGxhYmVsX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBmZWF0dXJlX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBsb2dfcmVzdWx0X3NldDogYm9vbCA9IFRydWUsCiAgICByZXN1bHRfc2V0X25hbWU6IHN0ciA9ICJwcmVkaWN0aW9uIiwKICAgIGJhdGNoX2lkOiBzdHIgPSBOb25lLAogICAgYXJ0aWZhY3RzX3RhZzogc3RyID0gIiIsCiAgICAjIERyaWZ0IGFuYWx5c2lzIHBhcmFtZXRlcnMKICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6IGJvb2wgPSBOb25lLAogICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYjogYm9vbCA9IEZhbHNlLAogICAgYmF0Y2hfaW1hZ2Vfam9iOiBzdHIgPSAibWxydW4vbWxydW4iLAogICAgZW5kcG9pbnRfaWQ6IHN0ciA9ICIiLAogICAgIyBUaGUgZm9sbG93aW5nIG1vZGVsIGVuZHBvaW50IHBhcmFtZXRlcnMgYXJlIHJlbGV2YW50IG9ubHkgaWY6CiAgICAjIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaXMgbm90IGRpc2FibGVkCiAgICAjIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZCBpcyBnb2luZyB0byBiZSBnZW5lcmF0ZWQKICAgIG1vZGVsX2VuZHBvaW50X25hbWU6IHN0ciA9ICJiYXRjaC1pbmZlciIsCiAgICBtb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQ6IGZsb2F0ID0gMC43LAogICAgbW9kZWxfZW5kcG9pbnRfcG9zc2libGVfZHJpZnRfdGhyZXNob2xkOiBmbG9hdCA9IDAuNSwKICAgIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQ6IFVuaW9uWwogICAgICAgIG1scnVuLkRhdGFJdGVtLCBsaXN0LCBkaWN0LCBwZC5EYXRhRnJhbWUsIHBkLlNlcmllcywgbnAubmRhcnJheQogICAgXSA9IE5vbmUsCiAgICAqKnByZWRpY3Rfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSwKKToKICAgICIiIgogICAgUGVyZm9ybSBhIHByZWRpY3Rpb24gb24gYSBnaXZlbiBkYXRhc2V0IHdpdGggdGhlIGdpdmVuIG1vZGVsLiBQbGVhc2UgbWFrZSBzdXJlIHRoYXQgeW91IGhhdmUgYWxyZWFkeSBsb2dnZWQgdGhlIG1vZGVsCiAgICB1bmRlciB0aGUgY3VycmVudCBwcm9qZWN0LgogICAgQ2FuIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgYmV0d2VlbiB0aGUgc2FtcGxlIHNldCBzdGF0aXN0aWNzIHN0b3JlZCBpbiB0aGUgbW9kZWwgdG8gdGhlIGN1cnJlbnQgaW5wdXQgZGF0YS4gVGhlCiAgICBkcmlmdCBydWxlIGlzIHRoZSB2YWx1ZSBwZXItZmVhdHVyZSBtZWFuIG9mIHRoZSBUVkQgYW5kIEhlbGxpbmdlciBzY29yZXMgYWNjb3JkaW5nIHRvIHRoZSB0aHJlc2hvbGRzIGNvbmZpZ3VyZXMKICAgIGhlcmUuIFdoZW4gcGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcywgdGhpcyBmdW5jdGlvbiBlaXRoZXIgdXNlcyBhbiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCByZWNvcmQgb3IgY3JlYXRlcwogICAgYSBuZXcgb25lLgogICAgQXQgdGhlIG1vbWVudCwgdGhpcyBmdW5jdGlvbiBpcyBzdXBwb3J0ZWQgZm9yIGBtbHJ1bj49MS41LjBgIHZlcnNpb25zLgoKICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQuCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byBpbmZlciB0aHJvdWdoIHRoZSBtb2RlbC4gUHJvdmlkZWQgYXMgYW4gaW5wdXQgKERhdGFJdGVtKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhhdCByZXByZXNlbnRzIERhdGFzZXQgYXJ0aWZhY3QgLyBGZWF0dXJlIHZlY3RvciBVUkkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBkYXRhc2V0YCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIGxpc3QsIGRpY3Rpb25hcnkgb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bXB5IGFycmF5LgogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTW9kZWwgc3RvcmUgdXJpIChzaG91bGQgc3RhcnQgd2l0aCBzdG9yZTovLykuIFByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBtb2RlbF9wYXRoYCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIHBhcmFtZXRlciAoc3RyaW5nKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRvIGdlbmVyYXRlIGEgdmFsaWQgbW9kZWwgc3RvcmUgVVJJLCBwbGVhc2UgbG9nIHRoZSBtb2RlbCBiZWZvcmUgcnVubmluZyB0aGlzIGZ1bmN0aW9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgYGVuZHBvaW50X2lkYCBvZiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCBpcyBwcm92aWRlZCwgbWFrZSBzdXJlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGF0IGl0IGhhcyBhIHNpbWlsYXIgbW9kZWwgc3RvcmUgcGF0aCwgb3RoZXJ3aXNlIHRoZSBkcmlmdCBhbmFseXNpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29uJ3QgYmUgdHJpZ2dlcmVkLgogICAgOnBhcmFtIGRyb3BfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICAgQSBzdHJpbmcgLyBpbnRlZ2VyIG9yIGEgbGlzdCBvZiBzdHJpbmdzIC8gaW50ZWdlcnMgdGhhdCByZXByZXNlbnQgdGhlIGNvbHVtbiBuYW1lcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLyBpbmRpY2VzIHRvIGRyb3AuIFdoZW4gdGhlIGRhdGFzZXQgaXMgYSBsaXN0IG9yIGEgbnVtcHkgYXJyYXkgdGhpcyBwYXJhbWV0ZXIgbXVzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmUgcmVwcmVzZW50ZWQgYnkgaW50ZWdlcnMuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQgZm9yIFJlZ3Jlc3Npb24gb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENsYXNzaWZpY2F0aW9uIHRhc2tzLiBUaGUgbGFiZWwgY29sdW1uIGNhbiBiZSBhY2Nlc3NlZCBmcm9tIHRoZSBtb2RlbCBvYmplY3QsIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgZmVhdHVyZSB2ZWN0b3IgcHJvdmlkZWQgaWYgYXZhaWxhYmxlLgogICAgOnBhcmFtIGZlYXR1cmVfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgTGlzdCBvZiBmZWF0dXJlIGNvbHVtbnMgdGhhdCB3aWxsIGJlIHVzZWQgdG8gYnVpbGQgdGhlIGRhdGFmcmFtZSB3aGVuIGRhdGFzZXQgaXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZyb20gdHlwZSBsaXN0IG9yIG51bXB5IGFycmF5LgogICAgOnBhcmFtIGxvZ19yZXN1bHRfc2V0OiAgICAgICAgICAgICAgICAgICAgICAgICAgV2hldGhlciB0byBsb2cgdGhlIHJlc3VsdCBzZXQgLSBhIERhdGFGcmFtZSBvZiB0aGUgZ2l2ZW4gaW5wdXRzIGNvbmNhdGVuYXRlZCB3aXRoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgcHJlZGljdGlvbnMuIERlZmF1bHRlZCB0byBUcnVlLgogICAgOnBhcmFtIHJlc3VsdF9zZXRfbmFtZTogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRiIGtleSB0byBzZXQgbmFtZSBvZiB0aGUgcHJlZGljdGlvbiByZXN1bHQgYW5kIHRoZSBmaWxlbmFtZS4gRGVmYXVsdGVkIHRvCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAncHJlZGljdGlvbicuCiAgICA6cGFyYW0gYmF0Y2hfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgSUQgb2YgdGhlIGdpdmVuIGJhdGNoIChpbmZlcmVuY2UgZGF0YXNldCkuIElmIGBOb25lYCwgaXQgd2lsbCBiZSBnZW5lcmF0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaWxsIGJlIGxvZ2dlZCBhcyBhIHJlc3VsdCBvZiB0aGUgcnVuLgogICAgOnBhcmFtIGFydGlmYWN0c190YWc6ICAgICAgICAgICAgICAgICAgICAgICAgICAgVGFnIHRvIHVzZSBmb3IgYWxsIHRoZSBhcnRpZmFjdHMgcmVzdWx0ZWQgZnJvbSB0aGUgZnVuY3Rpb24gKHJlc3VsdCBzZXQgYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBtb25pdG9yaW5nIGFydGlmYWN0cykKICAgIDpwYXJhbSBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOiAgICAgICAgICAgICAgICAgIFdoZXRoZXIgdG8gcGVyZm9ybSBkcmlmdCBhbmFseXNpcyBiZXR3ZWVuIHRoZSBzYW1wbGUgc2V0IG9mIHRoZSBtb2RlbCBvYmplY3QgdG8gdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhc2V0IGdpdmVuLiBCeSBkZWZhdWx0LCBOb25lLCB3aGljaCBtZWFucyBpdCB3aWxsIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaWYgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBhbHJlYWR5IGhhcyBmZWF0dXJlIHN0YXRzIHRoYXQgYXJlIGNvbnNpZGVyZWQgYXMgYSByZWZlcmVuY2Ugc2FtcGxlIHNldC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMgb24gYSBuZXcgZW5kcG9pbnQgaWQgd2lsbCBnZW5lcmF0ZSBhIG5ldyBtb2RlbCBlbmRwb2ludAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb3JkLiBQbGVhc2Ugbm90ZSB0aGF0IGluIG9yZGVyIHRvIHRyaWdnZXIgdGhlIGRyaWZ0IGFuYWx5c2lzIGpvYiwgeW91IG5lZWQgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNldCBgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj1UcnVlYC4gT3RoZXJ3aXNlLCB0aGUgZHJpZnQgYW5hbHlzaXMgd2lsbCBiZSB0cmlnZ2VyZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkgYXMgcGFydCB0aGUgc2NoZWR1bGVkIG1vbml0b3Jpbmcgam9iIChpZiBleGlzdCBpbiB0aGUgY3VycmVudCBwcm9qZWN0KSBvcgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWYgdHJpZ2dlcmVkIG1hbnVhbGx5IGJ5IHRoZSB1c2VyLgogICAgOnBhcmFtIHRyaWdnZXJfbW9uaXRvcmluZ19qb2I6ICAgICAgICAgICAgICAgICAgV2hldGhlciB0byB0cmlnZ2VyIHRoZSBiYXRjaCBkcmlmdCBhbmFseXNpcyBhZnRlciB0aGUgaW5mZXIgam9iLgogICAgOnBhcmFtIGJhdGNoX2ltYWdlX2pvYjogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGltYWdlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIHJlZ2lzdGVyIHRoZSBtb25pdG9yaW5nIGJhdGNoIGpvYiBpZiBub3QgZXhpc3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCeSBkZWZhdWx0LCB0aGUgaW1hZ2UgaXMgbWxydW4vbWxydW4uCiAgICA6cGFyYW0gZW5kcG9pbnRfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNb2RlbCBlbmRwb2ludCB1bmlxdWUgSUQuIElmIGBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzYCB3YXMgc2V0LCB0aGUgZW5kcG9pbnRfaWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdpbGwgYmUgdXNlZCBlaXRoZXIgdG8gcGVyZm9ybSB0aGUgYW5hbHlzaXMgb24gZXhpc3RpbmcgbW9kZWwgZW5kcG9pbnQgb3IgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVyYXRlIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZC4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9uYW1lOiAgICAgICAgICAgICAgICAgICAgIElmIGEgbmV3IG1vZGVsIGVuZHBvaW50IGlzIGdlbmVyYXRlZCwgdGhlIG1vZGVsIG5hbWUgd2lsbCBiZSBwcmVzZW50ZWQgdW5kZXIgdGhpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kcG9pbnQuCiAgICA6cGFyYW0gbW9kZWxfZW5kcG9pbnRfZHJpZnRfdGhyZXNob2xkOiAgICAgICAgICBUaGUgdGhyZXNob2xkIG9mIHdoaWNoIHRvIG1hcmsgZHJpZnRzLiBEZWZhdWx0ZWQgdG8gMC43LgogICAgOnBhcmFtIG1vZGVsX2VuZHBvaW50X3Bvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZDogVGhlIHRocmVzaG9sZCBvZiB3aGljaCB0byBtYXJrIHBvc3NpYmxlIGRyaWZ0cy4gRGVmYXVsdGVkIHRvIDAuNS4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0OiAgICAgICAgICAgICAgIEEgc2FtcGxlIGRhdGFzZXQgdG8gZ2l2ZSB0byBjb21wYXJlIHRoZSBpbnB1dHMgaW4gdGhlIGRyaWZ0IGFuYWx5c2lzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkgb3IgYXMgYSBwYXJhbWV0ZXIgKGUuZy4gc3RyaW5nLCBsaXN0LCBEYXRhRnJhbWUpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRlZmF1bHQgY2hvc2VuIHNhbXBsZSBzZXQgd2lsbCBhbHdheXMgYmUgdGhlIG9uZSB3aG8gaXMgc2V0IGluIHRoZSBtb2RlbCBhcnRpZmFjdCBpdHNlbGYuCgogICAgcmFpc2VzIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IGlmIGJvdGggYG1vZGVsX3BhdGhgIGFuZCBgZW5kcG9pbnRfaWRgIGFyZSBub3QgcHJvdmlkZWQKICAgICIiIgoKICAgICMgTG9hZGluZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiTG9hZGluZyBtb2RlbC4uLiIpCiAgICBpZiBpc2luc3RhbmNlKG1vZGVsX3BhdGgsIG1scnVuLkRhdGFJdGVtKToKICAgICAgICBtb2RlbF9wYXRoID0gbW9kZWxfcGF0aC5hcnRpZmFjdF91cmwKICAgIGlmIG5vdCBtbHJ1bi5kYXRhc3RvcmUuaXNfc3RvcmVfdXJpKG1vZGVsX3BhdGgpOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBwcm92aWRlZCBtb2RlbCBwYXRoICh7bW9kZWxfcGF0aH0pIGlzIGludmFsaWQgLSBzaG91bGQgc3RhcnQgd2l0aCBgc3RvcmU6Ly9gLiAiCiAgICAgICAgICAgIGYiUGxlYXNlIG1ha2Ugc3VyZSB0aGF0IHlvdSBoYXZlIGxvZ2dlZCB0aGUgbW9kZWwgdXNpbmcgYHByb2plY3QubG9nX21vZGVsKClgICIKICAgICAgICAgICAgZiJ3aGljaCBnZW5lcmF0ZXMgYSB1bmlxdWUgc3RvcmUgdXJpIGZvciB0aGUgbG9nZ2VkIG1vZGVsLiIKICAgICAgICApCiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgaWYgbGFiZWxfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgIG91dHB1dC5uYW1lIGZvciBvdXRwdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5vdXRwdXRzCiAgICAgICAgXQoKICAgIGlmIGZlYXR1cmVfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGZlYXR1cmVfY29sdW1ucyA9IFsKICAgICAgICAgICAgaW5wdXQubmFtZSBmb3IgaW5wdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5pbnB1dHMKICAgICAgICBdCgogICAgIyBHZXQgZGF0YXNldCBieSBvYmplY3QsIFVSTCBvciBieSBGZWF0dXJlVmVjdG9yOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmIkxvYWRpbmcgZGF0YS4uLiIpCiAgICB4LCBsYWJlbF9jb2x1bW5zID0gbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkucmVhZF9kYXRhc2V0X2FzX2RhdGFmcmFtZSgKICAgICAgICBkYXRhc2V0PWRhdGFzZXQsCiAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX2NvbHVtbnMsCiAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICkKCiAgICAjIFByZWRpY3Q6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiQ2FsY3VsYXRpbmcgcHJlZGljdGlvbi4uLiIpCiAgICB5X3ByZWQgPSBtb2RlbF9oYW5kbGVyLm1vZGVsLnByZWRpY3QoeCwgKipwcmVkaWN0X2t3YXJncykKCiAgICAjIFByZXBhcmUgdGhlIHJlc3VsdCBzZXQ6CiAgICByZXN1bHRfc2V0ID0gX3ByZXBhcmVfcmVzdWx0X3NldCh4PXgsIGxhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucywgeV9wcmVkPXlfcHJlZCkKCiAgICAjIENoZWNrIGZvciBsb2dnaW5nIHRoZSByZXN1bHQgc2V0OgogICAgaWYgbG9nX3Jlc3VsdF9zZXQ6CiAgICAgICAgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkubG9nX3Jlc3VsdCgKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICByZXN1bHRfc2V0X25hbWU9cmVzdWx0X3NldF9uYW1lLAogICAgICAgICAgICByZXN1bHRfc2V0PXJlc3VsdF9zZXQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgYmF0Y2hfaWQ9YmF0Y2hfaWQsCiAgICAgICAgKQoKICAgICMgQ2hlY2sgZm9yIHBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMKICAgIGlmICgKICAgICAgICBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzIGlzIE5vbmUKICAgICAgICBhbmQgbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5mZWF0dXJlX3N0YXRzIGlzIG5vdCBOb25lCiAgICApOgogICAgICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXMgPSBUcnVlCiAgICBpZiBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOgogICAgICAgIGNvbnRleHQubG9nZ2VyLmluZm8oIlBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMuLi4iKQogICAgICAgICMgR2V0IHRoZSBzYW1wbGUgc2V0IHN0YXRpc3RpY3MgKGVpdGhlciBmcm9tIHRoZSBzYW1wbGUgc2V0IG9yIGZyb20gdGhlIHN0YXRpc3RpY3MgbG9nZ2VkIHdpdGggdGhlIG1vZGVsKQogICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcyA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MoCiAgICAgICAgICAgIHNhbXBsZV9zZXQ9bW9kZWxfZW5kcG9pbnRfc2FtcGxlX3NldCwKICAgICAgICAgICAgbW9kZWxfYXJ0aWZhY3RfZmVhdHVyZV9zdGF0cz1tb2RlbF9oYW5kbGVyLl9tb2RlbF9hcnRpZmFjdC5zcGVjLmZlYXR1cmVfc3RhdHMsCiAgICAgICAgKQogICAgICAgIG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLnJlY29yZF9yZXN1bHRzKAogICAgICAgICAgICBwcm9qZWN0PWNvbnRleHQucHJvamVjdCwKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBlbmRwb2ludF9pZD1lbmRwb2ludF9pZCwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICBtb2RlbF9lbmRwb2ludF9uYW1lPW1vZGVsX2VuZHBvaW50X25hbWUsCiAgICAgICAgICAgIGluZmVyX3Jlc3VsdHNfZGY9cmVzdWx0X3NldC5jb3B5KCksCiAgICAgICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcz1zYW1wbGVfc2V0X3N0YXRpc3RpY3MsCiAgICAgICAgICAgIGRyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIHBvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9wb3NzaWJsZV9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj10cmlnZ2VyX21vbml0b3Jpbmdfam9iLAogICAgICAgICAgICBkZWZhdWx0X2JhdGNoX2ltYWdlPWJhdGNoX2ltYWdlX2pvYiwKICAgICAgICApCg==
+ functionSourceCode: IyBDb3B5cmlnaHQgMjAyMyBJZ3VhemlvCiMKIyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKIyB5b3UgbWF5IG5vdCB1c2UgdGhpcyBmaWxlIGV4Y2VwdCBpbiBjb21wbGlhbmNlIHdpdGggdGhlIExpY2Vuc2UuCiMgWW91IG1heSBvYnRhaW4gYSBjb3B5IG9mIHRoZSBMaWNlbnNlIGF0CiMKIyAgICAgaHR0cDovL3d3dy5hcGFjaGUub3JnL2xpY2Vuc2VzL0xJQ0VOU0UtMi4wCiMKIyBVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGljYWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsIHNvZnR3YXJlCiMgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExpY2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4gIkFTIElTIiBCQVNJUywKIyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KIyBTZWUgdGhlIExpY2Vuc2UgZm9yIHRoZSBzcGVjaWZpYyBsYW5ndWFnZSBnb3Zlcm5pbmcgcGVybWlzc2lvbnMgYW5kCiMgbGltaXRhdGlvbnMgdW5kZXIgdGhlIExpY2Vuc2UuCgpmcm9tIGluc3BlY3QgaW1wb3J0IHNpZ25hdHVyZQpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBEaWN0LCBMaXN0LCBVbmlvbgppbXBvcnQgbWxydW4KCnRyeToKICAgIGltcG9ydCBtbHJ1bi5tb2RlbF9tb25pdG9yaW5nLmFwaQpleGNlcHQgTW9kdWxlTm90Rm91bmRFcnJvcjoKICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bk5vdEZvdW5kRXJyb3IoCiAgICAgICAgZiJQbGVhc2UgdXBkYXRlIHlvdXIgYG1scnVuYCB2ZXJzaW9uIHRvID49MS41LjAgb3IgdXNlIGFuICIKICAgICAgICBmIm9sZGVyIHZlcnNpb24gb2YgdGhlIGJhdGNoIGluZmVyZW5jZSBmdW5jdGlvbi4iCiAgICApCgppbXBvcnQgbnVtcHkgYXMgbnAKaW1wb3J0IHBhbmRhcyBhcyBwZApmcm9tIG1scnVuLmZyYW1ld29ya3MuYXV0b19tbHJ1biBpbXBvcnQgQXV0b01MUnVuCgoKZGVmIF9wcmVwYXJlX3Jlc3VsdF9zZXQoCiAgICAgICAgeDogcGQuRGF0YUZyYW1lLCBsYWJlbF9jb2x1bW5zOiBMaXN0W3N0cl0sIHlfcHJlZDogbnAubmRhcnJheQopIC0+IHBkLkRhdGFGcmFtZToKICAgICIiIgogICAgU2V0IGRlZmF1bHQgbGFiZWwgY29sdW1uIG5hbWVzIGFuZCB2YWxpZGF0ZSBnaXZlbiBuYW1lcyB0byBwcmVwYXJlIHRoZSByZXN1bHQgc2V0IC0gYSBjb25jYXRlbmF0aW9uIG9mIHRoZSBpbnB1dHMKICAgICh4KSBhbmQgdGhlIG1vZGVsIHByZWRpY3Rpb25zICh5X3ByZWQpLgoKICAgIDpwYXJhbSB4OiAgICAgICAgICAgICBUaGUgaW5wdXRzLgogICAgOnBhcmFtIGxhYmVsX2NvbHVtbnM6IEEgbGlzdCBvZiBzdHJpbmdzIHJlcHJlc2VudGluZyB0aGUgdGFyZ2V0IGNvbHVtbiBuYW1lcyB0byBhZGQgdG8gdGhlIHByZWRpY3Rpb25zLiBEZWZhdWx0IG5hbWUKICAgICAgICAgICAgICAgICAgICAgICAgICB3aWxsIGJlIHVzZWQgaW4gY2FzZSB0aGUgbGlzdCBpcyBlbXB0eSAocHJlZGljdGVkX2xhYmVsX3tpfSkuCiAgICA6cGFyYW0geV9wcmVkOiAgICAgICAgVGhlIG1vZGVsIHByZWRpY3Rpb25zIG9uIHRoZSBpbnB1dHMuCgogICAgOnJldHVybnM6IFRoZSByZXN1bHQgc2V0LgoKICAgIHJhaXNlcyBNTFJ1bkludmFsaWRBcmd1bWVudEVycm9yOiBJZiB0aGUgbGFiZWxzIGNvbHVtbnMgYW1vdW50IGRvIG5vdCBtYXRjaCB0aGUgb3V0cHV0cyBvciBpZiBvbmUgb2YgdGhlIGxhYmVsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbHVtbiBhbHJlYWR5IGV4aXN0cyBpbiB0aGUgZGF0YXNldC4KICAgICIiIgogICAgIyBQcmVwYXJlIGRlZmF1bHQgdGFyZ2V0IGNvbHVtbnMgbmFtZXMgaWYgbm90IHByb3ZpZGVkOgogICAgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9IDEgaWYgbGVuKHlfcHJlZC5zaGFwZSkgPT0gMSBlbHNlIHlfcHJlZC5zaGFwZVsxXQogICAgaWYgbGVuKGxhYmVsX2NvbHVtbnMpID09IDA6CiAgICAgICAgIyBBZGQgZGVmYXVsdCBsYWJlbCBjb2x1bW4gbmFtZXM6CiAgICAgICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCA9PSAxOgogICAgICAgICAgICBsYWJlbF9jb2x1bW5zID0gWyJwcmVkaWN0ZWRfbGFiZWwiXQogICAgICAgIGVsc2U6CiAgICAgICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgICAgICBmInByZWRpY3RlZF9sYWJlbF97aX0iIGZvciBpIGluIHJhbmdlKHByZWRpY3Rpb25fY29sdW1uc19hbW91bnQpCiAgICAgICAgICAgIF0KCiAgICAjIFZhbGlkYXRlIHRoZSBsYWJlbCBjb2x1bW5zOgogICAgaWYgcHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudCAhPSBsZW4obGFiZWxfY29sdW1ucyk6CiAgICAgICAgIyBObyBlcXVhbGl0eSBiZXR3ZWVuIHByb3ZpZGVkIGxhYmVsIGNvbHVtbiBuYW1lcyBhbmQgb3V0cHV0cyBhbW91bnQ6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIG51bWJlciBvZiBwcmVkaWN0ZWQgbGFiZWxzOiB7cHJlZGljdGlvbl9jb2x1bW5zX2Ftb3VudH0gIgogICAgICAgICAgICBmImlzIG5vdCBlcXVhbCB0byB0aGUgZ2l2ZW4gbGFiZWwgY29sdW1uczoge2xlbihsYWJlbF9jb2x1bW5zKX0iCiAgICAgICAgKQogICAgY29tbW9uX2xhYmVscyA9IHNldChsYWJlbF9jb2x1bW5zKSAmIHNldCh4LmNvbHVtbnMudG9saXN0KCkpCiAgICBpZiBjb21tb25fbGFiZWxzOgogICAgICAgICMgTGFiZWwgY29sdW1uIGV4aXN0IGluIHRoZSBvcmlnaW5hbCBpbnB1dHM6CiAgICAgICAgcmFpc2UgbWxydW4uZXJyb3JzLk1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3IoCiAgICAgICAgICAgIGYiVGhlIGxhYmVsczoge2NvbW1vbl9sYWJlbHN9IGFyZSBhbHJlYWR5IGV4aXN0ZWQgaW4gdGhlIGdpdmVuIGRhdGFzZXQuIgogICAgICAgICkKCiAgICByZXR1cm4gcGQuY29uY2F0KAogICAgICAgIFt4LCBwZC5EYXRhRnJhbWUoeV9wcmVkLCBjb2x1bW5zPWxhYmVsX2NvbHVtbnMsIGluZGV4PXguaW5kZXgpXSwgYXhpcz0xCiAgICApCgoKZGVmIF9nZXRfZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljc19wYXJhbWV0ZXJzKGNvbnRleHQsIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQsIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBmZWF0dXJlX2NvbHVtbnMsIGRyb3BfY29sdW1ucywgbGFiZWxfY29sdW1ucyk6CiAgICBzdGF0aWNzX2lucHV0X2Z1bGxfZGljdCA9IGRpY3Qoc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2FydGlmYWN0X2ZlYXR1cmVfc3RhdHM9bW9kZWxfYXJ0aWZhY3RfZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2NvbHVtbnM9ZmVhdHVyZV9jb2x1bW5zLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNhbXBsZV9zZXRfZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzYW1wbGVfc2V0X2xhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucykKICAgIGdldF9zYW1wbGVfc3RhdGljc19mdW5jdGlvbiA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MKICAgIHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCA9IHNpZ25hdHVyZShnZXRfc2FtcGxlX3N0YXRpY3NfZnVuY3Rpb24pLnBhcmFtZXRlcnMKICAgICMgIEFzIGEgcmVzdWx0IG9mIGNoYW5nZXMgdG8gaW5wdXQgcGFyYW1ldGVycyBpbiB0aGUgbWxydW4tZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBmdW5jdGlvbiwKICAgICMgIHdlIHdpbGwgbm93IHNlbmQgb25seSB0aGUgcGFyYW1ldGVycyBpdCBleHBlY3RzLgogICAgc3RhdGljc19pbnB1dF9maWx0ZXJlZCA9IHtrZXk6IHN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0W2tleV0gZm9yIGtleSBpbiBzdGF0aWNzX2Z1bmN0aW9uX2lucHV0X2RpY3R9CiAgICBpZiBsZW4oc3RhdGljc19pbnB1dF9maWx0ZXJlZCkgIT0gbGVuKHN0YXRpY3NfZnVuY3Rpb25faW5wdXRfZGljdCk6CiAgICAgICAgY29udGV4dC5sb2dnZXIud2FybmluZygiZ2V0X3NhbXBsZV9zZXRfc3RhdGlzdGljcyBpcyBpbiBhbiBvbGRlciB2ZXJzaW9uOyAiCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAic29tZSBwYXJhbWV0ZXJzIHdpbGwgbm90IGJlIHNlbnQgdG8gdGhlIGZ1bmN0aW9uLiIpCiAgICByZXR1cm4gc3RhdGljc19pbnB1dF9maWx0ZXJlZAoKCmRlZiBpbmZlcigKICAgIGNvbnRleHQ6IG1scnVuLk1MQ2xpZW50Q3R4LAogICAgZGF0YXNldDogVW5pb25bbWxydW4uRGF0YUl0ZW0sIGxpc3QsIGRpY3QsIHBkLkRhdGFGcmFtZSwgcGQuU2VyaWVzLCBucC5uZGFycmF5XSwKICAgIG1vZGVsX3BhdGg6IFVuaW9uW3N0ciwgbWxydW4uRGF0YUl0ZW1dLAogICAgZHJvcF9jb2x1bW5zOiBVbmlvbltzdHIsIExpc3Rbc3RyXSwgaW50LCBMaXN0W2ludF1dID0gTm9uZSwKICAgIGxhYmVsX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBmZWF0dXJlX2NvbHVtbnM6IFVuaW9uW3N0ciwgTGlzdFtzdHJdXSA9IE5vbmUsCiAgICBsb2dfcmVzdWx0X3NldDogYm9vbCA9IFRydWUsCiAgICByZXN1bHRfc2V0X25hbWU6IHN0ciA9ICJwcmVkaWN0aW9uIiwKICAgIGJhdGNoX2lkOiBzdHIgPSBOb25lLAogICAgYXJ0aWZhY3RzX3RhZzogc3RyID0gIiIsCiAgICAjIERyaWZ0IGFuYWx5c2lzIHBhcmFtZXRlcnMKICAgIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6IGJvb2wgPSBOb25lLAogICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYjogYm9vbCA9IEZhbHNlLAogICAgYmF0Y2hfaW1hZ2Vfam9iOiBzdHIgPSAibWxydW4vbWxydW4iLAogICAgZW5kcG9pbnRfaWQ6IHN0ciA9ICIiLAogICAgIyBUaGUgZm9sbG93aW5nIG1vZGVsIGVuZHBvaW50IHBhcmFtZXRlcnMgYXJlIHJlbGV2YW50IG9ubHkgaWY6CiAgICAjIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaXMgbm90IGRpc2FibGVkCiAgICAjIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZCBpcyBnb2luZyB0byBiZSBnZW5lcmF0ZWQKICAgIG1vZGVsX2VuZHBvaW50X25hbWU6IHN0ciA9ICJiYXRjaC1pbmZlciIsCiAgICBtb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQ6IGZsb2F0ID0gMC43LAogICAgbW9kZWxfZW5kcG9pbnRfcG9zc2libGVfZHJpZnRfdGhyZXNob2xkOiBmbG9hdCA9IDAuNSwKICAgIG1vZGVsX2VuZHBvaW50X3NhbXBsZV9zZXQ6IFVuaW9uWwogICAgICAgIG1scnVuLkRhdGFJdGVtLCBsaXN0LCBkaWN0LCBwZC5EYXRhRnJhbWUsIHBkLlNlcmllcywgbnAubmRhcnJheQogICAgXSA9IE5vbmUsCiAgICAqKnByZWRpY3Rfa3dhcmdzOiBEaWN0W3N0ciwgQW55XSwKKToKICAgICIiIgogICAgUGVyZm9ybSBhIHByZWRpY3Rpb24gb24gYSBnaXZlbiBkYXRhc2V0IHdpdGggdGhlIGdpdmVuIG1vZGVsLiBQbGVhc2UgbWFrZSBzdXJlIHRoYXQgeW91IGhhdmUgYWxyZWFkeSBsb2dnZWQgdGhlIG1vZGVsCiAgICB1bmRlciB0aGUgY3VycmVudCBwcm9qZWN0LgogICAgQ2FuIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgYmV0d2VlbiB0aGUgc2FtcGxlIHNldCBzdGF0aXN0aWNzIHN0b3JlZCBpbiB0aGUgbW9kZWwgdG8gdGhlIGN1cnJlbnQgaW5wdXQgZGF0YS4gVGhlCiAgICBkcmlmdCBydWxlIGlzIHRoZSB2YWx1ZSBwZXItZmVhdHVyZSBtZWFuIG9mIHRoZSBUVkQgYW5kIEhlbGxpbmdlciBzY29yZXMgYWNjb3JkaW5nIHRvIHRoZSB0aHJlc2hvbGRzIGNvbmZpZ3VyZXMKICAgIGhlcmUuIFdoZW4gcGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcywgdGhpcyBmdW5jdGlvbiBlaXRoZXIgdXNlcyBhbiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCByZWNvcmQgb3IgY3JlYXRlcwogICAgYSBuZXcgb25lLgogICAgQXQgdGhlIG1vbWVudCwgdGhpcyBmdW5jdGlvbiBpcyBzdXBwb3J0ZWQgZm9yIGBtbHJ1bj49MS41LjBgIHZlcnNpb25zLgoKICAgIDpwYXJhbSBjb250ZXh0OiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIE1MUnVuIGNvbnRleHQuCiAgICA6cGFyYW0gZGF0YXNldDogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgZGF0YXNldCB0byBpbmZlciB0aHJvdWdoIHRoZSBtb2RlbC4gUHJvdmlkZWQgYXMgYW4gaW5wdXQgKERhdGFJdGVtKQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdGhhdCByZXByZXNlbnRzIERhdGFzZXQgYXJ0aWZhY3QgLyBGZWF0dXJlIHZlY3RvciBVUkkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBkYXRhc2V0YCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIGxpc3QsIGRpY3Rpb25hcnkgb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG51bXB5IGFycmF5LgogICAgOnBhcmFtIG1vZGVsX3BhdGg6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgTW9kZWwgc3RvcmUgdXJpIChzaG91bGQgc3RhcnQgd2l0aCBzdG9yZTovLykuIFByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBJZiB1c2luZyBNTFJ1biBTREssIGBtb2RlbF9wYXRoYCBjYW4gYWxzbyBiZSBwcm92aWRlZCBhcyBhIHBhcmFtZXRlciAoc3RyaW5nKS4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRvIGdlbmVyYXRlIGEgdmFsaWQgbW9kZWwgc3RvcmUgVVJJLCBwbGVhc2UgbG9nIHRoZSBtb2RlbCBiZWZvcmUgcnVubmluZyB0aGlzIGZ1bmN0aW9uLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgSWYgYGVuZHBvaW50X2lkYCBvZiBleGlzdGluZyBtb2RlbCBlbmRwb2ludCBpcyBwcm92aWRlZCwgbWFrZSBzdXJlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGF0IGl0IGhhcyBhIHNpbWlsYXIgbW9kZWwgc3RvcmUgcGF0aCwgb3RoZXJ3aXNlIHRoZSBkcmlmdCBhbmFseXNpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd29uJ3QgYmUgdHJpZ2dlcmVkLgogICAgOnBhcmFtIGRyb3BfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICAgQSBzdHJpbmcgLyBpbnRlZ2VyIG9yIGEgbGlzdCBvZiBzdHJpbmdzIC8gaW50ZWdlcnMgdGhhdCByZXByZXNlbnQgdGhlIGNvbHVtbiBuYW1lcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLyBpbmRpY2VzIHRvIGRyb3AuIFdoZW4gdGhlIGRhdGFzZXQgaXMgYSBsaXN0IG9yIGEgbnVtcHkgYXJyYXkgdGhpcyBwYXJhbWV0ZXIgbXVzdAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmUgcmVwcmVzZW50ZWQgYnkgaW50ZWdlcnMuCiAgICA6cGFyYW0gbGFiZWxfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgdGFyZ2V0IGxhYmVsKHMpIG9mIHRoZSBjb2x1bW4ocykgaW4gdGhlIGRhdGFzZXQgZm9yIFJlZ3Jlc3Npb24gb3IKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIENsYXNzaWZpY2F0aW9uIHRhc2tzLiBUaGUgbGFiZWwgY29sdW1uIGNhbiBiZSBhY2Nlc3NlZCBmcm9tIHRoZSBtb2RlbCBvYmplY3QsIG9yCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgZmVhdHVyZSB2ZWN0b3IgcHJvdmlkZWQgaWYgYXZhaWxhYmxlLgogICAgOnBhcmFtIGZlYXR1cmVfY29sdW1uczogICAgICAgICAgICAgICAgICAgICAgICAgTGlzdCBvZiBmZWF0dXJlIGNvbHVtbnMgdGhhdCB3aWxsIGJlIHVzZWQgdG8gYnVpbGQgdGhlIGRhdGFmcmFtZSB3aGVuIGRhdGFzZXQgaXMKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZyb20gdHlwZSBsaXN0IG9yIG51bXB5IGFycmF5LgogICAgOnBhcmFtIGxvZ19yZXN1bHRfc2V0OiAgICAgICAgICAgICAgICAgICAgICAgICAgV2hldGhlciB0byBsb2cgdGhlIHJlc3VsdCBzZXQgLSBhIERhdGFGcmFtZSBvZiB0aGUgZ2l2ZW4gaW5wdXRzIGNvbmNhdGVuYXRlZCB3aXRoCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0aGUgcHJlZGljdGlvbnMuIERlZmF1bHRlZCB0byBUcnVlLgogICAgOnBhcmFtIHJlc3VsdF9zZXRfbmFtZTogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRiIGtleSB0byBzZXQgbmFtZSBvZiB0aGUgcHJlZGljdGlvbiByZXN1bHQgYW5kIHRoZSBmaWxlbmFtZS4gRGVmYXVsdGVkIHRvCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAncHJlZGljdGlvbicuCiAgICA6cGFyYW0gYmF0Y2hfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBUaGUgSUQgb2YgdGhlIGdpdmVuIGJhdGNoIChpbmZlcmVuY2UgZGF0YXNldCkuIElmIGBOb25lYCwgaXQgd2lsbCBiZSBnZW5lcmF0ZWQuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBXaWxsIGJlIGxvZ2dlZCBhcyBhIHJlc3VsdCBvZiB0aGUgcnVuLgogICAgOnBhcmFtIGFydGlmYWN0c190YWc6ICAgICAgICAgICAgICAgICAgICAgICAgICAgVGFnIHRvIHVzZSBmb3IgYWxsIHRoZSBhcnRpZmFjdHMgcmVzdWx0ZWQgZnJvbSB0aGUgZnVuY3Rpb24gKHJlc3VsdCBzZXQgYW5kCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBtb25pdG9yaW5nIGFydGlmYWN0cykKICAgIDpwYXJhbSBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzOiAgICAgICAgICAgICAgICAgIFdoZXRoZXIgdG8gcGVyZm9ybSBkcmlmdCBhbmFseXNpcyBiZXR3ZWVuIHRoZSBzYW1wbGUgc2V0IG9mIHRoZSBtb2RlbCBvYmplY3QgdG8gdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhc2V0IGdpdmVuLiBCeSBkZWZhdWx0LCBOb25lLCB3aGljaCBtZWFucyBpdCB3aWxsIHBlcmZvcm0gZHJpZnQgYW5hbHlzaXMgaWYgdGhlCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbCBhbHJlYWR5IGhhcyBmZWF0dXJlIHN0YXRzIHRoYXQgYXJlIGNvbnNpZGVyZWQgYXMgYSByZWZlcmVuY2Ugc2FtcGxlIHNldC4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMgb24gYSBuZXcgZW5kcG9pbnQgaWQgd2lsbCBnZW5lcmF0ZSBhIG5ldyBtb2RlbCBlbmRwb2ludAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcmVjb3JkLiBQbGVhc2Ugbm90ZSB0aGF0IGluIG9yZGVyIHRvIHRyaWdnZXIgdGhlIGRyaWZ0IGFuYWx5c2lzIGpvYiwgeW91IG5lZWQgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNldCBgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj1UcnVlYC4gT3RoZXJ3aXNlLCB0aGUgZHJpZnQgYW5hbHlzaXMgd2lsbCBiZSB0cmlnZ2VyZWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG9ubHkgYXMgcGFydCB0aGUgc2NoZWR1bGVkIG1vbml0b3Jpbmcgam9iIChpZiBleGlzdCBpbiB0aGUgY3VycmVudCBwcm9qZWN0KSBvcgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgaWYgdHJpZ2dlcmVkIG1hbnVhbGx5IGJ5IHRoZSB1c2VyLgogICAgOnBhcmFtIHRyaWdnZXJfbW9uaXRvcmluZ19qb2I6ICAgICAgICAgICAgICAgICAgV2hldGhlciB0byB0cmlnZ2VyIHRoZSBiYXRjaCBkcmlmdCBhbmFseXNpcyBhZnRlciB0aGUgaW5mZXIgam9iLgogICAgOnBhcmFtIGJhdGNoX2ltYWdlX2pvYjogICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGltYWdlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIHJlZ2lzdGVyIHRoZSBtb25pdG9yaW5nIGJhdGNoIGpvYiBpZiBub3QgZXhpc3QuCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBCeSBkZWZhdWx0LCB0aGUgaW1hZ2UgaXMgbWxydW4vbWxydW4uCiAgICA6cGFyYW0gZW5kcG9pbnRfaWQ6ICAgICAgICAgICAgICAgICAgICAgICAgICAgICBNb2RlbCBlbmRwb2ludCB1bmlxdWUgSUQuIElmIGBwZXJmb3JtX2RyaWZ0X2FuYWx5c2lzYCB3YXMgc2V0LCB0aGUgZW5kcG9pbnRfaWQKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHdpbGwgYmUgdXNlZCBlaXRoZXIgdG8gcGVyZm9ybSB0aGUgYW5hbHlzaXMgb24gZXhpc3RpbmcgbW9kZWwgZW5kcG9pbnQgb3IgdG8KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVyYXRlIGEgbmV3IG1vZGVsIGVuZHBvaW50IHJlY29yZC4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9uYW1lOiAgICAgICAgICAgICAgICAgICAgIElmIGEgbmV3IG1vZGVsIGVuZHBvaW50IGlzIGdlbmVyYXRlZCwgdGhlIG1vZGVsIG5hbWUgd2lsbCBiZSBwcmVzZW50ZWQgdW5kZXIgdGhpcwogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kcG9pbnQuCiAgICA6cGFyYW0gbW9kZWxfZW5kcG9pbnRfZHJpZnRfdGhyZXNob2xkOiAgICAgICAgICBUaGUgdGhyZXNob2xkIG9mIHdoaWNoIHRvIG1hcmsgZHJpZnRzLiBEZWZhdWx0ZWQgdG8gMC43LgogICAgOnBhcmFtIG1vZGVsX2VuZHBvaW50X3Bvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZDogVGhlIHRocmVzaG9sZCBvZiB3aGljaCB0byBtYXJrIHBvc3NpYmxlIGRyaWZ0cy4gRGVmYXVsdGVkIHRvIDAuNS4KICAgIDpwYXJhbSBtb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0OiAgICAgICAgICAgICAgIEEgc2FtcGxlIGRhdGFzZXQgdG8gZ2l2ZSB0byBjb21wYXJlIHRoZSBpbnB1dHMgaW4gdGhlIGRyaWZ0IGFuYWx5c2lzLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgQ2FuIGJlIHByb3ZpZGVkIGFzIGFuIGlucHV0IChEYXRhSXRlbSkgb3IgYXMgYSBwYXJhbWV0ZXIgKGUuZy4gc3RyaW5nLCBsaXN0LCBEYXRhRnJhbWUpLgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVGhlIGRlZmF1bHQgY2hvc2VuIHNhbXBsZSBzZXQgd2lsbCBhbHdheXMgYmUgdGhlIG9uZSB3aG8gaXMgc2V0IGluIHRoZSBtb2RlbCBhcnRpZmFjdCBpdHNlbGYuCgogICAgcmFpc2VzIE1MUnVuSW52YWxpZEFyZ3VtZW50RXJyb3I6IGlmIGJvdGggYG1vZGVsX3BhdGhgIGFuZCBgZW5kcG9pbnRfaWRgIGFyZSBub3QgcHJvdmlkZWQKICAgICIiIgoKICAgICMgTG9hZGluZyB0aGUgbW9kZWw6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiTG9hZGluZyBtb2RlbC4uLiIpCiAgICBpZiBpc2luc3RhbmNlKG1vZGVsX3BhdGgsIG1scnVuLkRhdGFJdGVtKToKICAgICAgICBtb2RlbF9wYXRoID0gbW9kZWxfcGF0aC5hcnRpZmFjdF91cmwKICAgIGlmIG5vdCBtbHJ1bi5kYXRhc3RvcmUuaXNfc3RvcmVfdXJpKG1vZGVsX3BhdGgpOgogICAgICAgIHJhaXNlIG1scnVuLmVycm9ycy5NTFJ1bkludmFsaWRBcmd1bWVudEVycm9yKAogICAgICAgICAgICBmIlRoZSBwcm92aWRlZCBtb2RlbCBwYXRoICh7bW9kZWxfcGF0aH0pIGlzIGludmFsaWQgLSBzaG91bGQgc3RhcnQgd2l0aCBgc3RvcmU6Ly9gLiAiCiAgICAgICAgICAgIGYiUGxlYXNlIG1ha2Ugc3VyZSB0aGF0IHlvdSBoYXZlIGxvZ2dlZCB0aGUgbW9kZWwgdXNpbmcgYHByb2plY3QubG9nX21vZGVsKClgICIKICAgICAgICAgICAgZiJ3aGljaCBnZW5lcmF0ZXMgYSB1bmlxdWUgc3RvcmUgdXJpIGZvciB0aGUgbG9nZ2VkIG1vZGVsLiIKICAgICAgICApCiAgICBtb2RlbF9oYW5kbGVyID0gQXV0b01MUnVuLmxvYWRfbW9kZWwobW9kZWxfcGF0aD1tb2RlbF9wYXRoLCBjb250ZXh0PWNvbnRleHQpCgogICAgaWYgbGFiZWxfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGxhYmVsX2NvbHVtbnMgPSBbCiAgICAgICAgICAgIG91dHB1dC5uYW1lIGZvciBvdXRwdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5vdXRwdXRzCiAgICAgICAgXQoKICAgIGlmIGZlYXR1cmVfY29sdW1ucyBpcyBOb25lOgogICAgICAgIGZlYXR1cmVfY29sdW1ucyA9IFsKICAgICAgICAgICAgaW5wdXQubmFtZSBmb3IgaW5wdXQgaW4gbW9kZWxfaGFuZGxlci5fbW9kZWxfYXJ0aWZhY3Quc3BlYy5pbnB1dHMKICAgICAgICBdCgogICAgIyBHZXQgZGF0YXNldCBieSBvYmplY3QsIFVSTCBvciBieSBGZWF0dXJlVmVjdG9yOgogICAgY29udGV4dC5sb2dnZXIuaW5mbyhmIkxvYWRpbmcgZGF0YS4uLiIpCiAgICB4LCBsYWJlbF9jb2x1bW5zID0gbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkucmVhZF9kYXRhc2V0X2FzX2RhdGFmcmFtZSgKICAgICAgICBkYXRhc2V0PWRhdGFzZXQsCiAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICBsYWJlbF9jb2x1bW5zPWxhYmVsX2NvbHVtbnMsCiAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICkKCiAgICAjIFByZWRpY3Q6CiAgICBjb250ZXh0LmxvZ2dlci5pbmZvKGYiQ2FsY3VsYXRpbmcgcHJlZGljdGlvbi4uLiIpCiAgICB5X3ByZWQgPSBtb2RlbF9oYW5kbGVyLm1vZGVsLnByZWRpY3QoeCwgKipwcmVkaWN0X2t3YXJncykKCiAgICAjIFByZXBhcmUgdGhlIHJlc3VsdCBzZXQ6CiAgICByZXN1bHRfc2V0ID0gX3ByZXBhcmVfcmVzdWx0X3NldCh4PXgsIGxhYmVsX2NvbHVtbnM9bGFiZWxfY29sdW1ucywgeV9wcmVkPXlfcHJlZCkKCiAgICAjIENoZWNrIGZvciBsb2dnaW5nIHRoZSByZXN1bHQgc2V0OgogICAgaWYgbG9nX3Jlc3VsdF9zZXQ6CiAgICAgICAgbWxydW4ubW9kZWxfbW9uaXRvcmluZy5hcGkubG9nX3Jlc3VsdCgKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICByZXN1bHRfc2V0X25hbWU9cmVzdWx0X3NldF9uYW1lLAogICAgICAgICAgICByZXN1bHRfc2V0PXJlc3VsdF9zZXQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgYmF0Y2hfaWQ9YmF0Y2hfaWQsCiAgICAgICAgKQoKICAgICMgQ2hlY2sgZm9yIHBlcmZvcm1pbmcgZHJpZnQgYW5hbHlzaXMKICAgIGlmICgKICAgICAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyBpcyBOb25lCiAgICAgICAgICAgIGFuZCBtb2RlbF9oYW5kbGVyLl9tb2RlbF9hcnRpZmFjdC5zcGVjLmZlYXR1cmVfc3RhdHMgaXMgbm90IE5vbmUKICAgICk6CiAgICAgICAgcGVyZm9ybV9kcmlmdF9hbmFseXNpcyA9IFRydWUKICAgIGlmIHBlcmZvcm1fZHJpZnRfYW5hbHlzaXM6CiAgICAgICAgY29udGV4dC5sb2dnZXIuaW5mbygiUGVyZm9ybWluZyBkcmlmdCBhbmFseXNpcy4uLiIpCiAgICAgICAgIyBHZXQgdGhlIHNhbXBsZSBzZXQgc3RhdGlzdGljcyAoZWl0aGVyIGZyb20gdGhlIHNhbXBsZSBzZXQgb3IgZnJvbSB0aGUgc3RhdGlzdGljcyBsb2dnZWQgd2l0aCB0aGUgbW9kZWwpCiAgICAgICAgc3RhdGljc19pbnB1dF9mdWxsX2RpY3QgPSBkaWN0KGNvbnRleHQ9Y29udGV4dCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWxfZW5kcG9pbnRfc2FtcGxlX3NldD1tb2RlbF9lbmRwb2ludF9zYW1wbGVfc2V0LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9hcnRpZmFjdF9mZWF0dXJlX3N0YXRzPW1vZGVsX2hhbmRsZXIuX21vZGVsX2FydGlmYWN0LnNwZWMuZmVhdHVyZV9zdGF0cywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmVhdHVyZV9jb2x1bW5zPWZlYXR1cmVfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZHJvcF9jb2x1bW5zPWRyb3BfY29sdW1ucywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGFiZWxfY29sdW1ucz1sYWJlbF9jb2x1bW5zKQogICAgICAgIHN0YXRpY3NfaW5wdXRfZmlsdGVyZWQgPSBfZ2V0X2dldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3NfcGFyYW1ldGVycygqKnN0YXRpY3NfaW5wdXRfZnVsbF9kaWN0KQogICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcyA9IG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLmdldF9zYW1wbGVfc2V0X3N0YXRpc3RpY3MoKipzdGF0aWNzX2lucHV0X2ZpbHRlcmVkKQogICAgICAgIG1scnVuLm1vZGVsX21vbml0b3JpbmcuYXBpLnJlY29yZF9yZXN1bHRzKAogICAgICAgICAgICBwcm9qZWN0PWNvbnRleHQucHJvamVjdCwKICAgICAgICAgICAgY29udGV4dD1jb250ZXh0LAogICAgICAgICAgICBlbmRwb2ludF9pZD1lbmRwb2ludF9pZCwKICAgICAgICAgICAgbW9kZWxfcGF0aD1tb2RlbF9wYXRoLAogICAgICAgICAgICBtb2RlbF9lbmRwb2ludF9uYW1lPW1vZGVsX2VuZHBvaW50X25hbWUsCiAgICAgICAgICAgIGluZmVyX3Jlc3VsdHNfZGY9cmVzdWx0X3NldC5jb3B5KCksCiAgICAgICAgICAgIHNhbXBsZV9zZXRfc3RhdGlzdGljcz1zYW1wbGVfc2V0X3N0YXRpc3RpY3MsCiAgICAgICAgICAgIGRyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIHBvc3NpYmxlX2RyaWZ0X3RocmVzaG9sZD1tb2RlbF9lbmRwb2ludF9wb3NzaWJsZV9kcmlmdF90aHJlc2hvbGQsCiAgICAgICAgICAgIGFydGlmYWN0c190YWc9YXJ0aWZhY3RzX3RhZywKICAgICAgICAgICAgdHJpZ2dlcl9tb25pdG9yaW5nX2pvYj10cmlnZ2VyX21vbml0b3Jpbmdfam9iLAogICAgICAgICAgICBkZWZhdWx0X2JhdGNoX2ltYWdlPWJhdGNoX2ltYWdlX2pvYiwKICAgICAgICApCg==
commands: []
code_origin: ''
origin_filename: ''
@@ -161,7 +161,7 @@
set in the model artifact itself.
default: null
outputs: []
- lineno: 80
+ lineno: 97
has_varargs: false
has_kwargs: true
description: Batch inference (also knows as prediction) for the common ML frameworks
diff --git a/functions/master/batch_inference_v2/latest/static/item.html b/functions/master/batch_inference_v2/latest/static/item.html
index 9149687e..45f9c1c8 100644
--- a/functions/master/batch_inference_v2/latest/static/item.html
+++ b/functions/master/batch_inference_v2/latest/static/item.html
@@ -46,7 +46,7 @@
kind: job
requirements: null
url: ''
-version: 2.4.0
+version: 2.5.0
diff --git a/functions/master/batch_inference_v2/latest/static/source.html b/functions/master/batch_inference_v2/latest/static/source.html
index 942bcc72..100c0c6d 100644
--- a/functions/master/batch_inference_v2/latest/static/source.html
+++ b/functions/master/batch_inference_v2/latest/static/source.html
@@ -29,8 +29,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-from typing import Any, Dict, List, Union
-
+from inspect import signature
+from typing import Any, Dict, List, Union, Optional
import mlrun
try:
@@ -41,15 +41,12 @@
f"older version of the batch inference function."
)
-
import numpy as np
import pandas as pd
from mlrun.frameworks.auto_mlrun import AutoMLRun
-def _prepare_result_set(
- x: pd.DataFrame, label_columns: List[str], y_pred: np.ndarray
-) -> pd.DataFrame:
+def _prepare_result_set(x: pd.DataFrame, label_columns: List[str], y_pred: np.ndarray) -> pd.DataFrame:
"""
Set default label column names and validate given names to prepare the result set - a concatenation of the inputs
(x) and the model predictions (y_pred).
@@ -94,32 +91,57 @@
)
+def _get_sample_set_statistics_parameters(context: mlrun.MLClientCtx,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_artifact_feature_stats: dict,
+ feature_columns: Optional[List],
+ drop_columns: Optional[List],
+ label_columns: Optional[List]) -> Dict[str, Any]:
+ statics_input_full_dict = dict(sample_set=model_endpoint_sample_set,
+ model_artifact_feature_stats=model_artifact_feature_stats,
+ sample_set_columns=feature_columns,
+ sample_set_drop_columns=drop_columns,
+ sample_set_label_columns=label_columns)
+ get_sample_statics_function = mlrun.model_monitoring.api.get_sample_set_statistics
+ statics_function_input_dict = signature(get_sample_statics_function).parameters
+ # As a result of changes to input parameters in the mlrun-get_sample_set_statistics function,
+ # we will now send only the parameters it expects.
+ statistics_input_filtered = {key: statics_input_full_dict[key] for key in statics_function_input_dict}
+ if len(statistics_input_filtered) != len(statics_function_input_dict):
+ context.logger.warning(f"get_sample_set_statistics is in an older version; "
+ "some parameters will not be sent to the function."
+ f" Expected input: {list(statics_function_input_dict.keys())},"
+ f" actual input: {list(statistics_input_filtered.keys())}")
+ return statistics_input_filtered
+
+
def infer(
- context: mlrun.MLClientCtx,
- dataset: Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
- model_path: Union[str, mlrun.DataItem],
- drop_columns: Union[str, List[str], int, List[int]] = None,
- label_columns: Union[str, List[str]] = None,
- feature_columns: Union[str, List[str]] = None,
- log_result_set: bool = True,
- result_set_name: str = "prediction",
- batch_id: str = None,
- artifacts_tag: str = "",
- # Drift analysis parameters
- perform_drift_analysis: bool = None,
- trigger_monitoring_job: bool = False,
- batch_image_job: str = "mlrun/mlrun",
- endpoint_id: str = "",
- # The following model endpoint parameters are relevant only if:
- # perform drift analysis is not disabled
- # a new model endpoint record is going to be generated
- model_endpoint_name: str = "batch-infer",
- model_endpoint_drift_threshold: float = 0.7,
- model_endpoint_possible_drift_threshold: float = 0.5,
- model_endpoint_sample_set: Union[
- mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray
- ] = None,
- **predict_kwargs: Dict[str, Any],
+ context: mlrun.MLClientCtx,
+ dataset: Union[mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray],
+ model_path: Union[str, mlrun.DataItem],
+ drop_columns: Union[str, List[str], int, List[int]] = None,
+ label_columns: Union[str, List[str]] = None,
+ feature_columns: Union[str, List[str]] = None,
+ log_result_set: bool = True,
+ result_set_name: str = "prediction",
+ batch_id: str = None,
+ artifacts_tag: str = "",
+ # Drift analysis parameters
+ perform_drift_analysis: bool = None,
+ trigger_monitoring_job: bool = False,
+ batch_image_job: str = "mlrun/mlrun",
+ endpoint_id: str = "",
+ # The following model endpoint parameters are relevant only if:
+ # perform drift analysis is not disabled
+ # a new model endpoint record is going to be generated
+ model_endpoint_name: str = "batch-infer",
+ model_endpoint_drift_threshold: float = 0.7,
+ model_endpoint_possible_drift_threshold: float = 0.5,
+ model_endpoint_sample_set: Union[
+ mlrun.DataItem, list, dict, pd.DataFrame, pd.Series, np.ndarray
+ ] = None,
+ **predict_kwargs: Dict[str, Any],
):
"""
Perform a prediction on a given dataset with the given model. Please make sure that you have already logged the model
@@ -232,17 +254,21 @@
# Check for performing drift analysis
if (
- perform_drift_analysis is None
- and model_handler._model_artifact.spec.feature_stats is not None
+ perform_drift_analysis is None
+ and model_handler._model_artifact.spec.feature_stats is not None
):
perform_drift_analysis = True
if perform_drift_analysis:
context.logger.info("Performing drift analysis...")
# Get the sample set statistics (either from the sample set or from the statistics logged with the model)
- sample_set_statistics = mlrun.model_monitoring.api.get_sample_set_statistics(
- sample_set=model_endpoint_sample_set,
+ statistics_input_filtered = _get_sample_set_statistics_parameters(
+ context=context,
+ model_endpoint_sample_set=model_endpoint_sample_set,
model_artifact_feature_stats=model_handler._model_artifact.spec.feature_stats,
- )
+ feature_columns=feature_columns,
+ drop_columns=drop_columns,
+ label_columns=label_columns)
+ sample_set_statistics = mlrun.model_monitoring.api.get_sample_set_statistics(**statistics_input_filtered)
mlrun.model_monitoring.api.record_results(
project=context.project,
context=context,
diff --git a/functions/master/catalog.json b/functions/master/catalog.json
index 88115ebd..ec30d1f2 100644
--- a/functions/master/catalog.json
+++ b/functions/master/catalog.json
@@ -1 +1 @@
-{"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
+{"tf2_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server", "doc": "", "example": "tf2_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving", "platformVersion": "", "spec": {"filename": "tf2_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving.ipynb", "source": "src/tf2_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dask", "platformVersion": "3.5.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dask", "platformVersion": "3.2.0", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "etl"], "description": "load dask cluster with data", "doc": "", "example": "load_dask.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dask", "platformVersion": "", "spec": {"filename": "load_dask.py", "handler": "load_dask", "image": "mlrun/ml-models", "kind": "dask", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dask.ipynb", "source": "src/load_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "xgb_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "xgb_serving", "platformVersion": "3.5.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.2": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "xgb_serving", "platformVersion": "3.5.3", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.2", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "xgb_serving", "platformVersion": "3.2.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an XGBoost model server.", "doc": "", "example": "xgb_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "xgb_serving", "platformVersion": "3.0.0", "spec": {"filename": "xgb_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "remote", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/xgb_serving.ipynb", "source": "src/xgb_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "sql_to_file": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "sql-to-file", "platformVersion": "3.5.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "sql-to-file", "platformVersion": "3.2.0", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "SQL To File - Ingest data using SQL query", "doc": "", "example": "sql_to_file.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "adih"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "sql-to-file", "platformVersion": "", "spec": {"filename": "sql_to_file.py", "handler": "sql_to_file", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/sql_to_file.ipynb", "source": "src/sql_to_file.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_selection": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-selection", "platformVersion": "3.2.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "feature-selection", "platformVersion": "2.10.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection/feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Select features through multiple Statistical and Model filters", "doc": "", "example": "feature_selection.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-selection", "platformVersion": "3.5.0", "spec": {"filename": "feature_selection.py", "handler": "feature_selection", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/feature_selection.ipynb", "source": "src/feature_selection.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "slack_notify": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "slack-notify", "platformVersion": "3.5.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "slack-notify", "platformVersion": "3.2.0", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Slack notification", "doc": "", "example": "slack_notify.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "mdl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "slack-notify", "platformVersion": "", "spec": {"filename": "slack_notify.py", "handler": "slack_notify", "image": "python:3.6-jessie", "kind": "job", "requirements": ["requests"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/slack_notify.ipynb", "source": "src/slack_notify.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server", "platformVersion": "3.5.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server", "platformVersion": "3.2.0", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server", "platformVersion": "", "spec": {"filename": "model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server.ipynb", "source": "src/model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "ingest": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "ingest", "platformVersion": "", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "Feature Store ingest function that runs the transformation graph on the source of the featureset.", "doc": "", "example": "ingest.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "ingest", "platformVersion": "3.5.0", "spec": {"filename": "ingest.py", "handler": "ingest", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/ingest.ipynb", "source": "src/ingest.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.2": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-26:10-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.2", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "describe", "platformVersion": "3.5.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-04-07:14-20", "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe", "platformVersion": "3.2.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "describe", "platformVersion": "2.10.0", "spec": {"filename": "describe.py", "handler": "summarize", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "describe and visualizes dataset stats", "doc": "", "example": "describe.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "describe", "platformVersion": "3.5.3", "spec": {"filename": "describe.py", "handler": "analyze", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/describe.ipynb", "source": "src/describe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "github_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "github-utils", "platformVersion": "3.5.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "github-utils", "platformVersion": "3.2.0", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "add comments to github pull request", "doc": "", "example": "github_utils.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "github-utils", "platformVersion": "", "spec": {"filename": "github_utils.py", "handler": "run_summary_comment", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/github_utils.ipynb", "source": "src/github_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "aggregate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "aggregate", "platformVersion": "3.5.4", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "aggregate", "platformVersion": "3.2.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2021-05-19:22-31", "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "aggregate", "platformVersion": "3.0.0", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Rolling aggregation over Metrics and Lables according to specifications", "doc": "", "example": "aggregate.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avia"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "aggregate", "platformVersion": "3.5.2", "spec": {"filename": "aggregate.py", "handler": "aggregate", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/aggregate.ipynb", "source": "src/aggregate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "bert_embeddings": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "bert-embeddings", "platformVersion": "3.5.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "bert-embeddings", "platformVersion": "3.2.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "bert-embeddings", "platformVersion": "2.10.0", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["torch==1.6.0"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Get BERT based embeddings for given text", "doc": "", "example": "bert_embeddings.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"framework": "pytorch"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "bert-embeddings", "platformVersion": "3.5.3", "spec": {"filename": "bert_embeddings.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": ["torch"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/bert_embeddings.ipynb", "source": "src/bert_embeddings.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-multiflow"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "Deploy a streaming Concept Drift detector on a labeled stream", "doc": "", "example": "concept_drift.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift", "platformVersion": "", "spec": {"filename": "concept_drift.py", "handler": "concept_drift_deployer", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift.ipynb", "source": "src/concept_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pandas_profiling_report": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "pandas-profiling-report", "platformVersion": "3.5.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "pandas-profiling-report", "platformVersion": "3.2.0", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "Create Pandas Profiling Report from Dataset", "doc": "", "example": "pandas_profiling_report.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "nicks"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "pandas-profiling-report", "platformVersion": "", "spec": {"filename": "pandas_profiling_report.py", "handler": "pandas_profiling_report", "image": "mlrun/mlrun", "kind": "job", "requirements": ["pandas_profiling"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pandas_profiling_report.ipynb", "source": "src/pandas_profiling_report.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "load_dataset": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "load-dataset", "platformVersion": "3.5.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "load-dataset", "platformVersion": "3.2.0", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "load a toy dataset from scikit-learn", "doc": "README.md", "example": "load_dataset.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yjb", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "load-dataset", "platformVersion": "", "spec": {"filename": "load_dataset.py", "handler": "load_dataset", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/load_dataset.ipynb", "source": "src/load_dataset.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "concept_drift_streaming": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "concept-drift-streaming", "platformVersion": "3.5.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "concept-drift-streaming", "platformVersion": "3.2.0", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "monitoring"], "description": "Deploy a streaming Concept Drift detector on a labeled stream. the nuclio part of the concept_drift function", "doc": "", "example": "concept_drift_streaming.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "orz", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "concept-drift-streaming", "platformVersion": "", "spec": {"filename": "concept_drift_streaming.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": ["scikit-multiflow==0.4.1", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/concept_drift_streaming.ipynb", "source": "src/concept_drift_streaming.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-02-06:10-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.3.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.3.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.6": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.6", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.5.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.5", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "auto_trainer", "platformVersion": "3.5.0", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.6.0", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.3": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "", "kind": "job", "requirements": []}, "url": "", "version": "0.10.3", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.7": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM.", "doc": "", "example": "auto_trainer.ipynb", "generationDate": "2022-04-26:10-43", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.0", "name": "auto_trainer", "platformVersion": "", "spec": {"filename": "auto_trainer.py", "handler": "train", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.7", "assets": {"example": "src/auto_trainer.ipynb", "source": "src/auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf2_serving_v2": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf2-serving-v2", "platformVersion": "3.5.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf2-serving-v2", "platformVersion": "3.2.0", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf2 image classification server v2", "doc": "", "example": "tf2_serving_v2.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf2-serving-v2", "platformVersion": "", "spec": {"filename": "tf2_serving_v2.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["requests", "pillow", "tensorflow>=2.1"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf2_serving_v2.ipynb", "source": "src/tf2_serving_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "stream_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "stream-to-parquet", "platformVersion": "3.5.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "stream-to-parquet", "platformVersion": "3.2.0", "spec": {"customFields": {"max_replicas": 1, "min_replicas": 1}, "filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "Saves a stream to Parquet and can lunch drift detection task on it", "doc": "", "example": "stream_to_parquet.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "stream-to-parquet", "platformVersion": "", "spec": {"filename": "stream_to_parquet.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "nuclio", "requirements": [], "customFields": {"min_replicas": 1, "max_replicas": 1}}, "url": "", "version": "0.0.1", "assets": {"example": "src/stream_to_parquet.ipynb", "source": "src/stream_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ClassifierModel"}, "filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "generic sklearn model server", "doc": "", "example": "v2_model_server.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh", "framework": "sklearn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-server", "platformVersion": "", "spec": {"filename": "v2_model_server.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "serving", "requirements": [], "customFields": {"default_class": "ClassifierModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_server.ipynb", "source": "src/v2_model_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "feature_perms": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "feature-perms", "platformVersion": "3.5.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "test_valid": false, "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "feature-perms", "platformVersion": "3.2.0", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "estimate feature importances using permutations", "doc": "", "example": "feature_perms.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "feature-perms", "platformVersion": "", "spec": {"filename": "feature_perms.py", "handler": "permutation_importance", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/feature_perms.ipynb", "source": "src/feature_perms.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_server_tester": {"latest": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-server-tester", "platformVersion": "3.5.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-server-tester", "platformVersion": "3.2.0", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring", "model-serving"], "description": "test model servers", "doc": "", "example": "model_server_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-server-tester", "platformVersion": "", "spec": {"filename": "model_server_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_server_tester.ipynb", "source": "src/model_server_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "get_offline_features": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.2", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-01-17:17-56", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-05-25:10-58", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.0.1", "name": "get_offline_features", "platformVersion": "", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.1", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation", "data-analysis", "feature-store"], "description": "retrieve offline feature vector results", "doc": "", "example": "get_offline_features.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "get_offline_features", "platformVersion": "3.5.0", "spec": {"filename": "get_offline_features.py", "handler": "get_offline_features", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/get_offline_features.ipynb", "source": "src/get_offline_features.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "v2_model_tester": {"latest": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "v2-model-tester", "platformVersion": "3.5.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "v2-model-tester", "platformVersion": "3.2.0", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-testing", "machine-learning"], "description": "test v2 model servers", "doc": "", "example": "v2_model_tester.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "v2-model-tester", "platformVersion": "", "spec": {"filename": "v2_model_tester.py", "handler": "model_server_tester", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/v2_model_tester.ipynb", "source": "src/v2_model_tester.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "coxph_test": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "coxph-test", "platformVersion": "3.5.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "coxph-test", "platformVersion": "3.2.0", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-testing"], "description": "Test cox proportional hazards model", "doc": "", "example": "coxph_test.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Iguazio", "framework": "survival"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "coxph-test", "platformVersion": "", "spec": {"filename": "coxph_test.py", "handler": "cox_test", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/coxph_test.ipynb", "source": "src/coxph_test.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "virtual_drift": {"latest": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "virtual-drift", "platformVersion": "3.5.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "virtual-drift", "platformVersion": "3.2.0", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis", "machine-learning"], "description": "Compute drift magnitude between Time-Samples T and U", "doc": "", "example": "virtual_drift.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "orz"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "virtual-drift", "platformVersion": "", "spec": {"filename": "virtual_drift.py", "handler": "drift_magnitude", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "scipy", "v3io_frames"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/virtual_drift.ipynb", "source": "src/virtual_drift.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "rnn_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.9.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "rnn-serving", "platformVersion": "3.5.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.1.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "0.8.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "rnn-serving", "platformVersion": "3.2.0", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": null}, "url": "", "version": "1.0.0", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "deploy an rnn based stock analysis model server.", "doc": "", "example": "rnn_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "rnn-serving", "platformVersion": "", "spec": {"filename": "rnn_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["keras"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/rnn_serving.ipynb", "source": "src/rnn_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "tf1_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "tf1-serving", "platformVersion": "3.5.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "tf1-serving", "platformVersion": "3.2.0", "spec": {"env": {"ENABLE_EXPLAINER": false, "MODEL_CLASS": "TFModel"}, "filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "tf1 image classification server", "doc": "", "example": "tf1_serving.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "tf1-serving", "platformVersion": "", "spec": {"filename": "tf1_serving.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio:serving", "requirements": [], "env": {"MODEL_CLASS": "TFModel", "ENABLE_EXPLAINER": false}}, "url": "", "version": "0.0.1", "assets": {"example": "src/tf1_serving.ipynb", "source": "src/tf1_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_batch": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-batch", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-batch", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_batch.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-batch", "platformVersion": "", "spec": {"filename": "model_monitoring_batch.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_batch.ipynb", "source": "src/model_monitoring_batch.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "open_archive": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "open-archive", "platformVersion": "3.5.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "open-archive", "platformVersion": "3.2.0", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Open a file/object archive into a target directory", "doc": "", "example": "open_archive.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "yaronh"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "open-archive", "platformVersion": "", "spec": {"filename": "open_archive.py", "handler": "open_archive", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/open_archive.ipynb", "source": "src/open_archive.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "onnx_utils": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.2": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.10.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.10.2", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "onnxoptimizer~=0.2.0", "onnxmltools~=1.9.0", "tf2onnx~=1.9.0"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "onnx_utils", "platformVersion": "3.2.0", "spec": {"filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun.", "doc": "", "example": "onnx_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "onnx_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "onnx_utils.py", "handler": "to_onnx", "image": "mlrun/mlrun", "kind": "job", "requirements": ["onnx~=1.13.0", "onnxruntime~=1.14.0", "onnxoptimizer~=0.3.0", "onnxmltools~=1.11.0", "tf2onnx~=1.13.0"]}, "url": "", "version": "1.2.0", "assets": {"example": "src/onnx_utils.ipynb", "source": "src/onnx_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "gen_class_data": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "gen_class_data", "platformVersion": "3.5.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.10.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.10.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "gen_class_data", "platformVersion": "3.2.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.6.2", "name": "gen_class_data", "platformVersion": "3.0.0", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Create a binary classification sample dataset and save.", "doc": "", "example": "gen_class_data.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Daniel"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "gen_class_data", "platformVersion": "3.5.3", "spec": {"filename": "gen_class_data.py", "handler": "gen_class_data", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/gen_class_data.ipynb", "source": "src/gen_class_data.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_utils": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.5": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-04-20:15-18", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "0.9.5", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.4": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "extra_spec": {"build": {"commands": ["python -m pip install pip==21.2.4", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true, "auto_build": true}, "allow_empty_resources": true}, "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0", "plotly~=5.4"]}, "url": "", "version": "0.9.4", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2021-11-13:00-15", "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "azureml_utils", "platformVersion": "", "spec": {"filename": "azureml_utils.py", "handler": "train", "commands": null, "image": "", "kind": "job", "requirements": ["azureml-core==1.33.0", "azureml-train-automl-client==1.33.0"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "azureml_utils", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["apt-get update && apt-get install -y --no-install-recommends git", "apt install -y liblttng-ust0"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.9-bullseye", "kind": "job", "requirements": ["azureml-core==1.54.0.post1", "azureml-train-automl-client==1.54.0.post1", "plotly~=5.4"]}, "url": "", "version": "1.3.0", "test_valid": true, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom.", "doc": "", "example": "azureml_utils.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_utils", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "commands": ["python -m pip install pip==22.1.2", "apt-get update && apt-get install -y --no-install-recommends git"], "with_mlrun": true}}, "filename": "azureml_utils.py", "handler": "train", "image": "python:3.7.9-slim", "kind": "job", "requirements": ["azureml-core==1.40.0", "azureml-train-automl-client==1.40.0", "plotly~=5.4"]}, "url": "", "version": "1.2.0", "test_valid": false, "assets": {"example": "src/azureml_utils.ipynb", "source": "src/azureml_utils.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "churn_server": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.9.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "churn-server", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "0.8.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "churn-server", "platformVersion": "3.2.0", "spec": {"customFields": {"default_class": "ChurnModel"}, "env": {"ENABLE_EXPLAINER": "False"}, "filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["xgboost==1.3.1", "lifelines==0.22.8"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "churn classification and predictor", "doc": "", "example": "churn_server.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "Iguazio", "framework": "churn"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "churn-server", "platformVersion": "", "spec": {"filename": "churn_server.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": [], "env": {"ENABLE_EXPLAINER": "False"}, "customFields": {"default_class": "ChurnModel"}}, "url": "", "version": "0.0.1", "assets": {"example": "src/churn_server.ipynb", "source": "src/churn_server.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "describe_spark": {"latest": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "describe-spark", "platformVersion": "3.5.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe_spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe_spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "describe-spark", "platformVersion": "3.2.0", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-analysis"], "description": "", "doc": "", "example": "describe_spark.ipynb", "generationDate": "2021-05-19:22-41", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "describe-spark", "platformVersion": "", "spec": {"filename": "describe-spark.py", "handler": "describe_spark", "image": "iguazio/shell:3.0_b5565_20201026062233_wsdf", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/describe_spark.ipynb", "source": "src/describe-spark.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "model_monitoring_stream": {"latest": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "model-monitoring-stream", "platformVersion": "3.5.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.9.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "model-monitoring-stream", "platformVersion": "3.2.0", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "livsmichael/mlrun-api:automation", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["monitoring"], "description": "", "doc": "", "example": "model_monitoring_stream.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "model-monitoring-stream", "platformVersion": "", "spec": {"filename": "model_monitoring_stream.py", "handler": "handler", "image": "mlrun/mlrun", "kind": "nuclio", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/model_monitoring_stream.ipynb", "source": "src/model_monitoring_stream.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "send_email": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "send-email", "platformVersion": "3.5.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "send-email", "platformVersion": "3.2.0", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2021-05-19:23-13", "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "", "name": "send-email", "platformVersion": "", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/ml-models", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Send Email messages through SMTP server", "doc": "", "example": "send_email.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "saarc"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "send-email", "platformVersion": "3.5.3", "spec": {"filename": "send_email.py", "handler": "send_email", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/send_email.ipynb", "source": "src/send_email.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "arc_to_parquet": {"latest": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "avi"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "arc-to-parquet", "platformVersion": "3.5.4", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.4.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.8.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-11-18:12-28", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.8.0", "name": "arc-to-parquet", "platformVersion": "3.2.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.8.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2021-05-19:22-04", "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.5.4", "name": "arc-to-parquet", "platformVersion": "2.10.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "0.0.1", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["etl"], "description": "retrieve remote archive, open and save as parquet", "doc": "", "example": "arc_to_parquet.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yjb"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "arc-to-parquet", "platformVersion": "3.5.0", "spec": {"filename": "arc_to_parquet.py", "handler": "arc_to_parquet", "image": "mlrun/ml-base", "kind": "job", "requirements": []}, "url": "", "version": "1.2.0", "assets": {"example": "src/arc_to_parquet.ipynb", "source": "src/arc_to_parquet.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "snowflake_dask": {"latest": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.9.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-03-20:12-28", "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "0.9.1", "name": "snowflake_dask", "platformVersion": "3.2.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "0.9.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation"], "description": "Snowflake Dask - Ingest snowflake data in parallel with Dask cluster", "doc": "", "example": "snowflake-dask-mlrun.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "xingsheng", "framework": "dask"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "snowflake_dask", "platformVersion": "3.5.0", "spec": {"filename": "snowflake_dask.py", "handler": "load_results", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.1.0", "assets": {"example": "src/snowflake-dask-mlrun.ipynb", "source": "src/snowflake_dask.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "azureml_serving": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-serving"], "description": "AzureML serving function", "doc": "", "example": "azureml_serving.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "azureml_serving", "platformVersion": "3.5.0", "spec": {"customFields": {"default_class": "mlrun.frameworks.sklearn.PickleModelServer"}, "filename": "azureml_serving.py", "image": "mlrun/mlrun", "kind": "serving", "requirements": ["azureml-automl-runtime~=1.38.1"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/azureml_serving.ipynb", "source": "src/azureml_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference": {"latest": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.7.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.7.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.4.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.4.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.1": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.1", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.3.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference ( also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": true, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": ["scikit-learn", "plotly"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.1", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.2.0": {"apiVersion": "v1", "categories": ["utils"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "batch_inference", "platformVersion": "3.5.0", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference.py", "handler": "infer", "image": "mlrun/ml-models", "kind": "job", "requirements": null}, "url": "", "version": "1.2.0", "assets": {"example": "src/batch_inference.ipynb", "source": "src/batch_inference.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_serving": {"latest": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["model-serving", "machine-learning"], "description": "Generic Hugging Face model server.", "doc": "", "example": "hugging_face_serving.ipynb", "generationDate": "2022-09-05:17-00", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "hugging_face_serving", "platformVersion": "", "spec": {"customFields": {"default_class": "HuggingFaceModelServer"}, "filename": "hugging_face_serving.py", "handler": "handler", "image": "mlrun/ml-models", "kind": "serving", "requirements": ["transformers==4.21.3", "tensorflow==2.9.2"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/hugging_face_serving.ipynb", "source": "src/hugging_face_serving.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "hugging_face_classifier_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.1.0", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "Automatic train and optimize functions for HuggingFace framework", "doc": "", "example": "hugging_face_classifier_trainer.ipynb", "generationDate": "2022-08-28:17-25", "hidden": false, "icon": "", "labels": {"author": "davids"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.2.0", "name": "hugging_face_classifier_trainer", "platformVersion": "3.5.0", "spec": {"filename": "hugging_face_classifier_trainer.py", "handler": "train", "image": "mlrun/ml-models", "kind": "job", "requirements": ["onnx~=1.10.1", "onnxruntime~=1.8.1", "optimum~=1.6.4", "transformers~=4.26.1", "datasets~=2.10.1", "scikit-learn~=1.0.2"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/hugging_face_classifier_trainer.ipynb", "source": "src/hugging_face_classifier_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "validate_great_expectations": {"latest": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-validation", "data-analysis"], "description": "Validate a dataset using Great Expectations", "doc": "", "example": "validate_great_expectations.ipynb", "generationDate": "2022-04-26:12-28", "hidden": false, "icon": "", "labels": {"author": "nicks", "framework": "great-expectations"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.1.0", "name": "validate-great-expectations", "platformVersion": "3.5.2", "spec": {"filename": "validate_great_expectations.py", "handler": "validate_expectations", "image": "mlrun/mlrun", "kind": "job", "requirements": ["great-expectations==0.15.41"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/validate_great_expectations.ipynb", "source": "src/validate_great_expectations.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "question_answering": {"latest": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.2.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.3.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.3.1": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "torch", "tqdm"]}, "url": "", "version": "0.3.1", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning"], "description": "GenAI approach of question answering on a given data", "doc": "", "example": "question_answering.ipynb", "generationDate": "2023-08-07:11-30", "hidden": false, "icon": "", "labels": {"author": "yonish"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "question_answering", "platformVersion": "3.5.0", "spec": {"filename": "question_answering.py", "handler": "answer_questions", "image": "mlrun/mlrun", "kind": "job", "requirements": "transformers torch tqdm"}, "url": "", "version": "0.1.0", "assets": {"example": "src/question_answering.ipynb", "source": "src/question_answering.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "transcribe": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "tqdm", "torchaudio", "torch", "accelerate"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Transcribe audio files into text files", "doc": "", "example": "transcribe.ipynb", "generationDate": "2023-07-13:11-20", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "transcribe", "platformVersion": "3.5.3", "spec": {"filename": "transcribe.py", "handler": "transcribe", "image": "mlrun/mlrun", "kind": "job", "requirements": ["openai-whisper", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": false, "assets": {"example": "src/transcribe.ipynb", "source": "src/transcribe.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pii_recognizer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.2.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.2.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.1.0", "test_valid": false, "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["machine-learning", "data-preparation"], "description": "This function is used to recognize PII in a directory of text files", "doc": "", "example": "pii_recognizer.ipynb", "generationDate": "2023-08-15:10-24", "hidden": false, "icon": "", "labels": {"author": "pgw"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "pii-recognizer", "platformVersion": "3.5.3", "spec": {"filename": "pii_recognizer.py", "handler": "recognize_pii", "image": "mlrun/mlrun", "kind": "job", "requirements": ["nltk", "pandas", "presidio-anonymizer", "presidio-analyzer", "torch", "flair@git+https://github.com/flairNLP/flair.git@d4ed67bf663e4066517f00397412510d90043653", "st-annotated-text", "https://huggingface.co/beki/en_spacy_pii_distilbert/resolve/main/en_spacy_pii_distilbert-any-py3-none-any.whl"]}, "url": "", "version": "0.0.1", "assets": {"example": "src/pii_recognizer.ipynb", "source": "src/pii_recognizer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "huggingface_auto_trainer": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "model-training"], "description": "fine-tune llm model with ease", "doc": "", "example": "huggingface_auto_trainer.ipynb", "generationDate": "2023-08-21:17-25", "hidden": false, "icon": "", "labels": {"author": "Zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.4.0", "name": "huggingface-auto-trainer", "platformVersion": "3.5.0", "spec": {"filename": "huggingface_auto_trainer.py", "handler": "finetune_llm", "image": "mlrun/mlrun", "kind": "job", "requirements": []}, "url": "", "version": "1.0.0", "assets": {"example": "src/huggingface_auto_trainer.ipynb", "source": "src/huggingface_auto_trainer.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "batch_inference_v2": {"latest": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.9.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc16", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.9.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.4.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.4.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.8.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc13", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.8.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.6.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0-rc9", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "1.6.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.1.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.1.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.5.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.5.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.2.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.2.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "2.0.0": {"apiVersion": "v1", "categories": ["utils", "data-analysis", "monitoring"], "description": "Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis.", "doc": "", "example": "batch_inference_v2.ipynb", "generationDate": "2023-08-07:12-25", "hidden": false, "icon": "", "labels": {"author": "eyald"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.0", "name": "batch_inference_v2", "platformVersion": "3.5.3", "spec": {"extra_spec": {"allow_empty_resources": true, "build": {"auto_build": false, "with_mlrun": false}}, "filename": "batch_inference_v2.py", "handler": "infer", "image": "mlrun/mlrun", "kind": "job", "requirements": null}, "url": "", "version": "2.0.0", "assets": {"example": "src/batch_inference_v2.ipynb", "source": "src/batch_inference_v2.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "translate": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.2": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning", "deep-learning", "NLP"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.2", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "0.0.1": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Translate text files from one language to another", "doc": "", "example": "translate.ipynb", "generationDate": "2023-12-05:17-20", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "translate", "platformVersion": "3.5.3", "spec": {"filename": "translate.py", "handler": "translate", "image": "mlrun/mlrun", "kind": "job", "requirements": ["transformers", "sentencepiece", "torch", "tqdm"]}, "url": "", "version": "0.0.1", "test_valid": true, "assets": {"example": "src/translate.ipynb", "source": "src/translate.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "structured_data_generator": {"latest": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.3.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.3.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["machine-learning", "Data Preparation", "Data Generation", "GenAI"], "description": "GenAI approach of generating structured data according to a given schema", "doc": "", "example": "structured_data_generator.ipynb", "generationDate": "2023-12-14:10-50", "hidden": false, "icon": "", "labels": {"author": "zeevr"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "structured_data_generator", "platformVersion": "3.5.0", "spec": {"filename": "structured_data_generator.py", "handler": "generate_data", "image": "mlrun/mlrun", "kind": "job", "requirements": ["langchain", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/structured_data_generator.ipynb", "source": "src/structured_data_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "text_to_audio_generator": {"latest": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.1.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["data-preparation", "machine-learning"], "description": "Generate audio file from text using different speakers", "doc": "", "example": "text_to_audio_generator.ipynb", "generationDate": "2023-12-03:15-30", "hidden": false, "icon": "", "labels": {"author": "yonatans"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.1", "name": "text_to_audio_generator", "platformVersion": "3.5.3", "spec": {"filename": "text_to_audio_generator.py", "handler": "generate_multi_speakers_audio", "image": "mlrun/mlrun", "kind": "job", "requirements": ["bark", "torchaudio"]}, "url": "", "version": "1.0.0", "test_valid": true, "assets": {"example": "src/text_to_audio_generator.ipynb", "source": "src/text_to_audio_generator.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "silero_vad": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.1.0": {"apiVersion": "v1", "categories": ["Deep Learning", "PyTorch", "Audio"], "description": "Silero VAD (Voice Activity Detection) functions.", "doc": "", "example": "silero_vad.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "silero_vad", "platformVersion": "3.5.3", "spec": {"filename": "silero_vad.py", "handler": "detect_voice", "image": "mlrun/mlrun", "kind": "job", "requirements": ["torch", "torchaudio", "tqdm", "onnxruntime"]}, "url": "", "version": "1.1.0", "assets": {"example": "src/silero_vad.ipynb", "source": "src/silero_vad.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}, "pyannote_audio": {"latest": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}, "1.0.0": {"apiVersion": "v1", "categories": ["Deep Learning", "Huggingface", "Audio"], "description": "pyannote's speech diarization of audio files", "doc": "", "example": "pyannote_audio.ipynb", "generationDate": "2023-12-03:14-30", "hidden": false, "icon": "", "labels": {"author": "guyl"}, "maintainers": [], "marketplaceType": "", "mlrunVersion": "1.5.2", "name": "pyannote-audio", "platformVersion": "3.5.3", "spec": {"filename": "pyannote_audio.py", "handler": "diarize", "image": "mlrun/mlrun-gpu", "kind": "job", "requirements": ["pyannote.audio", "pyannote.core", "torchaudio", "tqdm"]}, "url": "", "version": "1.0.0", "assets": {"example": "src/pyannote_audio.ipynb", "source": "src/pyannote_audio.py", "function": "src/function.yaml", "docs": "static/documentation.html"}}}}
\ No newline at end of file
diff --git a/functions/master/tags.json b/functions/master/tags.json
index e3e5169d..7e664987 100644
--- a/functions/master/tags.json
+++ b/functions/master/tags.json
@@ -1 +1 @@
-{"kind": ["job", "dask", "nuclio", "serving", "nuclio:serving"], "categories": ["data-preparation", "etl", "data-validation", "Audio", "Deep Learning", "monitoring", "PyTorch", "data-analysis", "model-serving", "Huggingface", "Data Generation", "GenAI", "deep-learning", "model-testing", "feature-store", "NLP", "Data Preparation", "machine-learning", "model-training", "utils"]}
\ No newline at end of file
+{"kind": ["serving", "nuclio:serving", "dask", "nuclio", "job"], "categories": ["data-validation", "monitoring", "Audio", "NLP", "utils", "machine-learning", "Data Generation", "feature-store", "Deep Learning", "data-preparation", "PyTorch", "data-analysis", "deep-learning", "model-training", "model-testing", "Data Preparation", "Huggingface", "model-serving", "GenAI", "etl"]}
\ No newline at end of file