-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
136 lines (115 loc) · 4.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import glob
import json
import math
import os
import pickle
import random
import argparse
import cv2
import gc
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import keras
import matplotlib.pyplot as plt
from keras import backend as K
from tqdm import tqdm
from keras.optimizers import *
from keras.models import Model
from keras.layers import *
from keras.layers.core import *
from keras.layers.convolutional import *
from sklearn.utils import class_weight
import tensorflow as tf
from tensorflow.python.ops import math_ops
from model import *
parser = argparse.ArgumentParser(description='Calculate auc')
parser.add_argument('--model_dir', type=str, default='/jobs/default/', help='directory with parameters (params.json) and to store output')
parser.add_argument('--seed', type=int, default=1234, help='random seed', nargs='?')
args = parser.parse_args()
# Initialize environment
random.seed(args.seed)
with open(args.model_dir + 'params.json') as json_file:
data = json.load(json_file)
C = data['config']
print(C)
# K-Fold Cross Validation
def leaveoneout(params):
test_acc = []
predicted_final_classes = []
predicted_classes = []
prediction_list = []
true_labels = []
accumulated_test_list = []
lr = params['lr']
epochs = params['epochs']
batch_size = params['batch_size']
alpha = params['alpha']
gamma = params['gamma']
beta = params['beta']
loss = categorical_ordinal_focal_loss(alpha=alpha, gamma=gamma, beta=beta)
# Train and evaluate model for each fold
for j in range(0, C['folds']):
i = j+1
Train = pickle.load(open(C['data_dir']+"EPG_train_" + str(i) + ".pkl", "rb"))
Test = pickle.load(open(C['data_dir']+"EPG_test_" + str(i) + ".pkl", "rb"))
Test_list = pickle.load(open(C['data_dir']+"EPG_test_list_" + str(i) + ".pkl", "rb"))
accumulated_test_list.append(Test_list[0])
X_0,X_1,Y = data_generator(Train,C,result="classification")
X_test_0,X_test_1,Y_test = data_generator(Test,C,result="classification")
test_name = Test_list[0]
lrScheduler = keras.callbacks.ReduceLROnPlateau(monitor='loss', factor=0.5, patience=5, cooldown=5, min_lr=1e-7)
DD_Net = build_DD_Net(C)
DD_Net.compile(loss=loss,
optimizer=tf.keras.optimizers.Adam(lr),
metrics=['accuracy'])
history = DD_Net.fit([X_0, X_1],Y,
batch_size=batch_size,
epochs=epochs,
verbose=True,
shuffle=True,
callbacks=[lrScheduler],
validation_data=([X_test_0,X_test_1],Y_test)
)
# Evaluate and store predictions
print('\n# Evaluate on test data')
results = DD_Net.evaluate([X_test_0, X_test_1], Y_test, batch_size=len(Y_test))
print('test loss, test acc:', results)
# Generate predictions
print('\n# Generate predictions')
predictions = DD_Net.predict([X_test_0, X_test_1])
test_acc.append(results[1])
pred_classes = get_predicted_class(predictions)
pred_class = total_video_vote(predictions)
prediction_list.append(predictions)
true_labels.append(Test['label'])
predicted_classes.append(pred_classes)
predicted_final_classes.append(pred_class)
test_acc_dict = {}
for i in range(len(test_acc)):
test_acc_dict[accumulated_test_list[i]] = test_acc[i]
print(accumulated_test_list[i] + " accuracy: " + str(test_acc[i]))
del Train, Test, Test_list, history, X_0, X_1, Y
#gc.collect()
#K.clear_session()
# Save results
if len(test_acc) != 0:
average_test_accuracy = sum(test_acc) / len(test_acc)
print("final average test accuracy:", average_test_accuracy)
else:
average_test_accuracy = 0
if 'run_name' in params:
jsonfilename = args.model_dir + params['run_name'] + 'results.json'
if params['run_name'] not in run_names:
run_names.append(params['run_name'])
else:
jsonfilename = args.model_dir + 'results.json'
prediction_non_np = [x.tolist() for x in prediction_list]
attributes = [average_test_accuracy, test_acc_dict, predicted_classes, predicted_final_classes, prediction_non_np, true_labels, params]
names = ["average_test_accuracy", "test_acc_dict", "predicted_classes", "predicted_final_classes", "prediction_list", "true_labels", "params"]
save_json(jsonfilename, attributes, names)
return average_test_accuracy, DD_Net
if __name__ == "__main__":
print("Training...")
leaveoneout(C)